

IV Sardinian Workshop on Spin June 11, 2025, Pula

Modeling baryon production in polarized string fragmentation

Albi Kerbizi Lund University, INFN Trieste

in collaboration with Xavier Artru (IP2I, Lyon)

Funded by the European Union

Production of spin 1/2 baryons, many interesting effects
 Collins effect Collins, NPB 396, 161 (1993)

Production of spin 1/2 baryons, many interesting effects

Collins effect Collins, NPB 396, 161 (1993)

□ Production of spin 1/2 baryons, many interesting effects

Collins effect

□ Spontaneous polarization of hyperons

Mulders, Tangerman, NPB 484, 538-540 (1997) Anselmino et al., PRD 63 054029 (2001)

unpolarized q

□ Production of spin 1/2 baryons, many interesting effects

Collins effect

Spontaneous polarization of hyperons

□ Production of spin 1/2 baryons, many interesting effects

- Collins effect
- Spontaneous polarization of hyperons
- **Transverse spin transfer to hyperons**

□ Production of spin 1/2 baryons, many interesting effects

- Collins effect
- Spontaneous polarization of hyperons
- Transverse spin transfer to hyperons

□ Production of spin 1/2 baryons, many interesting effects

- Collins effect
- Spontaneous polarization of hyperons
- □ Transverse spin transfer to hyperons
- □ Longitudinal spin transfer etc..

 \Box Modeling these effects is challenging \rightarrow need amplitudes not probabilities

□ The model should be suitable for inclusion in Pythia → we want it to be useful for present and future experiments (EIC, JLAB22, LHCSpin,..)

□ Production of spin 1/2 baryons, many interesting effects

- Collins effect
- Spontaneous polarization of hyperons
- □ Transverse spin transfer to hyperons
- □ Longitudinal spin transfer etc..

In the following slides

- \Box recall of string+³P₀
- new amplitudes for baryon production
- $\hfill\square$ predictions of the new model

Lund Model of string fragmentation (spinless) \otimes ³P₀ mechanism at string breaking (spin)

 x^- as "time" \rightarrow recursive splittings q \rightarrow h + q'

 x^{+} as "time" \rightarrow recursive splittings \overline{q} \rightarrow h + \overline{q}'

Equivalent formulations → Left-Right symmetry Andersson, Gustafson, Söderberg, Z Phys. C 20, 317 (1983)

Lund Model of string fragmentation (spinless) \otimes ³P₀ mechanism at string breaking (spin)

 \Box Lund Model of string fragmentation (spinless) \otimes ³P₀ mechanism at string breaking (spin)

□ Spin-dependent splitting matrix (2x2) quarks (antiquarks) are taken to have $v_z \simeq -1(+1)$

 $T_{q',h,q} \propto \left[F_{q',h,q}^{LM}\right]^{\frac{1}{2}} \bigotimes \Delta_{q'}(\mathbf{k'}_{T}) \quad \begin{array}{c} \Gamma_{h,s_{h}} \\ \hline \end{array}$

$$\chi_{q'}\big(\boldsymbol{S}_{q'}\big) = T_{\boldsymbol{q'},\boldsymbol{h},\boldsymbol{q}} \ \chi_q(\boldsymbol{S}_q)$$

\Box Lund Model of string fragmentation (spinless) \otimes ³P₀ mechanism at string breaking (spin)

In the following slides

recall of string+³P₀
 new amplitudes for baryon production
 predictions of the new model

AK, X. Artru, in preparation

String breaking by diquark-antidiquark pairs

String breaking by diquark-antidiquark pairs

A. Kerbizi (Lund University, INFN Trieste)

17

 $\label{eq:propagation of PV diquark (qq)_1} \label{eq:propagation of PV diquark (qq)_1} \\ \chi^{\dagger}(\mathbf{S}_B) \ T_{(\overline{qq})_1,B,q} \ \chi(\mathbf{S}_q) = \left[F_{(\overline{qq})_1,B,q}^{LM}\right]^{\frac{1}{2}} \times \\ \times \ \varphi^{\dagger}_{\overline{qq},a} \ \Delta_{qq,ab}(\mathbf{k'}_T) \ \chi^{\dagger}(S_B) \ \Gamma_{B,b} \ \chi(S_q)$

