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MACHINE LEARNING STATUS: GNN

Workshop Roma-Napoli, Napoli, 18/12/2024



Anomaly Detection

» Anomaly Detection (AD) refers to Machine Learning (ML)
techniques used to spot outliers in a dataset.

> ldentification of features of detector data inconsistent with
the expected background.

» Generality of prediction « level of training supervision
» Typically unsupervised scheme

Eur.Phys.J.C 84 (2024) 1. 78
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https://inspirehep.net/literature/2670270

Graphs overview

Some data must be arranged in array-like objects in
order to be processed by machine learning | >
algorithms, but sometimes it just doesn't feel intuitive

(protein chains, social networks between peope, ecc.)

Graph representation!

» Structured objects composed of entities used to describe and analyze relations and interactions (edges) between such entities
(nodes).
» Nodes and edges typically contain features specific to each element and each pair.
» Represented compactly by adjacency matrix.
» Many types of graphs based on the relations: directed, heterogeneous, bipartite, weighted ecc.

Directed graph G(V,E) Undirected graph G(V,E) Knowledge graph G(V,E) Weighted graph G(V,E)
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Graph Neural Networks overview

» Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting their relational

nature.
» The network during training learns the vector representation (embedding h,)) of each node of the input graphs.
> of a target node depends in some way on what the embeddings of the other nodes are and from its

structure.

---------------------------------

Node level nOde VeCtor
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Graph-level «—i 13 d
prediction, = Community ]R
(subgraph) .
Graph : E  level Feature representation,
generation PN\ o : .
: : embedding
: Edge-level
1. Node prediction by prediction §(h,), e.g. for identification of malevolous users
among social network.
Several task levels, carried out by processing the final node I 2. Edge prediction by predction $(h,,h,), e.g. estimate the probability of affiliation
embeddings in certain ways. between two people of interest of a person to an object.

3. Graph identification by prediction §(Pool(h,)), e.g. classification of protein

structure.
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https://arxiv.org/pdf/1810.00826.pdf

Graph Neural Networks overview

» The embeddings are updated at each layer by aggregating the information passed between the target node and the nodes from its
closest neighbourhood — message passing
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» G embedding is obtained by pooling the nodes embedding at the final layer into one global representation
> Global sum pooling: hg = Sum(@{hL € RY, vv € G))
> Global mean pooling: hg = Mean({hl € RY, vv € G))
> Global max pooling: hg = Max({h% € R4, vv € G})

More on GNNs: https://web.stanford.edu/class/cs224w/


https://web.stanford.edu/class/cs224w/

The idea: graphs are the new jets

» Only signal assumption: 2 boosted Large-R jets per event (Anti-kT algorithm with R = 1)
» Jets have sparse structure, suitable for graph representation!

» Graph have messages:

> Mes

> Nodes = constituents — [pT frac, n and ¢] features
» Edges = relations — 1/4R features, present only if AR < 0.2

-

Transformation \
m; = 0.25 GeV
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es propagated to obtain graph-level embedding by GNN by training optimized a specific objective
» Data augmented for mass decorrelation of GNN prediction (Lransionned constituents)
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https://arxiv.org/pdf/1903.02032.pdf

Anomaly Detection strategy

input space
e = background &
¢ = signal ° .
C = average of initial P

graph features vectors

Key concept: Unsupervised training on data (mostly QCD
background)

GNN maps graph features from parameters space X — F by
Deep Support Vector Data Description (SVDD) objective
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From prediction an Anomaly Score (AS) per jet is derived

output space (Deep SVDD)
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Overview of available tools

Gitlab: https://qgitlab.cern.ch/atlas-romal-napoli/lhc-olympics-with-gnns/
» Modular structure, classes used during ML pipeline are imported from custom packages in subdirectories

Two simultaneous work progressions, one from Napoli (modular_Antonio) and one from Roma 1 (modular_graz)
» Antonio: GNN, GNN + AE
» Graziella: Transformer, Transformer + AE

GNN notebooks and python scripts in «notebook» folder
» LHCOIly, Run 2 and Run 3 dataset oriented notebooks, scripts only for Run 3
» Divided in supervised training scheme and unsupervised training scheme
» Further separation between two main GNN models: Graph Isomorphism network (GIN) and Edge Graph Attention
Network (EGAT)

Training jobs can be sent on ibisco gpu node in batch mode, allowing for parallel execution (= 1min/epoch)
» Useful for training on QCD samples (incompatibility between loss function and MC weights)

Variables plotting — notebooks (Corvino’s slides)
» ROOT ntuples branches and graph distributions
» Used now to check MC background for GNN training



https://gitlab.cern.ch/atlas-roma1-napoli/lhc-olympics-with-gnns/
https://gitlab.cern.ch/vippolit/lhc-olympics-with-gnns/-/tree/modular_Antonio?ref_type=heads
https://gitlab.cern.ch/vippolit/lhc-olympics-with-gnns/-/tree/modular_graz?ref_type=heads

Architecture structure
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Graph Isomorphism Network (GIN)

GIN formulation employs both message passing and MLPs, making it the most expressive GNN:

UEN (V)

MLP,, ((1 +€) - MLP: (c® (v))) + Z MLP; (c(")(u))) ) o n®
]

learnable parameter Embedding of node u (j) al layer k (I)

This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the
graph convolution.

K = fo ((1+ OH + ageregate ({efh, / € ND)}))

Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)




Edge Graph Attention Network (EGAT)

» EGAT extends on GAT model by implementing edge features in a different way and by allowing updating of the
edge weights tensor between each layer of GNN (edge embedding).

