Description of the full q_T **spectrum** of low Q Drell Yan production

IV Sardinian Workshop on Spin

In collaboration with S. Camarda and G. Ferrera

Istituto Nazionale di Fisica Nucleare

Lorenzo Rossi

June 12th

UNIVERSITÀ **DEGLI STUDI DI MILANO**

Drell Yan production $h_1(p_1) + h_2(p_2) \rightarrow V + X \rightarrow \ell_1 + \ell_2 + X$

Drell Yan production $h_1(p_1) + h_2(p_2) \rightarrow V + X \rightarrow \ell_1 + \ell_2 + X$

Drell Yan production $h_1(p_1) + h_2(p_2) \rightarrow V + X \rightarrow \ell_1 + \ell_2 + X$

 $\frac{d\sigma}{d^2\mathbf{q_T} dM^2 dy d\Omega} = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a,h_1}(x_1,\mu_F^2) f_{b,h_2}(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ab}}{d^2\mathbf{q_T} dM^2 d\hat{y} d\Omega} (\alpha_S(\mu_R^2),\mu_R^2,\mu_F^2)$

When $q_T \ll M$:

Short Recap

When $q_T \ll M$: $\int_{-}^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_T^2} \sim 1 + \alpha_S [c_{12}L_{q_T}^2 + c_{11}L_{q_T} + \dots]$ $+\alpha_{S}^{2}[c_{24}L_{q_{T}}^{4}+\ldots+c_{21}L_{q_{T}}+\ldots]+\mathcal{O}(\alpha_{S}^{3})$ whit $\alpha_S^n L_{q_T}^m = \alpha_S^n \log^m \left(\frac{M^2}{a_T^2}\right) \gg 1$ ΙI

JHEP 05 (2001) 025, Phys.Lett.B 564 (2003) 65-72, Nucl.Phys.B 737 (2006) 73-120

q_T resummation in QCD

q_T resummation in QCD $\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathrm{T}}} = \frac{d\hat{\sigma}^{(1)}}{d^2}$

JHEP 05 (2001) 025, Phys.Lett.B 564 (2003) 65-72, Nucl.Phys.B 737 (2006) 73-120

$$d\hat{\sigma}^{(\text{res})} + \frac{d\hat{\sigma}^{(\text{fin})}}{d^2 \mathbf{q_T}}$$

In impact parameter space:

 $\frac{d\hat{\sigma}^{(\text{res})}}{d^2\mathbf{q_T}} = \frac{M^2}{\hat{s}} \int \frac{d^2\mathbf{b_T}}{4\pi} e^{i\mathbf{b_T}\cdot\mathbf{q_T}} W(b, M)$

JHEP 05 (2001) 025, Phys.Lett.B 564 (2003) 65-72, Nucl.Phys.B 737 (2006) 73-120

q_T resummation in QCD

In impact parameter space:

In Mellin space:

JHEP 05 (2001) 025, Phys.Lett.B 564 (2003) 65-72, Nucl.Phys.B 737 (2006) 73-120

 $\frac{d\hat{\sigma}^{(\text{res})}}{d^2\mathbf{q_T}} = \frac{M^2}{\hat{s}} \int \frac{d^2\mathbf{b_T}}{4\pi} e^{i\mathbf{b_T}\cdot\mathbf{q_T}} W(b, M)$

$W_{\mathcal{N}}(b, M) = \hat{\sigma}^{(0)} H_{\mathcal{N}}(\alpha_{S}) \times \exp\{G_{\mathcal{N}}(\alpha_{S}, L)\}$

Nucl.Phys.B 261 (1985) 104-142

Nucl.Phys.B 261 (1985) 104-142

5

5

5

Eur.Phys.J.C 80 (2020) 3, 251

Eur.Phys.J.C 80 (2020) 3, 251

Study of the full q_T spectrum of high energy data

Eur.Phys.J.C 80 (2020) 3, 251

Study of the full q_T spectrum of high energy data

Study of the Z and W^{\pm} boson masses

Eur.Phys.J.C 80 (2020) 3, 251

Study of the full q_T spectrum of high energy data

Study of the Z and W^{\pm} boson masses

And at low invariant mass?

Only the resummed part...

Only the resummed part...

 \equiv README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

Only the resummed part...

 \equiv README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

arTeMiDe

<u>Recent version/release can be found in repository</u>

Articles, presentations & supplementary materials

Extra pictures for the paper arXiv:1902.08474

Seminar of A.Vladimirov in Pavia 2018 on TMD evolution.

Link to the text in Inspire.

Archive of older links/news.

About us & Contacts

If you have found mistakes, or have suggestions/questions, please, contact us.

