

Carlo Flore

Università di Cagliari & INFN - Sezione di Cagliari

Sar WorS 2025 Hotel Baia di Nora June 13th, 2025

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, Phys. Lett. B 854 (2024) 138712 U. D'Alesio, CF, M. Zaccheddu, in preparation

Introduction - Universality

• Universality is a key feature of PDFs and FFs

Introduction - Universality

- Universality is a key feature of PDFs and FFs
- I googled "universality of parton distribution" and I got:

3. Implications of Universality:

Consistency:

Universality allows us to predict the outcome of one experiment using information from another, which promotes consistency between different experiments.

Simplified Calculations:

By treating PDFs as universal, calculations are simplified as we don't need to redetermine them for every new hard scattering process.

Connection to Fundamental Theory:

Universality connects PDFs to the fundamental theory of quantum chromodynamics (QCD), which governs the strong force that binds quarks and gluons within hadrons.

4. Challenges and Refinements:

- · While universality is a powerful concept, it's not without its limitations.
- In some cases, process-dependent effects, like transverse momentum-dependent (TMD) PDFs, can break universality.
- However, the principle of universality is still a cornerstone of our understanding of hadron structure.

Introduction - Universality

- Universality is a key feature of PDFs and FFs
- I googled "universality of parton distribution" and I got:

3. Implications of Universality:

Consistency:

Universality allows us to predict the outcome of one experiment using information from another, which promotes consistency between different experiments.

Simplified Calculations:

By treating PDFs as universal, calculations are simplified as we don't need to redetermine them for every new hard scattering process.

Connection to Fundamental Theory:

Universality connects PDFs to the fundamental theory of quantum chromodynamics (QCD), which governs the strong force that binds quarks and gluons within hadrons.

4. Challenges and Refinements:

- · While universality is a powerful concept, it's not without its limitations.
- In some cases, process-dependent effects, like transverse momentum-dependent (TMD) PDFs, can break universality.
- However, the principle of universality is still a cornerstone of our understanding of hadron structure.
- Sivers and Collins functions have important common features, but expected to have different universality properties

Introduction - the Collins function

• genuine TMD fragmentation function

Introduction - the Collins function

- genuine TMD fragmentation function
- express correlation between quark transverse polarization and produced hadron ${f p}_\perp$

Introduction - the Collins function

$$\begin{split} & D_{h/q^{\uparrow}}(z, \mathbf{p}_{\perp}) - D_{h/q^{\uparrow}}(z, -\mathbf{p}_{\perp}) \\ &= \Delta^{N} D_{h/q^{\uparrow}}(z, p_{\perp}^{2}) \frac{(\hat{p}_{q} \times \mathbf{p}_{\perp}) \cdot \mathbf{s}_{q}}{|\mathbf{p}_{\perp}|} \quad (TO - CA) \\ &= -\frac{2|\mathbf{p}_{\perp}|}{zm_{h}} H_{1}^{\perp q}(z, p_{\perp}^{2}) \frac{(\hat{p}_{q} \times \mathbf{p}_{\perp}) \cdot \mathbf{s}_{q}}{|\mathbf{p}_{\perp}|} \quad (Amsterdam) \end{split}$$

- genuine TMD fragmentation function
- express correlation between quark transverse polarization and produced hadron ${f p}_\perp$
- extracted, together with TMD transversity h^q₁, in global fits of SIDIS azimuthal asymmetries:

$$A_{UT}^{\sin(\phi_h+\phi_S)} = \frac{2(1-y)}{1+(1-y)^2} \frac{F_{UT}^{\sin(\phi_h+\phi_S)}}{F_{UU,T}} \sim \frac{\mathcal{C}\left[h_1^q H_1^{\perp q}\right]}{\mathcal{C}\left[f_1^q D_1^q\right]}$$

and $e^+e^-
ightarrow h_1h_2X$ azimuthal asymmetries (double ratio):

$$\frac{R_0^U}{R_0^{L(C)}} = \frac{1 + P_0^U \cos(2\phi_1)}{1 + P_0^{L(C)} \cos(2\phi_1)} \simeq 1 + \cos(2\phi_1) A_0^{UL(UC)} \sim \mathcal{C} \left[H_1^{\perp \bar{q}} H_1^{\perp q} \right]$$

• In what follows, I will present two tests for TMD FF universality:

- In what follows, I will present two tests for TMD FF universality:
 - 1. A_N in $p^{\uparrow}p \rightarrow hX$

• In what follows, I will present two tests for TMD FF universality:

1.
$$A_N$$
 in $p^{\uparrow}p \rightarrow hX$
2. $A_{UT}^{\sin(\phi_S - \phi_h)}$ in $p^{\uparrow}p \rightarrow \text{jet } hX$

• In what follows, I will present two tests for TMD FF universality:

1.
$$A_N$$
 in $p^{\uparrow}p \rightarrow hX$
2. $A_{UT}^{\sin(\phi_5-\phi_h)}$ in $p^{\uparrow}p \rightarrow \text{jet } hX$

• Here is the strategy:

• In what follows, I will present two tests for TMD FF universality:

1.
$$A_N$$
 in $p^{\uparrow}p \rightarrow hX$
2. $A_{UT}^{\sin(\phi_5-\phi_h)}$ in $p^{\uparrow}p \rightarrow \text{jet } hX$

- Here is the strategy:
 - (i) apply simultaneous Bayesian reweighting using A_N data on TMDs from SIDIS and e^+e^- data as priors

- In what follows, I will present two tests for TMD FF universality:
 - 1. A_N in $p^{\uparrow}p \rightarrow hX$ 2. $A_{UT}^{\sin(\phi_5-\phi_h)}$ in $p^{\uparrow}p \rightarrow \text{jet } hX$
- Here is the strategy:
 - (i) apply simultaneous Bayesian reweighting using A_N data on TMDs from SIDIS and e^+e^- data as priors
 - (ii) verify if priors and posteriors are able to describe $A_{UT}^{\sin(\phi_S-\phi_h)}$ data

1. A_N in $p^{\uparrow}p \rightarrow hX$

U. D'Alesio, F. Murgia PRD 70 (2004) 074009; M. Anselmino et al., PRD 73 (2006) 014020 L. Gamberg, Z.-B. Kang, PLB 696 (2011) 109; U. D'Alesio et al., PRD 96 (2017) 036011 ...

