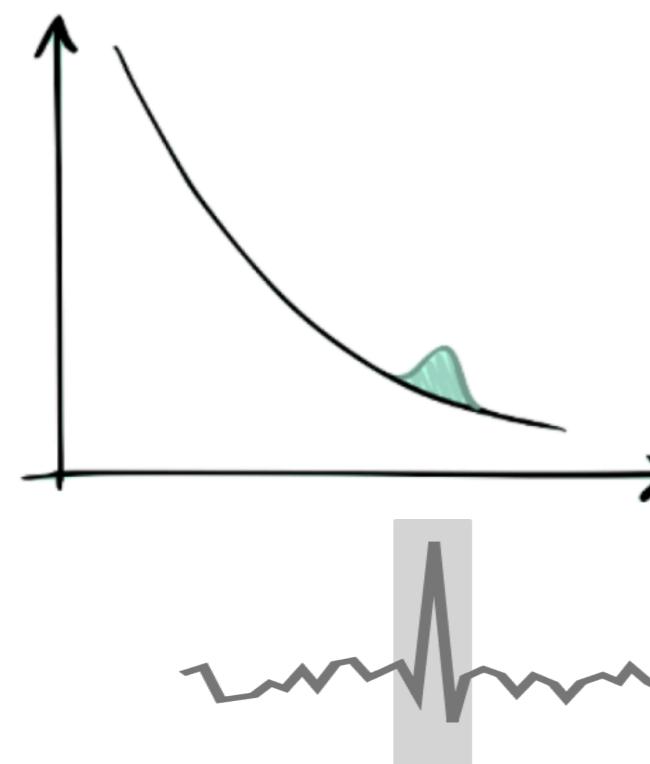


Anomaly detection search in fully hadronic final state

Francesco Cirotto Università degli Studi di Napoli Federico II

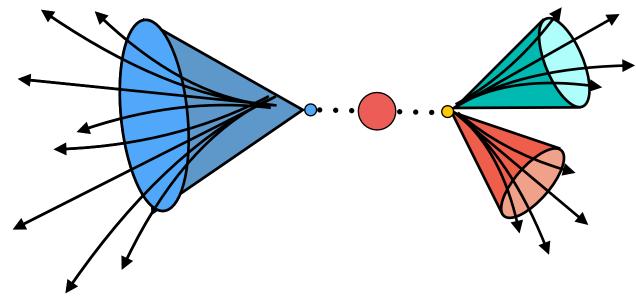
WHERE IS LHC GOING? Finding anomalies in data

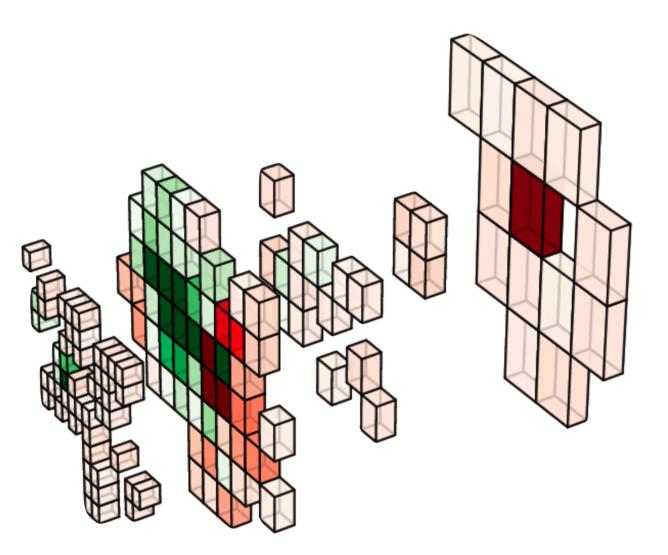
- No Physics Beyond Standard Model (BSM) has been observed at the LHC (yet!)
- ^o The currently most used search paradigm is using model-dependent approaches
 - \hookrightarrow What if these models have blind spots for unconventional new physics signatures?
 - \hookrightarrow If there's new Physics in the current LHC data we can't miss it!
- ^o Anomaly Detection (AD) uses unsupervised Machine Learning architectures to identify outliers in a set of "standard" objects.
 - \hookrightarrow In High Energy Physics, this means the identification of features of detector data inconsistent with the expected background.