□ Propagation of PV diquark $(qq)_1$ $\chi^{\dagger}(\mathbf{S}_B) T_{(\overline{qq})_1,B,q} \chi(\mathbf{S}_q) = \left[F_{(\overline{qq})_1,B,q}^{LM}\right]^{\frac{1}{2}} \times \chi^{\dagger}(\mathbf{S}_B) T_{(\overline{qq})_1,B,q} \chi(\mathbf{S}_q)$

19

Spin-less Lund splitting function \rightarrow energy-momentum sharing between \overline{qq} and B

$$F_{\overline{qq},B,q}^{LM} = |C_{\overline{qq},B,q}|^2 |D_B(M^2)|^2 \left(\frac{1-Z_+}{Z_+}\right)^{a_{qq}} \left(\frac{Z_+}{\varepsilon_B^2}\right)^a \exp\left[-\frac{b_L \varepsilon_B^2}{2Z_+}\right] N_{a_{qq},a_q}^{-\frac{1}{2}} \left(\varepsilon_B^2\right) e^{-\frac{b_T k'_T^2}{2\varepsilon_B^2}} V_{a_{qq},a_q}^{-\frac{1}{2}} \left(\varepsilon_B^2\right) e^{-\frac{b_T k'_T^2}{2\varepsilon_B^2}} V_{a_{qq},a_q}^{-\frac{b_T k'_T^2}$$

$$N_{a_{qq},a_{q}}\left(\varepsilon_{B}^{2}\right) = \int_{0}^{1} dZ Z^{-1} \left(\frac{1-Z_{+}}{Z_{+}}\right)^{a_{qq}} \left(\frac{Z_{+}}{\varepsilon_{B}^{2}}\right)^{a_{q}} \exp\left[-\frac{b_{L}\varepsilon_{B}^{2}}{2Z_{+}}\right]$$

June 11, 2025

 $\overline{u}(B) \gamma_{5} \gamma^{\mu} \varepsilon_{qq,\mu}^{*} u(q) \rightarrow \phi_{qq,b}^{\dagger} \chi^{\dagger}(S_{B}) \sigma_{b} \chi(S_{q})$

Covariant coupling Bacchetta, Conti, Radici, PRD78, 074010 reduced coupling

20

$$\begin{split} \varphi_{qq} &= (\boldsymbol{\epsilon}_{T}, \varphi_{L}) \\ \text{reduced qq pol. vector} \\ \text{with } v_{z} &\simeq +1 \\ \varphi_{L} &= 2\boldsymbol{\epsilon}_{qq}^{z} \\ \text{A. Kerbizi (Lund University, INFN Trieste)} \end{split}$$

B at rest with boosts

 $B_{T}^{-1}(p_{T}/\epsilon_{B}^{2})B_{L}^{-1}(p_{z}/M_{B})$

required by LR symmetry

 $m_{qq} \simeq 0.5 GeV$

21

 \rightarrow mainly ⁵D₀ state

Splitting amplitude for $(\overline{qq}) \rightarrow \overline{B} + q'$

□ Splitting of PV anti-diquark $(\overline{qq})_1$ $\chi^{\dagger}(\mathbf{S}_{q'}) T_{q',\overline{B},(\overline{qq})_1} \sigma_z \chi(-\mathbf{S}_{\overline{B}}) = \left[F_{q',\overline{B},(\overline{qq})_1}^{LM}\right]^{\frac{1}{2}} \times \chi^{\dagger}(\mathbf{S}_{q'}) \Delta_{q'}(\mathbf{k'}_T) \sigma_z \Gamma_{B,b} \sigma_z \sigma_z \chi(-\mathbf{S}_{\overline{B}}) \phi_{\overline{qq},b}$ $\chi^{\dagger}(\mathbf{S}_{q'}) \Delta_{q'}(\mathbf{k'}_T) \sigma_z \Gamma_{B,b} \sigma_z \sigma_z \chi(-\mathbf{S}_{\overline{B}}) \phi_{\overline{qq},b}$ $^{3}P_0 \text{ propagator} \qquad \sigma_b$ $\Delta_{q'} = \mu + \sigma_z \sigma_T \cdot \mathbf{k'}_T$