• $p^{\uparrow}p \rightarrow h X$ processes can be described within the GPM, where a factorized formulation in terms of TMDs is assumed as a starting point

U. D'Alesio, F. Murgia PRD 70 (2004) 074009; M. Anselmino et al., PRD 73 (2006) 014020 L. Gamberg, Z.-B. Kang, PLB 696 (2011) 109; U. D'Alesio et al., PRD 96 (2017) 036011 ...

- $p^{\uparrow}p \rightarrow h X$ processes can be described within the GPM, where a factorized formulation in terms of TMDs is assumed as a starting point
- a color gauge invariant formulation of GPM (CGI-GPM) was developed, with inclusion of initial and final state interaction; process dependence of the Sivers function is recovered

U. D'Alesio, F. Murgia PRD 70 (2004) 074009; M. Anselmino et al., PRD 73 (2006) 014020 L. Gamberg, Z.-B. Kang, PLB 696 (2011) 109; U. D'Alesio et al., PRD 96 (2017) 036011 ...

- $p^{\uparrow}p \rightarrow hX$ processes can be described within the GPM, where a factorized formulation in terms of TMDs is assumed as a starting point
- a color gauge invariant formulation of GPM (CGI-GPM) was developed, with inclusion of initial and final state interaction; process dependence of the Sivers function is recovered
- A_N in $p^{\uparrow}p \rightarrow h X$:

$$A_{\rm N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma} \simeq \frac{d\Delta\sigma_{\rm Siv} + d\Delta\sigma_{\rm Col}}{2d\sigma}$$

with

$$\begin{split} d\Delta\sigma_{\text{Siv}}^{\text{CGI-GPM}} &\propto \sum_{a,b,c,d} f_{1T}^{\perp a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H_{ab \to cd}^{\text{Inc}} \otimes D_{h/c}(z,k_{\perp h}) \\ d\Delta\sigma_{\text{Col}} &\propto \sum_{a,b,c,d} h_{1a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes d\Delta\sigma^{a^{\uparrow}b \to c^{\uparrow}d} \otimes H_1^{\perp c}(z,k_{\perp h}) \end{split}$$

and

$$d\sigma \propto \sum_{a,b,c,d} f_{a/p}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H^U_{ab \to cd} \otimes \mathsf{D}_{h/c}(z,k_{\perp h})$$

U. D'Alesio, F. Murgia PRD 70 (2004) 074009; M. Anselmino et al., PRD 73 (2006) 014020 L. Gamberg, Z.-B. Kang, PLB 696 (2011) 109; U. D'Alesio et al., PRD 96 (2017) 036011 ...

- $p^{\uparrow}p \rightarrow hX$ processes can be described within the GPM, where a factorized formulation in terms of TMDs is assumed as a starting point
- a color gauge invariant formulation of GPM (CGI-GPM) was developed, with inclusion of initial and final state interaction; process dependence of the Sivers function is recovered
- A_N in $p^{\uparrow}p \rightarrow h X$:

$$A_{\rm N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma} \simeq \frac{d\Delta\sigma_{\rm Siv} + d\Delta\sigma_{\rm Col}}{2d\sigma}$$

with

$$\begin{split} d\Delta\sigma_{\rm Siv}^{\rm CGI-GPM} &\propto \sum_{a,b,c,d} f_{\rm 1T}^{\perp a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H_{ab \to cd}^{\rm Inc} \otimes D_{h/c}(z,k_{\perp h}) \\ d\Delta\sigma_{\rm Col} &\propto \sum_{a,b,c,d} h_{1a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes d\Delta\sigma^{a^{\uparrow}b \to c^{\uparrow}d} \otimes H_1^{\perp c}(z,k_{\perp h}) \end{split}$$

and

$$d\sigma \propto \sum_{a,b,c,d} f_{a/p}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H^U_{ab \to cd} \otimes D_{h/c}(z,k_{\perp h})$$

• GPM results (Sivers): $H_{ab \rightarrow cd}^{lnc} \rightarrow H_{ab \rightarrow cd}^{U}$

A_N in $p^{\uparrow}p ightarrow hX$ - formalism

U. D'Alesio, F. Murgia PRD 70 (2004) 074009; M. Anselmino et al., PRD 73 (2006) 014020 L. Gamberg, Z.-B. Kang, PLB 696 (2011) 109; U. D'Alesio et al., PRD 96 (2017) 036011 ...