Using Jets in AD Jets as tools!

- ^o Many Beyond Standard Model theories predict new massive resonances which can decay hadronically, leading to final states involving jets.
- ^o For massive particles, their decay products become collimated, or 'boosted', in the direction of the progenitor particle.
 - \mathbf{G} It is advantageous to reconstruct their hadronic decay products as a single large-radius (large-R) jet.
- ^o Jet information can be used as input features for neural network architectures.
 - \hookrightarrow A significant improvement in performances can be achieved by employing a set of features with basic information (low-level) such as information coming directly from the detectors.
 - \hookrightarrow Jet constituents represent challenging input features to achieve this goal

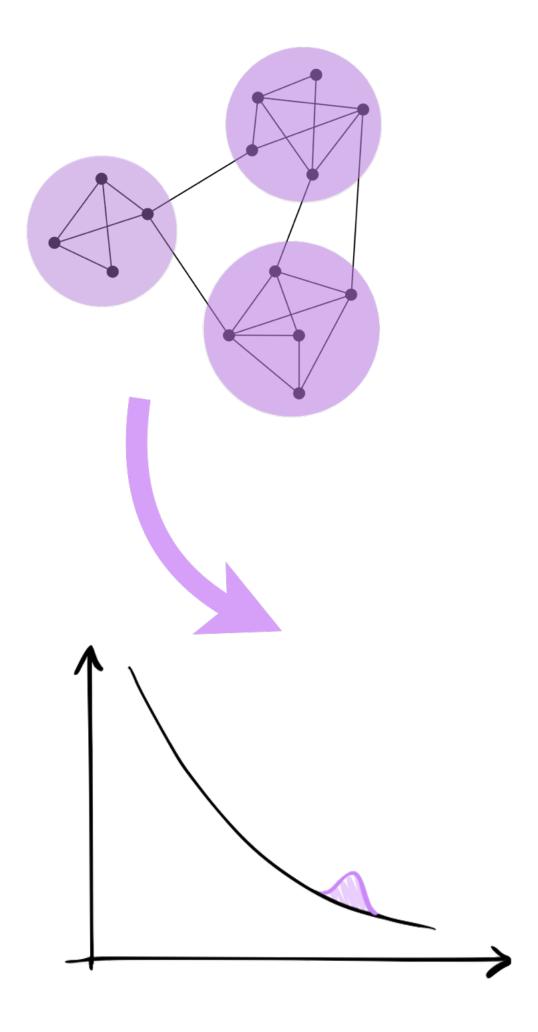




THE IDEA

Graph Anomaly Detection for New Physics Searches

- ^o Graph-structured data are ubiquitous across science, engineering, and many other domains
 - \hookrightarrow Used to describe and analyze relations and interactions
 - \hookrightarrow Can encapsulate object or event information
 - \hookrightarrow Can be employed in particle physics!
- ^o Our strategy: to represent jets as graphs and then apply machine learning to build an anomaly detection algorithm
 - ↔ Targeting heavy resonance searches with hadronic final states in Run-3
 - \hookrightarrow Exploit event-based graphs to detect anomalies



THE ANALYSIS IN ATLAS

• Find anomalies in our data with GNN \hookrightarrow Build graphs from jets

^o From a jet level (already existing) to an event level approach

↔ Deviation from known SM processes

- ^o Testing our model: apply the technique to other benchmark models
 - ↔ Rediscovering "old" resonances as new anomalies! (W/Z/top?)

