

MACHINE LEARNING STATUS: GNN

Workshop Roma-Napoli, Napoli, 18/12/2024

Anomaly Detection

- Anomaly Detection (AD) refers to Machine Learning (ML) techniques used to spot outliers in a dataset.
- Identification of features of detector data inconsistent with the expected background.
- \blacktriangleright Generality of prediction \propto level of training supervision
 - Typically unsupervised scheme

Some data must be arranged in array-like objects in order to be processed by machine learning algorithms, but sometimes it just doesn't feel intuitive (protein chains, social networks between peope, ecc.)

- Structured objects composed of entities used to describe and analyze relations and interactions (edges) between such entities (nodes).
 - > Nodes and edges typically contain features specific to each element and each pair.
 - > Represented compactly by adjacency matrix.
 - > Many types of graphs based on the relations: directed, heterogeneous, bipartite, weighted ecc.

- Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting their relational nature.
 - > The network during training learns the vector representation (embedding h_{ν}) of each node of the input graphs.
 - Embedding of a target node depends in some way on what the embeddings of the other nodes are and from its structure.

Graph Neural Networks overview

➤ The embeddings are updated at each layer by aggregating the information passed between the target node and the nodes from its closest neighbourhood → message passing

- G embedding is obtained by pooling the nodes embedding at the final layer into one global representation
 - ► Global sum pooling: $h_G = Sum(\{h_v^L \in \mathbb{R}^d, \forall v \in G\})$
 - ► Global mean pooling: $h_G = Mean(\{h_v^L \in \mathbb{R}^d, \forall v \in G\})$
 - ► Global max pooling: $h_G = Max(\{h_v^L \in \mathbb{R}^d, \forall v \in G\})$

More on GNNs: https://web.stanford.edu/class/cs224w/

The idea: graphs are the new jets

- > Only signal assumption: 2 boosted Large-R jets per event (Anti-kT algorithm with R = 1)
 - Jets have sparse structure, suitable for graph representation!
- Graph have messages:
 - ▶ **Nodes** = constituents \rightarrow [pT frac, η and ϕ] features
 - > Edges ≡ relations $\rightarrow 1/\Delta R$ features, present only if $\Delta R < 0.2$

- Messages propagated to obtain graph-level embedding by GNN by training optimized a specific objective
 - Data augmented for mass decorrelation of GNN prediction (transformed constituents)

Anomaly Detection strategy

- Key concept: Unsupervised training on data (mostly QCD background)
- ➢ GNN maps graph features from parameters space X → F by Deep Support Vector Data Description (SVDD) objective

$$\min_{W} \quad \frac{1}{N} \sum_{i=1}^{N} \|\text{GIN}(G_i; W) - \mathbf{c}\|^2 + \frac{\lambda}{2} \sum_{l=1}^{L} \|W^l\|_{H^{2}}^2$$

From prediction an Anomaly Score (AS) per jet is derived

Overview of available tools

- Gitlab: https://gitlab.cern.ch/atlas-roma1-napoli/lhc-olympics-with-gnns/
 - > Modular structure, classes used during ML pipeline are imported from custom packages in subdirectories
- > Two simultaneous work progressions, one from Napoli (modular Antonio) and one from Roma 1 (modular graz)
 - Antonio: GNN, GNN + AE
 - Graziella: Transformer, Transformer + AE
- GNN notebooks and python scripts in «notebook» folder
 - > LHCOly, Run 2 and Run 3 dataset oriented notebooks, scripts only for Run 3
 - > Divided in supervised training scheme and unsupervised training scheme
 - Further separation between two main GNN models: Graph Isomorphism network (GIN) and Edge Graph Attention Network (EGAT)
- > Training jobs can be sent on ibisco gpu node in batch mode, allowing for parallel execution (\cong 1min/epoch)
 - Useful for training on QCD samples (incompatibility between loss function and MC weights)
- > Variables plotting \rightarrow notebooks (Corvino's slides)
 - ROOT ntuples branches and graph distributions
 - Used now to check MC background for GNN training

Architecture structure

Graph Isomorphism Network (GIN)