Some extra materials can be found on <u>Alexey's web-page</u>

Alexey Vladimirov Alexey.Vladimirov@physik.uni-regensburg.de

Ignazio Scimemi ignazios@fis.ucm.es

Or only the finite part...

Or only the finite part...

PHENIX $\sqrt{s} = 200 \text{GeV}$ 4.8 GeV < Q < 8.2 GeV 1.2 < |y| < 2.2Central scale: $\mu_R = \mu_F = E_T^{\gamma}$ 10¹ 100 NNLOJET at LO 10^{-1} NNLOJET at NLO NNLOJET at NNLO 10^{-2} PHENIX 12 0 p_T (GeV)

Physics Letters B 829 (2022) 137111

Or only the finite part...

PHENIX $\sqrt{s} = 200 \text{GeV}$ 4.8 GeV < Q < 8.2 GeV 1.2 < |y| < 2.2Central scale: $\mu_R = \mu_F = E_T^{\gamma}$ 10¹ 10⁰ NNLOJET at LO 10^{-1} NNLOJET at NLO NNLOJET at NNLO 10^{-2} PHENIX 2 0 p_T (GeV)

Physics Letters B 829 (2022) 137111

Phys.Rev.D 100 (2019) 1, 014018

Or only the finite part...

PHENIX $\sqrt{s} = 200 \text{GeV}$ 4.8 GeV < Q < 8.2 GeV 1.2 < |y| < 2.2Central scale: $\mu_R = \mu_F = E_T^{\gamma}$ 10¹ 100 NNLOJET at LO 10^{-1} NNLOJET at NLO NNLOJET at NNLO 10^{-2} PHENIX 2 0 p_T (GeV)

Physics Letters B 829 (2022) 137111

Phys.Rev.D 100 (2019) 1, 014018

Finite part

and the second and the

and the second second and the second second second

• N^4LL perturbative accuracy, i.e. up to exp(~ $\alpha_S^n L^{n-3}$)

Resummed part

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T

$$o(\sim \alpha_S^n L^{n-3})$$

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T Now implemented in DYTurbo

$$o(\sim \alpha_S^n L^{n-3})$$

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T

$$p(\sim \alpha_S^n L^{n-3})$$

Now implemented in DYTurbo Benchmark with MCFM Phys. Rev. D 107 (2023) 1, L011506

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T Now implemented in DYTurbo

$$p(\sim \alpha_S^n L^{n-3})$$

Benchmark with MCFM Phys.Rev.D 107 (2023) 1, L011506 Benchmark with inclusive N^3LO cross section JHEP 12 (2022) 066

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T

NLL QED corrections, i.e. up to $\exp(\sim \alpha_{em}^n L^{n-1})$ JHEP 07 (2023) 104

$$p(\sim \alpha_S^n L^{n-3})$$

Now implemented in DYTurbo Benchmark with MCFM Phys.Rev.D 107 (2023) 1, L011506 Benchmark with inclusive N^3LO cross section JHEP 12 (2022) 066

Finite part

- N^4LL perturbative accuracy, i.e. up to exp
- Matching with NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at large q_T

- NLL QED corrections, i.e. up to $\exp(\sim \alpha_{em}^n L^{n-1})$ JHEP 07 (2023) 104
- LL mixed QCD-QED accuracy, i.e. up to $\exp(\sim \alpha_S^n \alpha_{em}^n L^{2n})$ JHEP 07 (2023) 104

$$p(\sim \alpha_S^n L^{n-3})$$

Now implemented in DYTurbo Benchmark with MCFM Phys.Rev.D 107 (2023) 1, L011506 Benchmark with inclusive N^3LO cross section JHEP 12 (2022) 066

Experiment	Observable	$\sqrt{s} [\text{GeV}]$	$Q \; [{ m GeV}]$	$y \text{ or } x_F$
E605	$Ed^{3}\sigma/d^{3}\boldsymbol{q}$	38.8	7 - 18	$x_{F} = 0.1$
$E288 \ 200 \ GeV$	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40
E288 300 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	23.8	4 - 12	y = 0.21
$E288 \ 400 \ GeV$	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03
ATLAS 8 TeV on-peak	$(1/\sigma)d\sigma/d \mathbf{q}_T $	8000	66 - 116	$\begin{array}{l} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{array}$
CDF Run II	$d\sigma/d oldsymbol{q}_T $	1960	66 - 116	Inclusive