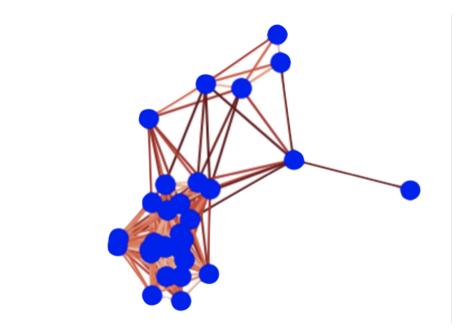
JETS AD GRAPHS Graph definition

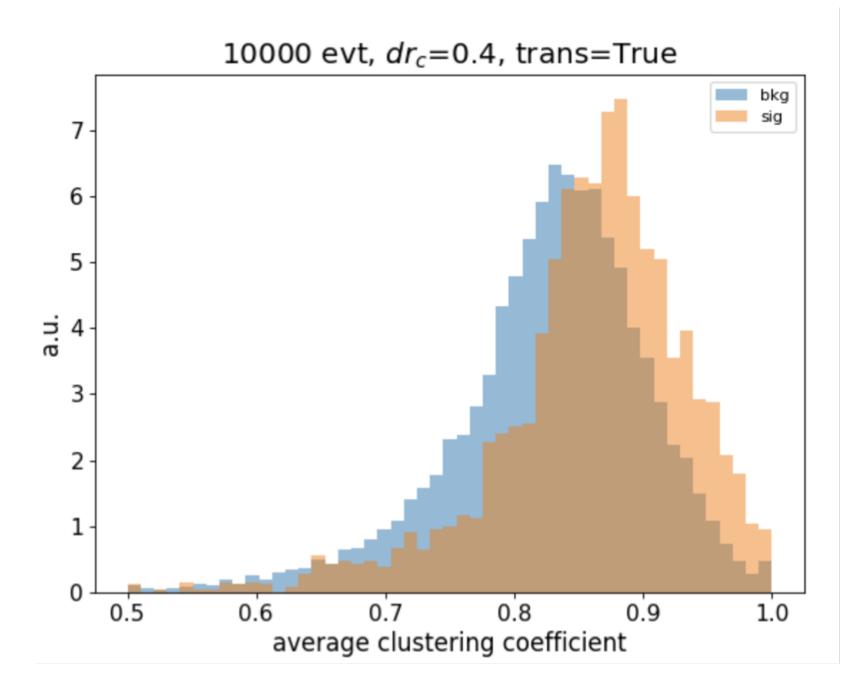
- ↔Using jet constituents
- ↔ Fraction of jet pt, eta, phi

Features

- > What is an edge?
 - ↔Weight message from neighboring nodes
 - ↔Using "distance" between jets

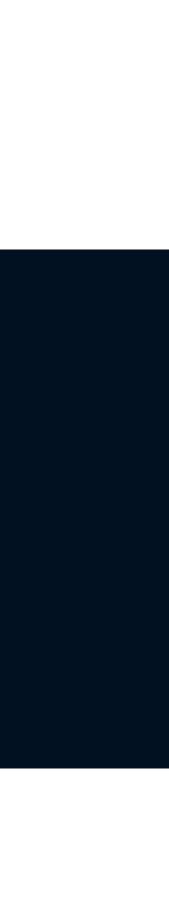
How are they connected?
No self loops, DR cut = 0.4