 \Box Analogous for scalar anti-diquark $(\overline{qq})_0$, with $\Gamma_{B,b} = 1_{2 \times 2}$

In the following slides

recall of string+³P₀
 new amplitudes for baryon production
 predictions of the new model

AK, X. Artru, in preparation

Probability distribution of the produced baryon: Collins effect

 $\Box \text{ Distribution of B produced in } q \rightarrow B + (\overline{qq})_1$

$$\frac{\mathrm{d}P_{q\to B+(\overline{qq})_1}}{\mathrm{d}Z_+Z_+^{-1}\mathrm{d}^2\mathbf{p}_{\mathrm{T}}} = \mathrm{Tr}_{\mathrm{B}}\mathrm{T}_{(\overline{qq})_1,B,q} \ \rho(\mathbf{S}_q)\mathrm{T}_{(\overline{qq})_1,B,q}^{\dagger}$$

$$q(k) \longrightarrow (qq)_1(k')$$

$$= [...] e^{-\frac{\mathbf{b}_{T}\mathbf{k}'_{T}^{2}}{2}} \times \left[\left(|\kappa_{qq}|^{2} + {k'_{T}}^{2} \right)^{2} + \frac{m_{qq}^{2}}{3} \lambda (k_{T}'^{2}) \right] \\ \times \left[1 + \hat{a}_{\mathsf{C},\mathsf{B}} \vec{S}_{q,\mathsf{T}} \cdot (\hat{z} \times \hat{k}'_{\mathsf{T}}) \right]$$

$$\hat{a}_{C,B} = \frac{2Im(\kappa_{qq})(|\kappa_{qq}|^2 + {k'_T}^2)k'_T}{(|\kappa_{qq}|^2 + {k'_T}^2)^2 + \frac{m_{qq}^2}{3}\lambda({k'_T}^2)}$$
$$\lambda({k'_T}^2) = (m_{qq}^2 + 2{k'_T}^2 + 2Re(\kappa_{qq}^2))$$

Collins effect!

in agreement with classical string+⁵D₀ mechanism for $Im(\kappa_{qq}) < 0$

Probability distribution of the produced baryon: Collins effect

classical string+⁵D₀

scalar diquark tunneling

classical string+³P₀

□ No Collins effect for \overline{B} produced in $(\overline{qq})_0 \rightarrow \overline{B} + q'$ [expected]

Collins effect! in agreement with classical string+⁵D₀ mechanism for $Im(\kappa_{qq}) < 0$

Probability distribution of the produced antibaryon: Collins effect

 $\hfill\square$ Distribution of \overline{B} produced in $(\overline{qq})_1 \rightarrow \overline{B} + q'$

 $\frac{\mathrm{d} P_{(\overline{q}\overline{q})_1 \to \overline{B} + q'}}{\mathrm{d} Z_+ Z_+^{-1} \mathrm{d}^2 \mathbf{p}_T} = \mathrm{Tr}_{q'} T^a_{q',B,(\overline{q}\overline{q})_1} T^{b\dagger}_{q',B,(\overline{q}\overline{q})_1} \rho_{ab}(\overline{q}\overline{q})$

$$(\overline{qq})_1(k) \longrightarrow q'(k')$$

R(n)

$$= [...] e^{-\frac{\mathbf{b}_{\mathrm{T}}\mathbf{k'}_{\mathrm{T}}^{2}} \times [|\boldsymbol{\mu}|^{2} + \mathbf{k'}_{\mathrm{T}}^{2}]} \times [1 + \hat{\mathbf{a}}_{\mathsf{C},\overline{\mathsf{B}}} \vec{\mathsf{S}}_{\mathsf{q}\mathsf{q},\mathrm{T}} \cdot (\hat{z} \times \hat{\mathbf{k}'}_{\mathrm{T}})] \qquad \vec{\mathsf{S}}_{\mathsf{q}\mathsf{q},\mathsf{c}} = \mathrm{i}\varepsilon_{\mathsf{a}\mathsf{b}\mathsf{c}}\rho_{\mathsf{a}\mathsf{b}}(\overline{\mathsf{q}}\overline{\mathsf{q}})$$

$$\hat{\mathbf{a}}_{\mathbf{C},\overline{\mathbf{B}}} = -\frac{2\mathrm{Im}(\boldsymbol{\mu})\mathbf{k}_{\mathrm{T}}'}{|\boldsymbol{\mu}|^2 + {\mathbf{k}_{\mathrm{T}}'}^2}$$