- $p^{\uparrow}p \rightarrow h X$ processes can be described within the GPM, where a factorized formulation in terms of TMDs is assumed as a starting point
- a color gauge invariant formulation of GPM (CGI-GPM) was developed, with inclusion of initial and final state interaction; process dependence of the Sivers function is recovered
- A_N in $p^{\uparrow}p \rightarrow h X$:

$$A_{\rm N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma} \simeq \frac{d\Delta\sigma_{\rm Siv} + d\Delta\sigma_{\rm Col}}{2d\sigma}$$

with

$$\begin{split} d\Delta\sigma_{\rm Siv}^{\rm CGI-GPM} &\propto \sum_{a,b,c,d} f_{\rm 1T}^{\perp a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H_{ab \to cd}^{\rm Inc} \otimes D_{h/c}(z,k_{\perp h}) \\ d\Delta\sigma_{\rm Col} &\propto \sum_{a,b,c,d} h_{1a}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes d\Delta\sigma^{a^{\uparrow}b \to c^{\uparrow}d} \otimes H_1^{\perp c}(z,k_{\perp h}) \end{split}$$

and

$$d\sigma \propto \sum_{a,b,c,d} f_{a/p}(x_a,k_{\perp a}) \otimes f_{b/p}(x_b,k_{\perp b}) \otimes H^U_{ab \to cd} \otimes \mathsf{D}_{h/c}(z,k_{\perp h})$$

- GPM results (Sivers): $H_{ab \rightarrow cd}^{lnc} \rightarrow H_{ab \rightarrow cd}^{U}$
- gluon Sivers effect negligible in the region of moderate and forward rapidity

W.T. Giele, S. Keller PRD 58 (1998) 094023; R.D. Ball *et al.*, NPB 849 (2011) 112 N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

• Reweighting is a well established technique in the context of collinear PDFs fits

W.T. Giele, S. Keller PRD 58 (1998) 094023; R.D. Ball *et al.*, NPB 849 (2011) 112 N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

- Reweighting is a well established technique in the context of collinear PDFs fits
- it allows to assess the impact of new data sets on existing PDFs extractions, avoiding a new global fit

W.T. Giele, S. Keller PRD 58 (1998) 094023; R.D. Ball *et al.*, NPB 849 (2011) 112 N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

- Reweighting is a well established technique in the context of collinear PDFs fits
- it allows to assess the impact of new data sets on existing PDFs extractions, avoiding a new global fit
- used both in the Bayesian framework and in the Hessian approach

W.T. Giele, S. Keller PRD 58 (1998) 094023; R.D. Ball *et al.*, NPB 849 (2011) 112 N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

- Reweighting is a well established technique in the context of collinear PDFs fits
- it allows to assess the impact of new data sets on existing PDFs extractions, avoiding a new global fit
- used both in the Bayesian framework and in the Hessian approach
- we have applied for the first time Bayesian reweighting to the quark Sivers function

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 815 (2021) 136135

W.T. Giele, S. Keller PRD 58 (1998) 094023; R.D. Ball *et al.*, NPB 849 (2011) 112 N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

- Reweighting is a well established technique in the context of collinear PDFs fits
- it allows to assess the impact of new data sets on existing PDFs extractions, avoiding a new global fit
- used both in the Bayesian framework and in the Hessian approach
- we have applied for the first time Bayesian reweighting to the quark Sivers function

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 815 (2021) 136135

how to extend the Bayesian reweighting to multiple, independent fits?

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

• consider two independent functions f(a) and g(b), depending on n_a and n_b parameters respectively

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- consider two independent functions f(a) and g(b), depending on n_a and n_b parameters respectively
- f and g extracted from fits to independent datasets E^a and E^b through χ^2 -minimization:

$$\chi_{a}^{2} \equiv \chi^{2}[\boldsymbol{a}; \boldsymbol{E}^{a}] = \sum_{i,j=1}^{N_{dat}^{a}} (T_{i}[\boldsymbol{a}] - E_{i}^{a}) (C_{ij}^{a})^{-1} (T_{j}[\boldsymbol{a}] - E_{j}^{a})$$
$$\chi_{b}^{2} \equiv \chi^{2}[\boldsymbol{b}; \boldsymbol{E}^{b}] = \sum_{i,j=1}^{N_{dat}^{b}} (T_{i}[\boldsymbol{b}] - E_{i}^{b}) (C_{ij}^{b})^{-1} (T_{j}[\boldsymbol{b}] - E_{j}^{b})$$

and probability density functions $\pi(a)$, $\pi(b)$ reconstructed by generating $N_{set}^{a} a_{k}$ and $N_{set}^{b} b_{l}$ MC sets respectively

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- consider two independent functions f(a) and g(b), depending on n_a and n_b parameters respectively
- f and g extracted from fits to independent datasets E^a and E^b through χ^2 -minimization:

$$\chi_{a}^{2} \equiv \chi^{2}[\boldsymbol{a}; \boldsymbol{E}^{a}] = \sum_{i,j=1}^{N_{dat}^{a}} (T_{i}[\boldsymbol{a}] - E_{i}^{a}) (C_{ij}^{a})^{-1} (T_{j}[\boldsymbol{a}] - E_{j}^{a})$$
$$\chi_{b}^{2} \equiv \chi^{2}[\boldsymbol{b}; \boldsymbol{E}^{b}] = \sum_{i,j=1}^{N_{dat}^{b}} (T_{i}[\boldsymbol{b}] - E_{i}^{b}) (C_{ij}^{b})^{-1} (T_{j}[\boldsymbol{b}] - E_{j}^{b})$$

and probability density functions $\pi(a)$, $\pi(b)$ reconstructed by generating $N_{set}^{a} a_{k}$ and $N_{set}^{b} b_{l}$ MC sets respectively

