CNFN ATLAS

A
& 4;5 LINVERSITA DECL STUD 4 MAPOU
ﬁ‘ N Ey .F.
ot g FEDERICO I
B ORIl A
by e
W™

MACHINE LEARNING STATUS: GNN

Workshop Roma-Napoli, Napoli, 18/12/2024

Anomaly Detection

» Anomaly Detection (AD) refers to Machine Learning (ML)
techniques used to spot outliers in a dataset.

> ldentification of features of detector data inconsistent with
the expected background.

» Generality of prediction « level of training supervision
» Typically unsupervised scheme

Eur.Phys.J.C 84 (2024) 1. 78

> — T T T T T

& 100005 Ap a5 + Data

~ 14000E- {5-13.6TeV, 31.4 10" — Total pdf
E 12000} — Signal p
g H-yy --- Bkg. pdf
@ 10000

D

[=]

o

(=]
lII|III|IH|III|III|II

Data - Bkg.

https://inspirehep.net/literature/2670270

Graphs overview

Some data must be arranged in array-like objects in
order to be processed by machine learning | >
algorithms, but sometimes it just doesn't feel intuitive

(protein chains, social networks between peope, ecc.)

Graph representation!

» Structured objects composed of entities used to describe and analyze relations and interactions (edges) between such entities
(nodes).
» Nodes and edges typically contain features specific to each element and each pair.
» Represented compactly by adjacency matrix.
» Many types of graphs based on the relations: directed, heterogeneous, bipartite, weighted ecc.

Directed graph G(V,E) Undirected graph G(V,E) Knowledge graph G(V,E) Weighted graph G(V,E)
"

Va4

VU3

vy Uy V3 Y
0 (04| 0 |04
04| 0 |03|01
003|005
0401|050

Graph Neural Networks overview

» Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting their relational

nature.
» The network during training learns the vector representation (embedding h,)) of each node of the input graphs.
> of a target node depends in some way on what the embeddings of the other nodes are and from its

structure.

Node level nOde VeCtor
u d —
: § fru-NR | \-\./ /
Graph-level «—i 13 d
prediction, = Community]R
(subgraph) .
Graph : E level Feature representation,
generation PN\ o : .
: : embedding
: Edge-level
1. Node prediction by prediction §(h,), e.g. for identification of malevolous users
among social network.
Several task levels, carried out by processing the final node I 2. Edge prediction by predction $(h,,h,), e.g. estimate the probability of affiliation
embeddings in certain ways. between two people of interest of a person to an object.

3. Graph identification by prediction §(Pool(h,)), e.g. classification of protein

structure.
3/18

https://arxiv.org/pdf/1810.00826.pdf

Graph Neural Networks overview

» The embeddings are updated at each layer by aggregating the information passed between the target node and the nodes from its
closest neighbourhood — message passing

hl, = initial features of node v

h(l+1)

=o‘¢_

weights matrix matrlx

embedding representation

of node v at layer (+1)

h{)

UEN(v) IN(W)|

+

N\

message passed from set of L lavers
u nodes to node v

aagregation over
N(v) neighbours u

Bias term

o

vi€{0,..,L—1}

\

st
ye

» G embedding is obtained by pooling the nodes embedding at the final layer into one global representation
> Global sum pooling: hg = Sum(@{hL € RY, vv € G))
> Global mean pooling: hg = Mean({hl € RY, vv € G))
> Global max pooling: hg = Max({h% € R4, vv € G})

More on GNNs: https://web.stanford.edu/class/cs224w/

https://web.stanford.edu/class/cs224w/

The idea: graphs are the new jets

» Only signal assumption: 2 boosted Large-R jets per event (Anti-kT algorithm with R = 1)
» Jets have sparse structure, suitable for graph representation!