Collins effect due to the ${}^{3}P_{0}$ mechanism (as for PS mesons)

□ No Collins effect for \overline{B} produced in $(\overline{qq})_0 \rightarrow \overline{B} + q'$ as expected

Probability distribution of the produced antibaryon: Collins effect

Baryon/antibaryon transverse polarization

$\square B produced in q \rightarrow B + (\overline{qq})_1$

$$\begin{split} \mathbf{S}_{B,\mathrm{T}} &\propto \left\{ \left[-2\mathrm{Im}(\kappa_{\mathrm{qq}}) \left(|\kappa_{\mathrm{qq}}|^{2} + \mathbf{k}_{\mathrm{T}}^{'2} \right) \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}^{'} \right] \\ - \mathbf{S}_{q,\mathrm{T}} \left[(|\kappa_{qq}|^{2} + \mathbf{k}_{\mathrm{T}}^{'2})^{2} + \frac{m_{qq}^{2}}{3} \left(\frac{m_{qq}^{2}}{3} + 2\mathbf{k}_{\mathrm{T}}^{'2} + 2\mathrm{Re}(\kappa_{\mathrm{qq}}^{2}) \right) \right] \\ + 2 \left(\mathbf{k}_{\mathrm{T}}^{'} \cdot \mathbf{S}_{q,\mathrm{T}} \right) \mathbf{k}_{\mathrm{T}}^{'} \left(\mathbf{k}_{\mathrm{T}}^{'2} + |\kappa_{qq}|^{2} + \frac{2m_{qq}^{2}}{3} \right) \\ + 2\mathrm{Re}(\kappa_{\mathrm{qq}}) \, \mathrm{S}_{\mathrm{qz}} \, \mathbf{k}_{\mathrm{T}}^{'} \left(\mathbf{k}_{\mathrm{T}}^{'2} + |\kappa_{\mathrm{qq}}|^{2} + \frac{2m_{\mathrm{qq}}^{2}}{3} \right) \right\} \end{split}$$

 $\square \ \overline{B} \text{ produced in } (\overline{qq})_1 \to \overline{B} + q'$

$$\begin{split} \mathbf{S}_{\bar{B},\mathrm{T}} \propto & \left[(|\mu|^2 + \mathbf{k}_{\mathrm{T}}'^2) \, \mathbf{S}_{\overline{q}\overline{q},\mathrm{T}} \Big[-2\mathrm{Im}(\mu) \, \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}' \Big] \\ &+ 2\mathrm{Im}(\mu) \, 2\mathrm{Re}[\rho_{\mathrm{T}}(\overline{q}\overline{q})] \, \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}' \Big], \end{split}$$

Contributions to the spontaneous polarization of hyperons!

expected to reproduce the sign of Λ , $\overline{\Lambda}$ observed in e^+e^-

 $\mathbf{p}_{\mathrm{T}} = -\mathbf{k}_{\mathrm{T}}'$ for the first produced hadron $\hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}' \rightarrow -\hat{\mathbf{z}} \times \mathbf{p}_{\mathrm{T}}$

June 11, 2025

A. Kerbizi (Lund University, INFN Trieste)

 $\square B produced inq \rightarrow B + (\overline{qq})_0$

 $\mathbf{S}_{B,\mathrm{T}} = \mathbf{S}_{q,\mathrm{T}}$

 $\Box \ \overline{B} \text{ produced in } (\overline{qq})_0 \to \overline{B} + q'$ $\left\{ \mathbf{S}_{\overline{B},T} = \frac{2\mathrm{Im}(\mu)}{|\mu|^2 + \mathbf{k}_T'^2} \, \hat{\mathbf{z}} \times \mathbf{k}_T' \right\}$