• a new dataset **E** is measured; data described by *e.g.* $T_i[\mathbf{a}, \mathbf{b}] \equiv \alpha T_i[\mathbf{a}] + \beta T_i[\mathbf{b}]$. Define

$$\chi^2_{\text{new}}[\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{E}] = \sum_{i,j=1}^{N_{\text{dat}}} (T_i[\boldsymbol{a}, \boldsymbol{b}] - E_i) C_{ij}^{-1} (T_j[\boldsymbol{a}, \boldsymbol{b}] - E_j)$$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- consider two independent functions f(a) and g(b), depending on n_a and n_b parameters respectively
- f and g extracted from fits to independent datasets E^a and E^b through χ^2 -minimization:

$$\chi_{a}^{2} \equiv \chi^{2}[\boldsymbol{a}; \boldsymbol{E}^{a}] = \sum_{i,j=1}^{N_{dat}} (T_{i}[\boldsymbol{a}] - E_{i}^{a}) (C_{ij}^{a})^{-1} (T_{j}[\boldsymbol{a}] - E_{j}^{a})$$
$$\chi_{b}^{2} \equiv \chi^{2}[\boldsymbol{b}; \boldsymbol{E}^{b}] = \sum_{i,j=1}^{N_{dat}^{b}} (T_{i}[\boldsymbol{b}] - E_{i}^{b}) (C_{ij}^{b})^{-1} (T_{j}[\boldsymbol{b}] - E_{j}^{b})$$

and probability density functions $\pi(a)$, $\pi(b)$ reconstructed by generating $N_{set}^{a} a_{k}$ and $N_{set}^{b} b_{l}$ MC sets respectively

• a new dataset **E** is measured; data described by *e.g.* $T_i[\mathbf{a}, \mathbf{b}] \equiv \alpha T_i[\mathbf{a}] + \beta T_i[\mathbf{b}]$. Define

$$\chi^2_{\mathsf{new}}[\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{E}] = \sum_{i,j=1}^{N_{\mathsf{dat}}} (T_i[\boldsymbol{a}, \boldsymbol{b}] - E_i) C_{ij}^{-1} (T_j[\boldsymbol{a}, \boldsymbol{b}] - E_j)$$

• uncertainty on $T_i[\boldsymbol{a}, \boldsymbol{b}]$ by taking all possible $(N_{set}^a \times N_{set}^b)$ combinations $\Rightarrow (N_{set}^a \times N_{set}^b)$ values $\chi^2_{new} \equiv \chi^2_{kl,new} = \chi^2_{new}[\boldsymbol{a}_k, \boldsymbol{b}_l; \boldsymbol{E}]$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

• Posterior density through Bayes theorem:

$$\mathcal{P}(\mathbf{a}, \mathbf{b} | \mathbf{E}) = rac{\mathcal{L}(\mathbf{E} | \mathbf{a}, \mathbf{b}) \pi(\mathbf{a}, \mathbf{b})}{Z}$$

with factorized prior $\pi(a, b) = \pi(a)\pi(b)$ (extractions *a priori* independent)

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

Posterior density through Bayes theorem:

$$\mathcal{P}(\boldsymbol{a}, \boldsymbol{b} | \boldsymbol{E}) = rac{\mathcal{L}(\boldsymbol{E} | \boldsymbol{a}, \boldsymbol{b}) \pi(\boldsymbol{a}, \boldsymbol{b})}{Z}$$

with factorized prior $\pi(\pmb{a},\pmb{b})=\pi(\pmb{a})\pi(\pmb{b})$ (extractions a priori independent)

we take L(E|a, b) dE as probability to find new data confined in a differential volume dE around E; weights are then defined as
 [H. Paukkunen, P. Zurita, JHEP 12 (2014) 100]

$$w_{kl}(\chi^2_{\text{new}}) = \left. \exp\left\{ -\frac{1}{2} \frac{\chi^2_{kl,\text{new}}}{\Delta \chi^2} \right\} \right/ \sum_{k',l'} \exp\left\{ -\frac{1}{2} \frac{\chi^2_{k'l',\text{new}}}{\Delta \chi^2} \right\}$$

 $[\Delta \chi^2 \text{ for } n_a + n_b \text{ parameters at a given CL}]$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

Posterior density through Bayes theorem:

$$\mathcal{P}(\boldsymbol{a}, \boldsymbol{b} | \boldsymbol{E}) = rac{\mathcal{L}(\boldsymbol{E} | \boldsymbol{a}, \boldsymbol{b}) \pi(\boldsymbol{a}, \boldsymbol{b})}{Z}$$

with factorized prior $\pi(\pmb{a},\pmb{b})=\pi(\pmb{a})\pi(\pmb{b})$ (extractions a priori independent)

we take L(E|a, b) dE as probability to find new data confined in a differential volume dE around E; weights are then defined as
 [H. Paukkunen, P. Zurita, JHEP 12 (2014) 100]

$$w_{kl}(\chi^2_{\text{new}}) = \left. \exp\left\{ -\frac{1}{2} \frac{\chi^2_{kl,\text{new}}}{\Delta \chi^2} \right\} \right/ \sum_{k',l'} \exp\left\{ -\frac{1}{2} \frac{\chi^2_{k'l',\text{new}}}{\Delta \chi^2} \right\}$$