» Graph have messages:

> Mes

> Nodes = constituents — [pT frac, n and ¢] features
» Edges = relations — 1/4R features, present only if AR < 0.2

-

Transformation \
m; = 0.25 GeV

E]:1Gey

es propagated to obtain graph-level embedding by GNN by training optimized a specific objective
» Data augmented for mass decorrelation of GNN prediction (Lransionned constituents)

TARGET NODE (@ Message B

/(é . Message C
Message D ,) ®
. g e

®

TARGET NODE g Message B

/ _ Message C
‘Message D .
e

INPUT GRAPH (JET) 5/18

https://arxiv.org/pdf/1903.02032.pdf

Anomaly Detection strategy

input space
e = background &
¢ = signal ° .
C = average of initial P

graph features vectors

Key concept: Unsupervised training on data (mostly QCD
background)

GNN maps graph features from parameters space X — F by
Deep Support Vector Data Description (SVDD) objective

1 < A
- . _ A2y 2
N 2 IGING W) =l + 3 3 1wl

From prediction an Anomaly Score (AS) per jet is derived

output space (Deep SVDD)

\

O\

s(x) = [|o(x; W)

—c|?

>

Overview of available tools

Gitlab: https://qgitlab.cern.ch/atlas-romal-napoli/lhc-olympics-with-gnns/
» Modular structure, classes used during ML pipeline are imported from custom packages in subdirectories

Two simultaneous work progressions, one from Napoli (modular_Antonio) and one from Roma 1 (modular_graz)
» Antonio: GNN, GNN + AE
» Graziella: Transformer, Transformer + AE

GNN notebooks and python scripts in «notebook» folder
» LHCOIly, Run 2 and Run 3 dataset oriented notebooks, scripts only for Run 3
» Divided in supervised training scheme and unsupervised training scheme
» Further separation between two main GNN models: Graph Isomorphism network (GIN) and Edge Graph Attention
Network (EGAT)

Training jobs can be sent on ibisco gpu node in batch mode, allowing for parallel execution (= 1min/epoch)
» Useful for training on QCD samples (incompatibility between loss function and MC weights)

Variables plotting — notebooks (Corvino’s slides)
» ROOT ntuples branches and graph distributions
» Used now to check MC background for GNN training

https://gitlab.cern.ch/atlas-roma1-napoli/lhc-olympics-with-gnns/
https://gitlab.cern.ch/vippolit/lhc-olympics-with-gnns/-/tree/modular_Antonio?ref_type=heads
https://gitlab.cern.ch/vippolit/lhc-olympics-with-gnns/-/tree/modular_graz?ref_type=heads

Architecture structure

/Graphsdataset \

MLP GIN/EGAT MLP
-0 ® = @
—»= 0} ® D ® o
@ 9 B
e pd
Input Message Graphs
features Passing embeddings

GNN
architecture

Graph Isomorphism Network (GIN)

GIN formulation employs both message passing and MLPs, making it the most expressive GNN:

UEN (V)

MLP,, ((1 +€) - MLP: (c® (v))) + Z MLP; (c(")(u)))) o n®
]

learnable parameter Embedding of node u (j) al layer k (I)

This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the
graph convolution.

K = fo ((1+ OH + ageregate ({efh, / € ND)}))

Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)

Edge Graph Attention Network (EGAT)

» EGAT extends on GAT model by implementing edge features in a different way and by allowing updating of the
edge weights tensor between each layer of GNN (edge embedding).

GATConv

class dgl.nn.pytorch.conv.GATConv(in_feats, out_feats, num_heads, feat_drop=0.0, attn_drop=0.0,
negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True) [source]

Bases: torch.nn.modules.module.Module
Graph attention layer from Graph Attention Network
(+1) _ [UFAU)]
h!- = Z a,-,jW h}-
JENG)
where a;; is the attention score bewteen node i and node j:

a/; = softmax;(e,)
el = LeakyReLU (" [Wh;||Wh;))

Returns:
o torch.Tensor - The output feature of shape (N, %, H, D,,;) where H is

the number of heads, and D, is size of output feature.
e torch.Tensor, optional - The attention values of shape (E, *, H, 1),
where E is the number of edges. This is returned only when

get_attention iS True.