Baryon/antibaryon transverse polarization

$\square B produced in q \rightarrow B + (\overline{qq})_1$

$$\begin{split} & \mathbf{S}_{B,\mathrm{T}} \propto \left\{ -2\mathrm{Im}(\kappa_{\mathrm{qq}}) \left(|\kappa_{\mathrm{qq}}|^{2} + \mathbf{k}_{\mathrm{T}}^{'2} \right) \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}^{'} \\ & \left[-\mathbf{S}_{q,\mathrm{T}} \left[(|\kappa_{qq}|^{2} + \mathbf{k}_{\mathrm{T}}^{'2})^{2} + \frac{m_{qq}^{2}}{3} \left(\frac{m_{qq}^{2}}{3} + 2\mathbf{k}_{\mathrm{T}}^{'2} + 2\mathrm{Re}(\kappa_{\mathrm{qq}}^{2}) \right) \right] \\ & + 2 \left(\mathbf{k}_{\mathrm{T}}^{'} \cdot \mathbf{S}_{q,\mathrm{T}} \right) \mathbf{k}_{\mathrm{T}}^{'} \left(\mathbf{k}_{\mathrm{T}}^{'2} + |\kappa_{qq}|^{2} + \frac{2m_{qq}^{2}}{3} \right) \\ & + 2\mathrm{Re}(\kappa_{\mathrm{qq}}) \, \mathrm{S}_{\mathrm{qz}} \, \mathbf{k}_{\mathrm{T}}^{'} \left(\mathbf{k}_{\mathrm{T}}^{'2} + |\kappa_{\mathrm{qq}}|^{2} + \frac{2m_{\mathrm{qq}}^{2}}{3} \right) \end{split}$$

 \square B produced inq \rightarrow B + (\overline{qq})₀

 $\left\{ \mathbf{S}_{B,\mathrm{T}} = \mathbf{S}_{q,\mathrm{T}} \; \;
ight\}$

 $\square \ \overline{B} \text{ produced in } (\overline{qq})_1 \to \overline{B} + q'$

$$\begin{split} \mathbf{S}_{\bar{B},\mathrm{T}} & \propto \qquad \begin{bmatrix} \mathbf{i}(|\mu|^2 + \mathbf{k}_{\mathrm{T}}^{'2}) \, \mathbf{S}_{\overline{q}\overline{q},\mathrm{T}} \mathbf{j} - 2\mathrm{Im}(\mu) \, \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}' \\ & + 2\mathrm{Im}(\mu) \, 2\mathrm{Re}[\rho_{\mathrm{T}}(\overline{q}\overline{q})] \, \hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}' \end{bmatrix}, \end{split}$$

Contributions to the transverse spin transfer to hyperons!

 $\square \ \overline{B} \text{ produced in } (\overline{qq})_0 \to \overline{B} + q'$

$$\mathbf{S}_{\bar{B},\mathrm{T}} = \frac{2\mathrm{Im}(\mu)}{|\mu|^2 + \mathbf{k}_{\mathrm{T}}^{'2}} \,\hat{\mathbf{z}} \times \mathbf{k}_{\mathrm{T}}'$$

Spin propagation along the fragmentation chain

Recursive algorithm starting e.g. with a quark q

- i. chose if to break the string via $q\overline{q}$ or $qq \overline{qq}$ using P_{qq}/P_q
- ii. if qq, decide if $(qq)_1$ or $(qq)_0$ according to $P_{(qq)_1}/P_{(qq)_0}$
- iii. draw B according to the splitting function for $q \rightarrow B + (\overline{qq})$
- iv. Evaluate $\rho(B)$ and decay $B \rightarrow$ come back with acceptance matrix $\check{\rho}(B)$
- v. Draw \overline{B} according to the splitting function for $\overline{qq} \rightarrow \overline{B} + q'$
- vi. Decay \overline{B} etc.

Note: only \overline{BB} configurations, $BM_1 \dots \overline{B}$ for future work no interference effects

Conclusions

- □ We have extended the string+³P₀ model to introduce spin 1/2 baryon production \rightarrow tunneling of diquark-antidiquark pairs
- Relevant amplitudes for baryon/anti-baryon production written down ⁵D₀ mechanism for spin-1 diquarks

The model gives

Collins effect spontaneous polarization (polarizing FF) spin transfer mechanisms (e.g., transversity FF)

Implementation in Pythia for DIS and e⁺e⁻ongoing

Possible new applications of the model
 e.g. spin effects in target fragmentation (fracture functions?)