Experiment	Observable	$\sqrt{s} \; [\text{GeV}]$	$Q \; [{ m GeV}]$	$y \text{ or } x_F$
E605	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_{F} = 0.1$
E288 200 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	19.4	4 - 9	y = 0.40
E288 300 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	23.8	4 - 12	y = 0.21
E288 400 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	27.4	5 - 14	y = 0.03
ATLAS 8 TeV on-peak	$(1/\sigma)d\sigma/d \mathbf{q}_T $	8000	66 - 116	$\begin{array}{l} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{array}$
CDF Run II	$d\sigma/d oldsymbol{q}_T $	1960	66 - 116	Inclusive

Experiment	Observable	$\sqrt{s} \; [\text{GeV}]$	$Q \; [{ m GeV}]$	$y \text{ or } x_F$
E605	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_{F} = 0.1$
E288 200 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	19.4	4 - 9	y = 0.40
E288 300 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	23.8	4 - 12	y = 0.21
E288 400 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	27.4	5 - 14	y = 0.03
ATLAS 8 TeV on-peak	$(1/\sigma)d\sigma/d \mathbf{q}_T $	8000	66 - 116	$\begin{array}{l} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{array}$
CDF Run II	$d\sigma/d oldsymbol{q}_T $	1960	66 - 116	Inclusive

Already well described

Experiment	Observable	$\sqrt{s} \; [\text{GeV}]$	$Q \; [{ m GeV}]$	$y \text{ or } x_F$
E605	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_{F} = 0.1$
E288 200 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	19.4	4 - 9	y = 0.40
E288 300 GeV	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	23.8	4 - 12	y = 0.21
$E288 \ 400 \ GeV$	$Ed^{3}\sigma/d^{3}oldsymbol{q}$	27.4	5 - 14	y = 0.03
ATLAS 8 TeV on-peak	$(1/\sigma)d\sigma/d \mathbf{q}_T $	8000	66 - 116	$\begin{array}{l} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{array}$
CDF Run II	$d\sigma/d m{q}_T $	1960	66 - 116	Inclusive

Some stuff...

Some stuff...

• Landau pole:

Some stuff...

Landau pole: $b_T \rightarrow b_T \qquad b_{\pm}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985)199

Landau pole:

(We tried also the minimal prescription)

 $b_T \rightarrow b_{\star}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985)199

Landau pole:

(We tried also the minimal prescription)

Unitary condition:

 $b_T \rightarrow b_{\star}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl.Phys.B250 (1985)199

- Landau pole: $b_T \rightarrow b_{\star}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985)199
- Unitary condition: $L = log(M^2b^2)$

Some stuff...

- (We tried also the minimal prescription)
- Unitary condition: $L = log(M^2b^2)$ $\tilde{L} = log(M^2b^2 + 1)_{Nucl. Phys. B 407 (1993) 3-42}$

Landau pole: $b_T \rightarrow b_{\pm}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985) 199

Some stuff...

- (We tried also the minimal prescription)
- Unitary condition: $L = log(M^2b^2)$ $\tilde{L} = log(M^2b^2 + 1)_{Nucl. Phys. B 407 (1993) 3-42}$

Landau pole: $b_T \rightarrow b_{\pm}(b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985)199

 $\exp\{\alpha_S^n \tilde{L}^k\}\Big|_{b_T=0} = 1$

Some stuff...

- (We tried also the minimal prescription)
- Unitary condition: $L = log(M^2b^2)$ $\tilde{L} = log(M^2b^2 + 1)_{Nucl. Phys. B 407 (1993) 3-42}$

$$\int_0^\infty d^2 \mathbf{q}_{\mathbf{T}} \, \frac{d\sigma}{d^2 \mathbf{q}_{\mathbf{T}}} = \sigma^{tot}$$

Landau pole: $b_T \rightarrow b_T (b_T) = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{max}^2}}}$ Nucl. Phys. B250 (1985)199

 $\exp\{\alpha_S^n \tilde{L}^k\}\Big|_{b_T=0} = 1$

• Non perturbative parametrisation:

Non perturbative parametrisation: $S_{NP}(b_T) = \exp\left[-g_j(b_T) - g_k(b_T)\log\frac{M^2}{O_0^2}\right]$

Phys.Rev.D 91 (2015) 7, 074020

$$g_j(b_T) = \frac{g_1 b_T^2}{1 + \lambda b_T^2} + \operatorname{sign}(q) \left(1\right)$$

Non perturbative parametrisation: $S_{NP}(b_T) = \exp\left[-g_j(b_T) - g_k(b_T) \log \frac{M^2}{O_0^2}\right]$