EGATConv

class dgl.nn.pytorch.conv.EGATConv(in_node_feats, in_edge_feats, out_node_feats, out_edge_feats,
num_heads, bias=True) [source]

Bases: torch.nn.modules.module.Module

Graph attention layer that handles edge features from Rossmann-Toolbox (see supplementary
data)

The difference lies in how unnormalized attention scores e;; are obtained:
€jj = F(f;;)
fl; = LeakyReLU (AL £3;1|h;1)

where f,'j are edge features, A is weight matrix and

Returns:
o pair of torch.Tensor - node output features followed by edge output

features The node output feature of shape (N, H, D,,,) The edge
output feature of shape (F, H, F,,;) where:

H is the number of heads, D, is size of output node feature, F,,;
is size of output edge feature.

» torch.Tensor, optional - The attention values of shape (E, H, 1). This is

» Selfloop is required because of how the node representation is updated.

returned only when :attr: get_attention is True .
10/18

Results on LHCOlympics

.035 A I S = ::;g
R&D LHC Olympics dataset A 0030 nomaly score
QCD dijet events as background
W' — XY — qqqq signal events

» 3-prong signals with same masses 0025 1
» W boson rediscovery (fully hadronic) 00201

myy = 3.5TeV, my » 2-prong signals with new masses 2015 |
= 500GeV,my = 100GeV

reconstructed with anti-k; with R]
= 1.0 0.005

au.

0.000 -

0 50 100 150 200 250 300

Transformer GIN EGAT Transformer event-level A3

Model : : :
supervised supervised supervised W =TT
---- Random guess
CrossEntropy | CrossEntropy | CrossEntropy MSE DeepSVDD DeepSVDD
)
91.3% 90.2% 89.9% 75.5% 73.7% 75.5% £,
[}
2
A 96.5% 96.5% A 79.6% 81.8% 8.
[]
=
86.8% 75.5% 84.8% 69.1% 52.6% 67.2% 02
AUC = Area under
the ROC curve
A 84.1% 92.4% A 54% 74.3% o0
b ” False:APositivéjRate " "

*Event-level = mean of AS pair (J1,],)

Run3 Input datasets

» Available in common workspace on ibisco:
» [Isrv/Large01/ATLAS/LLJ1/datasets/dr02_SelfLoop/
> Isrv/Large01/ATLAS/LLJ1/datasets/dr02_noSeflLoop_extra/

» Created with GraphDatasets.py script available at repo GNN_AD
» code/GraphDatasets.py

» Input: ROOT ntuple (data, MC signal or background)

» Mid-output: ROOT ntuple after skimming and transformation has been performed (very fast)

» Final output: graph dataset (graphs list + global features dictionary), 20k events in about 40 seconds (= 2s/1k)
» If «extraFeatures» (clustering coefficient e,,, diameter, node degree, node and pT fractions of components 0 and 1)

» Datasets can be merged to have bkg + sig events with arbitrary ratio
» Done by changing filenames list in notebooks/merge_datasets.py

® g = #(edges among nkelghbormg nodes) €[0.1]
® i (%)
PO,
O = : \J & o0
Oz B t 1 }
® [J

P
{ o i
3 4 @M/ 3 triangles (out of 6 node triplets) 12/18

https://gitlab.cern.ch/fcirotto/GNN_AD/-/tree/ADJJ_parallel?ref_type=heads

TRAINING ON QCD BACKGROUND

» Control region (CR) not yet defined, better train on run 3 MC samples to avoid unblinding

» Problem: training on MC QCD samples should be done on the whole datasets, since loss function can’t be easily
reweighted in case of subsampling

» Unfeasible due to time and size required for graph datasets creation

» ldea: train N networks separately on each QCD slice, then test their perfomance on benchmark signals +
background dividing the test dataset in N slices (one for each network corresponding to the QCD slice phase
space region)

» At the end, we get an anomaly score for each jet like usual

TRAINING ON QCD BACKGROUND

» Other idea: create a randomly extract events from the full MC background dataset considering the number of
events and the shape of a variable (leading jet pT) in data