 $[\Delta \chi^2 \text{ for } n_a + n_b \text{ parameters at a given CL}]$

• expectation value and variance for a quantity \mathcal{O} (symmetric)

$$\mathsf{E}[\mathcal{O}] = \sum_{k=1}^{N_{set}^a} \sum_{l=1}^{N_{set}^b} w_{kl} \mathcal{O}(\boldsymbol{a}_k, \boldsymbol{b}_l) \qquad \mathsf{V}[\mathcal{O}] = \sum_{k=1}^{N_{set}^a} \sum_{l=1}^{N_{set}^b} w_{kl} \left(\mathcal{O}(\boldsymbol{a}_k, \boldsymbol{b}_l) - \mathsf{E}[\mathcal{O}] \right)^2$$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

Posterior density through Bayes theorem:

$$\mathcal{P}(\mathbf{a}, \mathbf{b} | \mathbf{E}) = rac{\mathcal{L}(\mathbf{E} | \mathbf{a}, \mathbf{b}) \pi(\mathbf{a}, \mathbf{b})}{Z}$$

with factorized prior $\pi(\pmb{a},\pmb{b})=\pi(\pmb{a})\pi(\pmb{b})$ (extractions a priori independent)

we take L(E|a, b) dE as probability to find new data confined in a differential volume dE around E; weights are then defined as
 [H. Paukkunen, P. Zurita, JHEP 12 (2014) 100]

$$w_{kl}(\chi^{2}_{new}) = \left. \exp\left\{ -\frac{1}{2} \frac{\chi^{2}_{kl,new}}{\Delta \chi^{2}} \right\} \right/ \sum_{k',l'} \exp\left\{ -\frac{1}{2} \frac{\chi^{2}_{k'l',new}}{\Delta \chi^{2}} \right\}$$

 $[\Delta \chi^2 \text{ for } n_a + n_b \text{ parameters at a given CL}]$

• expectation value and variance for a quantity \mathcal{O} (symmetric)

$$\mathsf{E}[\mathcal{O}] = \sum_{k=1}^{N_{\text{set}}^a} \sum_{l=1}^{N_{\text{set}}^b} w_{kl} \mathcal{O}(\boldsymbol{a}_k, \boldsymbol{b}_l) \qquad \mathsf{V}[\mathcal{O}] = \sum_{k=1}^{N_{\text{set}}^a} \sum_{l=1}^{N_{\text{set}}^b} w_{kl} \left(\mathcal{O}(\boldsymbol{a}_k, \boldsymbol{b}_l) - \mathsf{E}[\mathcal{O}] \right)^2$$

• if \mathcal{O} depends only on **a** or **b**, then use weights

$$w_k = \sum_{l=1}^{N_{set}^b} w_{kl} \qquad w_l = \sum_{k=1}^{N_{set}^a} w_{kl}$$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

• We perform updated extractions of $f_{1T}^{\perp q}$, h_1^q , $H_1^{\perp q}$ from SIDIS and e^+e^- data using most recent data from HERMES, COMPASS, JLab

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- We perform updated extractions of $f_{1T}^{\perp q}$, h_1^q , $H_1^{\perp q}$ from SIDIS and e^+e^- data using most recent data from HERMES, COMPASS, JLab
- parametrizations:
 - quark Sivers function (5 parameters) M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, JHEP 07 (2018) 148
 - transversity and Collins functions (8 parameters) U. D'Alesio, CF, A. Prokudin, PLB 803 (2020) 135347

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- We perform updated extractions of $f_{1T}^{\perp q}$, h_1^q , $H_1^{\perp q}$ from SIDIS and e^+e^- data using most recent data from HERMES, COMPASS, JLab
- parametrizations:
 - quark Sivers function (5 parameters) M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, JHEP 07 (2018) 148
 - transversity and Collins functions (8 parameters) U. D'Alesio, CF, A. Prokudin, PLB 803 (2020) 135347
- generate $\mathcal{O}(10^5)~\text{MC}$ sets for both extractions

 $\Rightarrow \textit{N}_{set}^{a} \times \textit{N}_{set}^{b} \sim \mathcal{O}(10^{10})$ combinations for A_{N}

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- We perform updated extractions of $f_{1T}^{\perp q}$, h_1^q , $H_1^{\perp q}$ from SIDIS and e^+e^- data using most recent data from HERMES, COMPASS, JLab
- parametrizations:
 - quark Sivers function (5 parameters) M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, JHEP 07 (2018) 148
 - transversity and Collins functions (8 parameters) U. D'Alesio, CF, A. Prokudin, PLB 803 (2020) 135347
- generate $\mathcal{O}(10^5)~\text{MC}$ sets for both extractions

 $\Rightarrow \textit{N}_{set}^{a} \times \textit{N}_{set}^{b} \sim \mathcal{O}(10^{10})$ combinations for A_{N}

• apply compression procedure by randomly sampling 2000 sets for $f_{1T}^{\perp q}$ and 2000 sets for $h_1^q \otimes H_1^{\perp q}$

• transversity:

$$h_1^q(x,k_{\perp}^2) = h_1^q(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle}, \qquad h_1^q(x,Q_0^2) = \mathcal{N}_q^T(x) \, SB^q(x,Q_0^2)$$
$$\mathcal{N}_q^T(x) = N_q^T x^{\alpha} (1-x)^{\beta} \, \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha}\beta^{\beta}}, \quad (q = u_v, \, d_v)$$

• transversity:

$$\begin{split} h_1^q(x,k_\perp^2) &= h_1^q(x) \frac{e^{-k_\perp^2/\langle k_\perp^2 \rangle}}{\pi \langle k_\perp^2 \rangle} , \qquad h_1^q(x,Q_0^2) = \mathcal{N}_q^T(x) \, SB^q(x,Q_0^2) \\ \mathcal{N}_q^T(x) &= N_q^T x^\alpha (1-x)^\beta \, \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^\alpha \beta^\beta} , \quad (q = u_v, \, d_v) \end{split}$$