> GIN formulation employs both message passing and MLPs, making it the most expressive GNN:

$$MLP_{\Phi}\left((1+\epsilon) \cdot MLP_{f}(c^{(k)}(v))) + \sum_{u \in N(v)} MLP_{f}(c^{(k)}(u))\right)$$

learnable parameter

$$c^{(k)}(u) \leftrightarrow h^{(l)}_{j}$$

Embedding of node

This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the graph convolution.

$$h_i^{(l+1)} = f_{\Theta} \left((1+\epsilon) h_i^l + \text{aggregate} \left(\left\{ e_{ji} h_j^l, j \in \mathcal{N}(i) \right\} \right) \right)$$

> Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)

u (j) al layer k (l)

Edge Graph Attention Network (EGAT)

EGAT extends on GAT model by implementing edge features in a different way and by allowing updating of the edge weights tensor between each layer of GNN (edge embedding).

GATConv

class dgl.nn.pytorch.conv.GATConv(in_feats, out_feats, num_heads, feat_drop=0.0, attn_drop=0.0, negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True) [source]

Bases: torch.nn.modules.module.Module

Graph attention layer from Graph Attention Network

$$h_i^{(l+1)} = \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} W^{(l)} h_j^{(l)}$$

where α_{ij} is the attention score bewteen node *i* and node *j*:

$$\alpha_{ij}^{l} = \text{softmax}_{i}(e_{ij}^{l})$$
$$e_{ij}^{l} = \text{LeakyReLU}\left(\vec{a}^{T}[Wh_{i}||Wh_{j}]\right)$$

Returns:

• torch.Tensor – The output feature of shape $(N, *, H, D_{out})$ where H is the number of heads, and D_{out} is size of output feature.

• torch.Tensor, optional – The attention values of shape (E, *, H, 1), where E is the number of edges. This is returned only when get_attention is True.

EGATConv

class dgl.nn.pytorch.conv.EGATConv(in_node_feats, in_edge_feats, out_node_feats, out_edge_feats, num_heads, bias=True) [source]

Bases: torch.nn.modules.module.Module

Graph attention layer that handles edge features from Rossmann-Toolbox (see supplementary data)

The difference lies in how unnormalized attention scores e_{ij} are obtained:

 $e_{ij} = \vec{F}(f'_{ij})$ $f'_{ij} = \text{LeakyReLU}\left(A[h_i || f_{ij} || h_j]\right)$

where f'_{ij} are edge features, A is weight matrix and

Returns:

• pair of torch.Tensor – node output features followed by edge output features The node output feature of shape (N, H, D_{out}) The edge output feature of shape (F, H, F_{out}) where:

H is the number of heads, D_{out} is size of output node feature, F_{out} is size of output edge feature.

- torch.Tensor, optional The attention values of shape (E, H, 1). This is returned only when :attr: get_attention is True.
- > Selfloop is required because of how the node representation is updated.

Results on LHCOlympics

toy model

- R&D LHC Olympics dataset
 - QCD dijet events as background
 - $W' \rightarrow XY \rightarrow qqqq$ signal events
 - $m_{W'} = 3.5 TeV, m_X$ = 500GeV.m_V = 1000
 - reconstructed with anti- k_T with R
 - = 1.0

 \triangleright

benchmark models

- 3-prong signals with same masses
- ► W boson rediscovery (fully hadronic)
- 2-prong signals with new masses

Model	Transformer supervised	GIN supervised	EGAT supervised	Transformer <i>un</i> supervised	CIN <i>un</i> supervised	EGAT unsupervised
loss	CrossEntropy	CrossEntropy	CrossEntropy	MSE	DeepSVDD	DeepSVDD
AUC jet-level 2prong	91.3%	90.2%	89.9%	75.5%	73.7%	75.5%
AUC event- level 2prong		96.5%	96.5%		79.6%	81.8%
AUC jet-level 3prong	86.8%	75.5%	84.8%	69.1%	52.6%	67.2%
AUC event- level 3prong		84.1%	92.4%		54%	74.3%

*Event-level \equiv mean of AS pair (J₁, J₂)