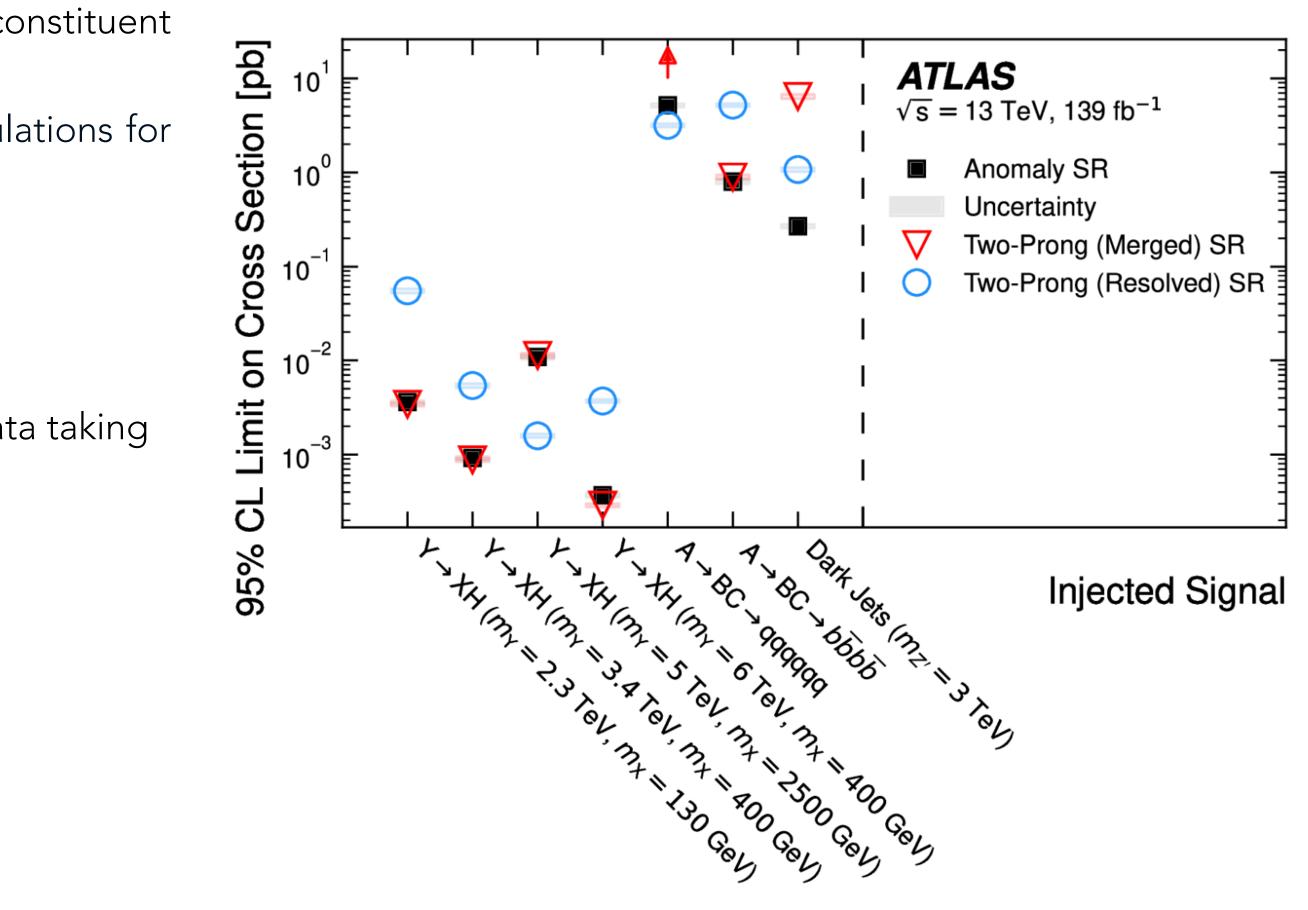
Measure of the degree to which nodes tend to cluster together