Phys.Rev.D 91 (2015) 7, 074020

 $-\exp[-|q|b_T^4]\Big)$

$$g_{j}(b_{T}) = \frac{g_{1}b_{T}^{2}}{1+\lambda b_{T}^{2}} + \operatorname{sign}(q) \left(1 - \exp[-|q|b_{T}^{4}]\right)$$
$$g_{K}(b_{T}) = g_{0} \left(1 - \exp\left[-\frac{C_{F}\alpha_{S}(\mu_{b_{\star}})b_{T}^{2}}{\pi g_{0}b_{max}^{2}}\right]\right)$$

Non perturbative parametrisation: $S_{NP}(b_T) = \exp\left[-g_j(b_T) - g_k(b_T)\log\frac{M^2}{Q_0^2}\right]$

Phys.Rev.D 91 (2015) 7, 074020

 $-\exp[-|q|b_T^4]$

Non perturbative parametrisation: $S_{NP}(b_T) = \exp\left[-g_j(b_T) - g_k(b_T)\log\frac{M^2}{Q_0^2}\right]$

Phys.Rev.D 91 (2015) 7, 074020

180[°] max

Non perturbative parametrisation:

 $S_{NP}(b_T) = \exp\left[-g_j(b_T) - g_k(b_T) \log \frac{M^2}{O_0^2}\right]$

Phys.Rev.D 91 (2015) 7, 074020

Eur.Phys.J.C 80 (2020) 3, 251

Eur.Phys.J.C 80 (2020) 3, 251

Eur.Phys.J.C 80 (2020) 3, 251

Eur.Phys.J.C 80 (2020) 3, 251

Fit at central scale $\mu_F = \mu_R = \mu_O = M$

Including PDFs uncertainty (MSHT20_an3lo)

Eur.Phys.J.C 80 (2020) 3, 251

Fit at central scale $\mu_F = \mu_R = \mu_O = M$

Including PDFs uncertainty (MSHT20_an3lo)

378 datapoints

Eur.Phys.J.C 80 (2020) 3, 251

Fit at central scale $\mu_F = \mu_R = \mu_Q = M$

- Including PDFs uncertainty (MSHT20_an3lo)
- 378 datapoints $\chi^2 / N_{d.o.f.} = 1.28$

Eur.Phys.J.C 80 (2020) 3, 251

Fit at central scale $\mu_F = \mu_R = \mu_O = M$

- Including PDFs uncertainty (MSHT20_an3lo)
- 378 datapoints γ^2/N_d **u.0**.**j**.

Not to compare with the

(unpolarized) TMD fit

Eur.Phys.J.C 80 (2020) 3, 251

Fit at central scale $\mu_F = \mu_R = \mu_O = M$

- Including PDFs uncertainty (MSHT20_an3lo)
- 378 datapoints γ^2/N_{do} *a.0*.*j*.

Not to compare with the

(unpolarized) TMD fit

We have high- q_T data!

.28

E288 300 GeV, 5 < Q < 6

E288 300 GeV, 5 < Q < 6

E288 300 GeV, 5 < Q < 6

E605, 11.5 < Q < 13.5

E288 300 GeV, 5 < Q < 6

E605, 11.5 < Q < 13.5

 $\chi^2/N_{data} = 0.79$

Phys.Rev.D 100 (2019) 1, 014018

Phys.Rev.D 100 (2019) 1, 014018

Phys.Rev.D 100 (2019) 1, 014018

Starting point

Phys.Rev.D 100 (2019) 1, 014018

Starting point

Arrival point

High invariant mass data remain well descrbed

We are working on the choice of the non perturbative (hyper)parameters...

• We found a very good description of by using the "full" formalism

We found a very good description of the low invariant mass q_T spectrum data

- We found a very good description of by using the "full" formalism
- We found a good consistency in the operation invariant mass data

We found a very good description of the low invariant mass q_T spectrum data

- by using the "full" formalism
- invariant mass data

We extracted a Collins Soper kernel compatible with the literature

We found a very good description of the low invariant mass q_T spectrum data

- by using the "full" formalism
- invariant mass data

We extracted a Collins Soper kernel compatible with the literature

Refine the non perturbative effects

We found a very good description of the low invariant mass q_T spectrum data

- by using the "full" formalism
- invariant mass data

We extracted a Collins Soper kernel compatible with the literature

Refine the non perturbative effects

Study of the available data-sets

We found a very good description of the low invariant mass q_T spectrum data

Resummation, Evolution, Factorization 2025

13–17 Oct 2025 Physics Department, Milan University

Europe/Rome timezone

Overview

Workshop venue

Registration

Registration #2: fee payment

Call for Abstracts

Participant List

Timetable

Accommodation

Workshop dinner (Wednesday 15/10)

Videoconference information

Contact

Enter your search term

Q