Run3 Input datasets

- Available in common workspace on ibisco: \succ
 - /srv/Large01/ATLAS/LLJ1/datasets/dr02 SelfLoop/ \geq
 - /srv/Large01/ATLAS/LLJ1/datasets/dr02_noSeflLoop_extra/ \geq
- Created with GraphDatasets.py script available at repo <u>GNN AD</u>
 - code/GraphDatasets.py
- Input: ROOT ntuple (data, MC signal or background)
 - Mid-output: ROOT ntuple after skimming and transformation has been performed (very fast)
 - > Final output: graph dataset (graphs list + global features dictionary), 20k events in about 40 seconds (\cong 2s/1k)
- \succ If «extraFeatures» (clustering coefficient e_v , diameter, node degree, node and pT fractions of components 0 and 1)
- \geq Datasets can be merged to have bkg + sig events with arbitrary ratio
 - Done by changing filenames list in notebooks/merge_datasets.py \geq

∈ [0,1]

TRAINING ON QCD BACKGROUND

- > Control region (CR) not yet defined, better train on run 3 MC samples to avoid unblinding
- Problem: training on MC QCD samples should be done on the whole datasets, since loss function can't be easily reweighted in case of subsampling
 - > Unfeasible due to time and size required for graph datasets creation
- Idea: train N networks separately on each QCD slice, then test their perfomance on benchmark signals + background dividing the test dataset in N slices (one for each network corresponding to the QCD slice phase space region)
 - > At the end, we get an anomaly score for each jet like usual

TRAINING ON QCD BACKGROUND

- Other idea: create a randomly extract events from the full MC background dataset considering the number of events and the shape of a variable (leading jet pT) in data
 - Single MC QCD dataset with events shape resembling data and no reweighting problematic

FIRST IDEA PROGRESS: EGAT

Removed divergent loss term in EGAT training

$$\min_{W} \quad \frac{1}{N} \sum_{i=1}^{N} \|\text{GIN}(G_i; W) - \mathbf{c}\|^2 + \frac{\lambda}{2} \sum_{l=1}^{L} \|W^l\|_F^2$$

Performed on training to check everything is ok with one MC bkg slice (JZ5) and a YXH signal sample (2300_300)

Unsupervised, 150k jets in training set, 45k in validation (40k bkg – 5k signal)

a.u.

0.01

0.00

Ó

50

100

150

Anomaly Score at max auc epoch

200

250

300

350

FIRST IDEA PROGRESS: GIN

- Performed on training to check everything is ok with one MC bkg slice (|Z5) and a YXH signal sample (2300 300)
 - Unsupervised, 150k jets in training set, 45k in validation (40k bkg – 5k signal)

$$\min_{W} \quad \frac{1}{N} \sum_{i=1}^{N} \|\text{GIN}(G_i; W) - \mathbf{c}\|^2 + \frac{\lambda}{2} \sum_{l=1}^{L} \|W^l\|_F^2$$

SECOND IDEA PROGRESS

- FastFrames ntuples, trigger selection applied
 2M events (pdf and sampling)
- > pT shape of data is estimated from histogram using scipy library
 - A weight value is associated to each bkg event by evaluating the inferred pdf
 - A new bkg dataset is then created by sampling N events according to the probability (weight value) of each event to be extracted

Fit step

3.0

Leading jet pT

3.5

data fit

Starting bkg dataset is not uniform

1.0

1.5

2.0

2.5

0.5

 10^{-5}

 10^{-6}

 10^{-7}

10-8

 10^{-9}

10-10

10-11

Even though bkg events are randomly extracted by data pdf, most recurring events will create a modulation

TO DO LIST

- Adjust MC background training set method
- Create graph dataset from FF ntuples (only EJ working so far)
 - Segmentation Fault at dump step of Rdataframe, investigating
- Perform training with MC samples
- Let's discuss other items in next session

BACKUP

GNN + AE ARCHITECTURE

- Main GNN model
- A popular anomaly detection loss function, the Mean Squared Error (MSE), could be used, but an AE must be connected to compare each graph representation with the autoencoder (AE) output.