GATConv

class dgl.nn.pytorch.conv.GATConv(in_feats, out_feats, num_heads, feat_drop=0.0, attn_drop=0.0,
negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True)  [source]

Bases: torch.nn.modules.module.Module
Graph attention layer from Graph Attention Network
(+1) _ [UFAU)]
h!- = Z a,-,jW h}-
JENG)
where a;; is the attention score bewteen node i and node j:

a/; = softmax;(e,)
el = LeakyReLU (" [Wh;||Wh;))

Returns:
o torch.Tensor - The output feature of shape (N, %, H, D,,;) where H is

the number of heads, and D, is size of output feature.
e torch.Tensor, optional - The attention values of shape (E, *, H, 1),
where E is the number of edges. This is returned only when

get_attention iS True.

EGATConv

class dgl.nn.pytorch.conv.EGATConv(in_node_feats, in_edge_feats, out_node_feats, out_edge_feats,
num_heads, bias=True)  [source]

Bases: torch.nn.modules.module.Module

Graph attention layer that handles edge features from Rossmann-Toolbox (see supplementary
data)

The difference lies in how unnormalized attention scores e;; are obtained:
€jj = F(f;;)
fl; = LeakyReLU (AL £3;1|h;1)

where f,'j are edge features, A is weight matrix and

Returns:
o pair of torch.Tensor - node output features followed by edge output

features The node output feature of shape (N, H, D,,,) The edge
output feature of shape (F, H, F,,;) where:

H is the number of heads, D, is size of output node feature, F,,;
is size of output edge feature.

» torch.Tensor, optional - The attention values of shape (E, H, 1). This is

» Selfloop is required because of how the node representation is updated.

returned only when :attr: get_attention is True .
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Results on LHCOlympics
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Run3 Input datasets

» Available in common workspace on ibisco:
» [Isrv/Large01/ATLAS/LLJ1/datasets/dr02_SelfLoop/
> Isrv/Large01/ATLAS/LLJ1/datasets/dr02_noSeflLoop_extra/

» Created with GraphDatasets.py script available at repo GNN_AD
» code/GraphDatasets.py

» Input: ROOT ntuple (data, MC signal or background)

» Mid-output: ROOT ntuple after skimming and transformation has been performed (very fast)

» Final output: graph dataset (graphs list + global features dictionary), 20k events in about 40 seconds (= 2s/1k)
» If «extraFeatures» (clustering coefficient e,,, diameter, node degree, node and pT fractions of components 0 and 1)

» Datasets can be merged to have bkg + sig events with arbitrary ratio
» Done by changing filenames list in notebooks/merge_datasets.py

® g = #(edges among nkelghbormg nodes) €[0.1]
® i (%)
PO,
O = : \J & o0
Oz B t 1 }
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{ o i
3 4 @M/ 3 triangles (out of 6 node triplets) 12/18



https://gitlab.cern.ch/fcirotto/GNN_AD/-/tree/ADJJ_parallel?ref_type=heads

TRAINING ON QCD BACKGROUND

» Control region (CR) not yet defined, better train on run 3 MC samples to avoid unblinding

» Problem: training on MC QCD samples should be done on the whole datasets, since loss function can’t be easily
reweighted in case of subsampling

» Unfeasible due to time and size required for graph datasets creation

» ldea: train N networks separately on each QCD slice, then test their perfomance on benchmark signals +
background dividing the test dataset in N slices (one for each network corresponding to the QCD slice phase
space region)

» At the end, we get an anomaly score for each jet like usual




TRAINING ON QCD BACKGROUND

» Other idea: create a randomly extract events from the full MC background dataset considering the number of
events and the shape of a variable (leading jet pT) in data

» Single MC QCD dataset with events shape resembling data and no reweighting problematic

A DATA

Zvents : N events
===>>> +
Shape

N
pT

<<<

===>>>
extract N events from
Zvents, MC dijets MC dijets according a Events

A

Training dataset




FIRST IDEA PROGRESS: EGAT

Train and validation loss VS epochs

» Removed divergent loss term in EGAT training arcEGAT
175 —e— training loss
N —e— validation loss
. 1 A 150
min Z:‘ IGIN(Gs; W) — cll® + 3
i=
" 100
» Performed on training to check everything is ok with one MC bkg "
slice (JZ5) and a YXH signal sample (2300_300) ”
> Unsupervised, 150Kk jets in training set, 45k in validation (40k »
bkg — 5k Signal) ’ 0 10 20 30 40 50
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FIRST IDEA PROGRESS: GIN

Train and validation loss VS epochs

» Performed on training to check everything is ok with one " arcGIN e
MC bkg slice (JZ5) and aYXH signal sample (2300_300) o) o validation loss
» Unsupervised, |50k jets in training set, 45k in validation 60
(40k bkg — Sk signal) 501
2 40
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w N & : 2 & F 20
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SECOND IDEA PROGRESS

» FastFrames ntuples, trigger selection applied
» 2M events (pdf and sampling)

» pT shape of data is estimated from histogram using scipy library
» A weight value is associated to each bkg event by evaluating the

inferred pdf

» A new bkg dataset is then created by sampling N events
according to the probability (weight value) of each event to be

extracted
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TO DO LIST

» Adjust MC background training set method

» Create graph dataset from FF ntuples (only EJ working so far)
» Segmentation Fault at dump step of Rdataframe, investigating

» Perform training with MC samples

» Let’s discuss other items in next session




BACKUP



GNN + AE ARCHITECTURE

> Main GNN model

> A popular anomaly detection loss function, the Mean Squared Error (MSE), could be used, but an AE must be connected to
compare each graph representation with the autoencoder (AE) output.
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