ATLAS Analysis



DATASETS

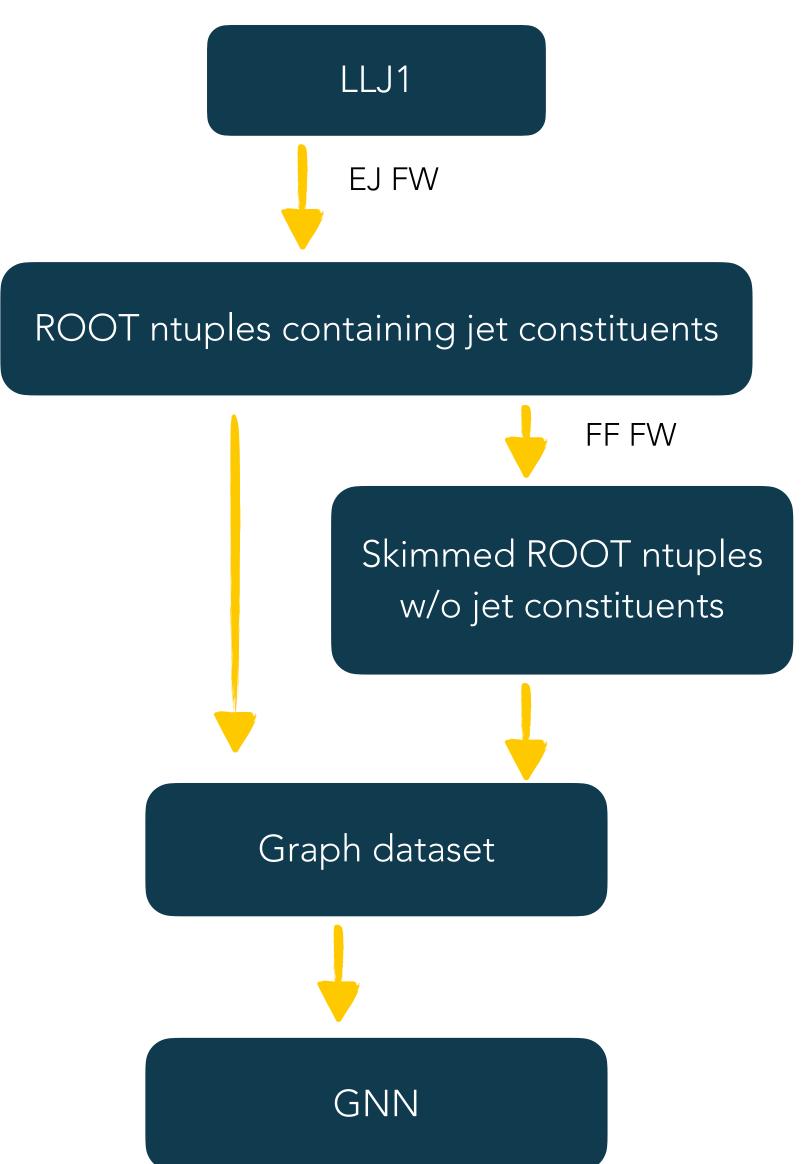
- Requested dedicated derivations (LLJ1) containing jet constituent information
 - \hookrightarrow Due to the huge size agreed to not have MC simulations for all data taking periods
- ^o Data 2022 and 2023
- MonteCarlo: mc23d campaign, which simulates 2023 data taking ↔QCD main background divided in pt slices ↔Top, V+jets
- ^o Signals: several benchmarks signals.
 - ↔ Heavy Vector Triplet: VVJJ, YXH
 - ↔Dark Jet
 - \hookrightarrow 3-prong signals
 - \hookrightarrow Use only benchmark models, we do not want to cover the whole phase space



Data processing workflow

^o Two main steps in dataset processing:

- ↔ From LLJ1 derivations to ROOT ntuples via **EasyJet** FW
 - Can be already used for preliminary plots
 - A first preselection on DxAOD can be applied
- Skim EasyJet ROOT ntuples via **FastFrames FW**
 - Lighter ntuples
 - Dealing with events weights
 - Compute more complex variable/selection
- ^o Create graph dataset for our ML architectures \hookrightarrow Use jet constituents to build graph



Data Processing Workflow Processing time

- EasyJet FW: run on grid, ~1 week ↔<u>Complete production</u> is ~2 Tb
- FastFrames: run locally or via Condor ~0.5/1 day
 - ↔ To be tested on Condor
 - ↔Complete production without constituents: ~33Gb
 - ↔ Can be useful include jet constituents?
- ^o Graph dataset creation: main bottleneck is computing time and dataset size \hookrightarrow ~500 ev/s, ~2M ev/h depending on information stored

OTHER FW

Plotter? Need to develop an efficient plotter code
At the moment using Antonio's code

o Fitting FW?

TODAY'S AGENDA

- Status of analysis: ntuples, preselection, trigger studies
- ^o Status of ML
- ^o Open discussion: analysis strategy, region definition, training...