• Collins FF:

$$\begin{split} H_1^{\perp q}(z,p_{\perp}^2) &= \mathcal{N}_q^{\mathsf{C}}(z) \frac{zm_h}{M_{\mathsf{C}}} \sqrt{2e} \, e^{-p_{\perp}^2/M_{\mathsf{C}}^2} \, D_{h/q}(z,p_{\perp}^2) \,, \, (q = \mathsf{fav},\mathsf{unf}) \\ \mathcal{N}_{\mathsf{fav}}^{\mathsf{C}}(z) &= \mathsf{N}_{\mathsf{fav}}^{\mathsf{C}} \, z^{\gamma} \,, \qquad \mathcal{N}_{\mathsf{unf}}^{\mathsf{C}}(z) = \mathsf{N}_{\mathsf{unf}}^{\mathsf{C}} \end{split}$$

• transversity:

$$\begin{split} h_1^q(x,k_\perp^2) &= h_1^q(x) \frac{e^{-k_\perp^2/\langle k_\perp^2 \rangle}}{\pi \langle k_\perp^2 \rangle} , \qquad h_1^q(x,Q_0^2) = \mathcal{N}_q^T(x) \, SB^q(x,Q_0^2) \\ \mathcal{N}_q^T(x) &= N_q^T x^\alpha (1-x)^\beta \, \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^\alpha \beta^\beta} , \quad (q = u_v, \, d_v) \end{split}$$

• Collins FF:

$$\begin{split} H_1^{\perp q}(z,p_{\perp}^2) &= \mathcal{N}_q^{\mathsf{C}}(z) \frac{zm_h}{M_{\mathsf{C}}} \sqrt{2e} \, e^{-p_{\perp}^2/M_{\mathsf{C}}^2} \, D_{h/q}(z,p_{\perp}^2) \,, \; (q = \mathsf{fav},\mathsf{unf}) \\ \mathcal{N}_{\mathsf{fav}}^{\mathsf{C}}(z) &= \mathsf{N}_{\mathsf{fav}}^{\mathsf{C}} \, z^{\gamma} \,, \qquad \mathcal{N}_{\mathsf{unf}}^{\mathsf{C}}(z) = \mathsf{N}_{\mathsf{unf}}^{\mathsf{C}} \end{split}$$

• h_1^q fulfil the Soffer Bound, applied a posteriori

U. D'Alesio, CF, A. Prokudin, PLB 803 (2020) 135347

A_N simultaneous reweigthing - priors - Collins

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

• Collins function mostly constrained by e^+e^- data

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- The simultaneous reweighting is perfomed on A_N data:
 - BRAHMS for π^{\pm} production at $\sqrt{\mathrm{s}}=$ 200 GeV

allow for a direct flavor separation

- STAR for $\pi^{\rm 0}$ production at $\sqrt{\rm s}={\rm 200\,GeV}$
- latest STAR data for non-isolated π^0 's at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 500$ GeV kinematics aligned with SIDIS and e^+e^-

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- The simultaneous reweighting is perfomed on A_N data:
 - BRAHMS for π^{\pm} production at $\sqrt{\mathrm{s}}=$ 200 GeV

allow for a direct flavor separation

- STAR for $\pi^{\rm 0}$ production at $\sqrt{s}=$ 200 GeV
- latest STAR data for non-isolated π^0 's at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 500$ GeV kinematics aligned with SIDIS and e^+e^-
- A_N data covering a complementary kinematical range w.r.t. SIDIS data:

$$0.1 \lesssim x_F \lesssim 0.7$$

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- The simultaneous reweighting is perfomed on A_N data:
 - BRAHMS for π^{\pm} production at $\sqrt{\mathrm{s}}=$ 200 GeV

allow for a direct flavor separation

- STAR for $\pi^{\rm 0}$ production at $\sqrt{s}=$ 200 GeV
- latest STAR data for non-isolated π^0 's at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 500$ GeV kinematics aligned with SIDIS and e^+e^-
- A_N data covering a complementary kinematical range w.r.t. SIDIS data:

$$0.1 \lesssim x_F \lesssim 0.7$$

• $P_T > 1 \text{ GeV}$ as hard scale of the process

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- The simultaneous reweighting is perfomed on A_N data:
 - BRAHMS for π^{\pm} production at $\sqrt{\mathrm{s}}=$ 200 GeV

allow for a direct flavor separation

- STAR for $\pi^{\rm 0}$ production at $\sqrt{s}=$ 200 GeV
- latest STAR data for non-isolated π^0 's at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 500$ GeV kinematics aligned with SIDIS and e^+e^-
- A_N data covering a complementary kinematical range w.r.t. SIDIS data:

$$0.1 \lesssim x_F \lesssim 0.7$$

- $P_T > 1 \text{ GeV}$ as hard scale of the process
- median as cental value, 2σ CL asymmetric uncertainties; a total of 13 parameters $\Rightarrow \Delta \chi^2 = 22.69$ in the computation of w_{kl}

Results - BRAHMS

J. H. Lee, F. Videbæk, AIP Conf. Proc. 915, 533–538 (2007) M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- reweighted curves with reduced uncertainties
- GPM describes these data better than CGI-GPM
- quality of description increases if data with $P_T < 1.5$ GeV (gray points) is not considered

Results - STAR (I)