» Single MC QCD dataset with events shape resembling data and no reweighting problematic

A DATA

Zvents : N events
===>>> +
Shape

N
pT

<<<

===>>>
extract N events from
Zvents, MC dijets MC dijets according a Events

A

Training dataset

FIRST IDEA PROGRESS: EGAT

Train and validation loss VS epochs

» Removed divergent loss term in EGAT training arcEGAT
175 —e— training loss
N —e— validation loss
. 1 A 150
min Z:‘ IGIN(Gs; W) — cll® + 3
i=
" 100
» Performed on training to check everything is ok with one MC bkg "
slice (JZ5) and a YXH signal sample (2300_300) ”
> Unsupervised, 150Kk jets in training set, 45k in validation (40k »
bkg — 5k Signal) ’ 0 10 20 30 40 50
Epochs
Validation AUC VS epochs Training on BKG only, validating on SIG + BKG
arcEGAT arcEGAT (validation)
0.63 bk
0.06 4 sig
0.62 0.05 |
0.61 0.04
9 3
 0.60 ® 0.03
0.59 0.02 4
0.014
0.58
0.00
0 10 20 30 40 50 0 50 100 150 200 250 300 350

Epochs Anomaly Score at max_auc epoch

FIRST IDEA PROGRESS: GIN

Train and validation loss VS epochs

» Performed on training to check everything is ok with one " arcGIN e
MC bkg slice (JZ5) and aYXH signal sample (2300_300) o) o validation loss
» Unsupervised, |50k jets in training set, 45k in validation 60
(40k bkg — Sk signal) 501
2 40
min -3 0N W) — el + 2 S w2
w N & : 2 & F 20
104
01 T v v r v T
0 10 20 Epochs 30 40 50

Validation AUC VS epochs Training on BKG only, validating on SIG + BKG

arcGIN S
arcGIN (validation)
0.56 bkg
1.2 sig
0.55
1.0
0.54
g 0.8+
= 053 5
® 0.6
0.52
0.4
0.51
0.2
0.50
0 10 20 30 40 50 0.0
Epochs 0 10 20 30 40 50 60 70

Anomaly Score at max_auc epoch

SECOND IDEA PROGRESS

» FastFrames ntuples, trigger selection applied
» 2M events (pdf and sampling)

» pT shape of data is estimated from histogram using scipy library
» A weight value is associated to each bkg event by evaluating the

inferred pdf

» A new bkg dataset is then created by sampling N events
according to the probability (weight value) of each event to be

extracted

1075 4

107°

1077 4

1078 4

10-9 4

10—10 4

10-11 4

0.5

10

15

2.0

W data fit
data

Fit step

2.5 3.0 35
le6

Leading jet pT

» Starting bkg dataset is not uniform
» Even though bkg events are randomly extracted by data pdf, most recurring events will create a

modulation

105 4

104 4

103 4

102 4

10! 1

10° §

105 4

W sampled bkg
data

Sampling result

0.5 1.0 15 2.0 25 3.0 35
le6

Leading jet pT

bkg

Sanity check — =msus

data

le6

Leading jet pT

TO DO LIST

» Adjust MC background training set method

» Create graph dataset from FF ntuples (only EJ working so far)
» Segmentation Fault at dump step of Rdataframe, investigating

» Perform training with MC samples

» Let’s discuss other items in next session

BACKUP

GNN + AE ARCHITECTURE

> Main GNN model

> A popular anomaly detection loss function, the Mean Squared Error (MSE), could be used, but an AE must be connected to
compare each graph representation with the autoencoder (AE) output.

(G)
Graphs dataset MLP GIN/EGAT MLP
ep—— - - -"'I ——
~@ /o la o o
— = o —> : F‘ -
- @ g LY -
- |_,_. - o -
Input Message Graphs MSE
features Passing embeddings loss

A

2nd piece, supporting

1st piece, main GNN N
o 9% architecture

	Slide 1: Machine learning status: GNN
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