B. I. Abelev et al., PRL 101, 222001 (2008); J. Adams et al., PRL 92 171801 (2004); L. Adamczyk et al., PRD 86 (2012) 051101 M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- both GPM and CGI-GPM in qualitative agreement with the data
- reweighted bands able to describe data at moderate x_F
- shape better representing the steady increase of A_N at large x_F

Results - STAR (II)

STAR, $p^{\uparrow}p \rightarrow \pi^0 X$, 2.7 < η < 4.0

- data not showing the usual steady increase at large x_F
- reweighted curves describe the data
- if reweighting was performed on these data solely, bands would be flatter

Results - transversity & Collins

- A_N data mainly affecting the transversity function
- reweighted transversity functions follow Soffer Bound rather closely at large x
- uncertainty reduction up to 80 90% for h_1^q at large x, \sim 10 15% for $H_1^{\perp q(1)}$
- dominant contribution to A_N from the Collins mechanism

2. $A_{UT}^{\sin(\phi_S - \phi_h)}$ in $p^{\uparrow}p \rightarrow \text{jet}hX$

Collins effect in pion-in-jet production

U. D'Alesio, F. Murgia, C. Pisano, PRD 83 (2011) 034021 & PLB 773 (2017) 300 U. D'Alesio, CF, M. Zaccheddu, in preparation

- a two scale process: small $k_{\perp \pi}$, large p_{jT}
- plenty of precise data from STAR for Collins azimuthal asymmetry:

$$A_{N}^{\sin(\phi_{S}-\phi_{\pi}^{H})}(\boldsymbol{p}_{j},z,\boldsymbol{p}_{\perp\pi}) = 2 \frac{\int d\phi_{S} d\phi_{\pi}^{H} \sin(\phi_{S}-\phi_{\pi}^{H}) \left[d\sigma(\phi_{s},\phi_{\pi}^{H}) - d\sigma(\phi_{s}+\pi,\phi_{\pi}^{H}) \right]}{\int d\phi_{S} d\phi_{\pi}^{H} \left[d\sigma(\phi_{s},\phi_{\pi}^{H}) + d\sigma(\phi_{s}+\pi,\phi_{\pi}^{H}) \right]}$$

U. D'Alesio, CF, M. Zaccheddu, in preparation

• STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV

U. D'Alesio, CF, M. Zaccheddu, in preparation

• STAR data at $\sqrt{s}=$ 200 GeV and $\sqrt{s}=$ 510 GeV

• priors from updated fit of SIDIS and e^+e^- data

• STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV

- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data

- STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV
- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data
- reweighted predictions well describe STAR data at both \sqrt{s}

• STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV

- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data
- reweighted predictions well describe STAR data at both \sqrt{s}

U. D'Alesio, CF, M. Zaccheddu, in preparation

- STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV
- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data
- reweighted predictions well describe STAR data at both \sqrt{s}

U. D'Alesio, CF, M. Zaccheddu, in preparation

- STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV
- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data
- reweighted predictions well describe STAR data at both \sqrt{s}

U. D'Alesio, CF, M. Zaccheddu, in preparation

- STAR data at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV
- priors from updated fit of SIDIS and e^+e^- data
- posteriors from simultaneous reweighting on A_N data
- reweighted predictions well describe STAR data at both \sqrt{s}

• Universality: key property of parton distributions, yet very interesting to test

- Universality: key property of parton distributions, yet very interesting to test
- We developed an extension of Bayesian reweighting simultaneous reweighting of two independent TMD extractions

- Universality: key property of parton distributions, yet very interesting to test
- We developed an extension of Bayesian reweighting simultaneous reweighting of two independent TMD extractions
- STAR and BRAHMS data allow to improve and extend the knowledge on TMDs at large x

Complementarity of SIDIS, e^+e^- and A_N data

- Universality: key property of parton distributions, yet very interesting to test
- We developed an extension of Bayesian reweighting simultaneous reweighting of two independent TMD extractions
- STAR and BRAHMS data allow to improve and extend the knowledge on TMDs at large x

Complementarity of SIDIS, e^+e^- and A_N data

• hints of TMD factorization in $p^{\uparrow}p \rightarrow \text{jet }hX$?

more refined extractions needed

- Universality: key property of parton distributions, yet very interesting to test
- We developed an extension of Bayesian reweighting simultaneous reweighting of two independent TMD extractions
- STAR and BRAHMS data allow to improve and extend the knowledge on TMDs at large x

Complementarity of SIDIS, e^+e^- and A_N data

• hints of TMD factorization in $p^{\uparrow}p \rightarrow \text{jet } h X$?

more refined extractions needed

Thank you

A compression procedure

B. Bauer, D. Pitonyak, C.Shay, PRD 107 (2023) 014013 M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- $N_{set}^a \times N_{set}^b$ can be very large
- from the full sample of MC sets, randomly sample $\mathit{N}_{\mathsf{set}}^{a'} \ll \mathit{N}_{\mathsf{set}}^a \, \pmb{a}_{k'}'$ sets
- if $\pi(\mathbf{a}'_{\mathbf{k}'}) \simeq \pi(\mathbf{a}_{\mathbf{k}})$, we expect $\pi(\mathcal{O}(\mathbf{a}'_{\mathbf{k}'})) \simeq \pi(\mathcal{O}(\mathbf{a}_{\mathbf{k}}))$
- Welch's t-statistic:

$$t = rac{\mu_{oldsymbol{a}} - \mu_{oldsymbol{a}'}}{\sqrt{rac{\sigma_a^2}{N_{ ext{set}}^a} + rac{\sigma_{a'}^2}{N_{ ext{set}}^{a'}}}}$$

- |t| with corresponding *p*-value \gtrsim 0.1 \Rightarrow statistically equivalent distributions
- underlying assumption: Gaussian probability distributions
- our strategy:
 - employ *t*-test to find an optimal size for a representative sample
 - compare also median and asymmetric uncertainty of samples

A compression procedure - validation

- we apply the compression procedure and reproduce reweighting performed on A_N for jet production at STAR with a reduced sample of MC sets
- reweighted predictions from full sample (200k sets, gray) and reduced sample (2k sets, GPM and CGI-GPM)
- 2000 sets enough to reproduce same results!

same happens for unweighted predictions (not shown)

Validating the compression algorithm

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

correctly reproduce median and asymmetric uncertainties with only 2000 sampled sets!

- MSHT20nlo proton PDFs and DEHSS FFs
- Sivers (5 parameters):

$$\Delta^{N} f_{q/p^{\uparrow}}(x, k_{\perp}) = \frac{4M_{p}k_{\perp}}{\langle k_{\perp}^{2} \rangle_{s}} \Delta^{N} f_{q/p^{\uparrow}}^{(1)}(x) \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{s}}}{\pi \langle k_{\perp}^{2} \rangle_{s}} \quad (q = u, d)$$
$$\Delta^{N} f_{q/p^{\uparrow}}^{(1)}(x) = N_{q}(1-x)^{\beta_{q}}$$

• transversity and Collins (8 parameters)

$$\begin{split} h_1^q(x,k_{\perp}^2) &= h_1^q(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle} \quad (q = u_v,d_v) \\ h_1^q(x,Q_0^2) &\equiv \mathcal{N}_q^T(x) \operatorname{SB}(x,Q_0^2), \quad \mathcal{N}_q^T(x) = N_q^T x^\alpha (1-x)^\beta \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^\alpha \beta^\beta} \\ H_1^{\perp q}(z,p_{\perp}^2) &= \mathcal{N}_q^C(z) \frac{zm_h}{M_C} \sqrt{2e} \, e^{-p_{\perp}^2/M_C^2} \, D_{h/q}(z,p_{\perp}^2) \quad (q = \operatorname{fav},\operatorname{unf}) \\ \mathcal{N}_{\operatorname{fav}}^C(z) &= N_{\operatorname{fav}}^C z^\gamma, \qquad \mathcal{N}_{\operatorname{unf}}^C(z) = N_{\operatorname{unf}}^C \end{split}$$

Results - parameter distributions

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

Results - Sivers function

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- reduced uncertainties, especially at large x
- relative reduction up to 20 30% for $f_{1T}^{\perp u}$ and 40 90% for $f_{1T}^{\perp d}$

Results - tensor charges

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

 consistency of different h^q₁ extractions within different approaches exploiting a variety of experimental data

Results - N_{eff}

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

$$N_{\rm eff} = \exp\left\{\sum_{k=1}^{N_{\rm set}} w_k \ln\left(\frac{1}{w_k}\right)\right\}$$

N_{eff} from the reweighting procedure on BRAHMS, older and latest STAR data: ٠

	GPM	CGI-GPM
$f_{1T}^{\perp q}$	547	706
$h_1^q \& H_1^{\perp q}$	285	110

N_{eff} from the reweighting procedure on latest STAR data only:

-

	GPM	CGI-GPM
$f_{1T}^{\perp q}$	1807	1961
$h_1^q \& H_1^{\perp q}$	1877	1514

Results - tensor charges

M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

Tensor charges at $Q^2 = 4 \text{ GeV}^2$:

	unw.	rew. (GPM)	rew. (CGI-GPM)
δи	$0.46\substack{+0.10\\-0.09}$	$0.47\substack{+0.09\\-0.07}$	$0.47\substack{+0.08\\-0.05}$
δd	$-0.15\substack{+0.10\\-0.07}$	$-0.18\substack{+0.10\\-0.06}$	$-0.19\substack{+0.07\\-0.05}$
gт	$0.60\substack{+0.13\\-0.11}$	$0.64^{+0.11}_{-0.09}$	$0.65\substack{+0.10 \\ -0.07}$

Transversity and Collins fit - role of the SB

• "using SB single fit": apply SB a priori – automatic fulfillment of the SB throughout the fit $\Rightarrow N_{d_v}^T$ saturates at its lower value, MINUIT underestimates the uncertainty on $N_{d_v}^T \Rightarrow$ uncertainty for $h_1^{d_v}$ underestimated

• "using SB": apply SB a posteriori ⇒ minimizator explores other configurations in the parameter space, compatible with the SB, that were not seen due to the bias introduced in the parametrization

Fit results - using SB

- auomatic fulfillment of the SB brings to underestimate the uncertainty
- underestimation is more severe in the region of fitted data

Results - Soffer Bound

U. D'Alesio, CF, A. Prokudin, PLB 803 (2020) 135347 M. Boglione, U. D'Alesio, CF, J.O. Gonzalez-Hernandez, F. Murgia, A. Prokudin, PLB 854 (2024) 138712

- SB applied a posteriori with constraints on fit parameters \Rightarrow less biased estimate of uncertainty
- out of $\mathcal{O}(10^5)$ sets, \sim 10% respect the SB \Rightarrow sampled 2000 sets using the compression algorithm
- predictions for π^0 production at STAR (full vs sampled) are compatible within uncertainty
- large asymmetries for the Collins effect not seen in the past due to direct SB enforcement

Further improvements

A. Kerbizi, L. Lönnblad, A. Martin, PRD 110 (2024) 7, 074029