NEXT STEPS IN THE ANALYSIS

Analysis strategy

- ↔ "Freeze" trigger selection
- ↔ Define regions: SR, CR
- ↔ Background estimation
- \hookrightarrow <u>W rediscovery</u>

ML strategy

- ↔Training/validation region: where? How?
- ↔ Unblinding strategy design
- ^o Uncertainties →Signal? →In ML?
- ^o Manpower, timescale

ANALYSIS TIMESCALE

^o What we need to converge?

^o Manpower

↔Antonio has 2 years

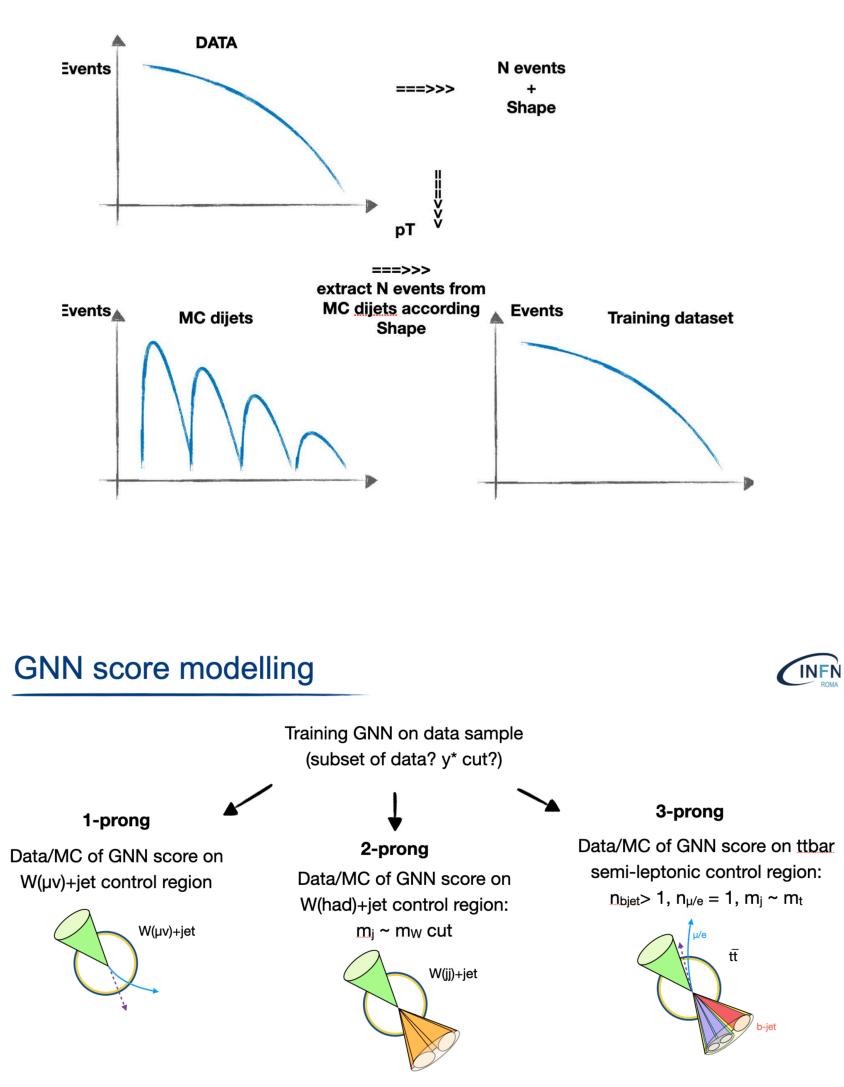
Graziella has 3-4 months

↔Michela?

 \hookrightarrow 1/2 master students from Naples in the next months

Machine Learning

- ^o Implement full machinery
- ^o How do we create an event-level score?
- ^o Train on MC QCD: how?
 - →QCD in slice: select subsample? What about weights? —> Train for each slice
 - How evaluate score?
- ^o Train on data: where?
- ^o Uncertainties in ML



non-closure uncertainty to cover mismodelling on our 1-,2-,3-prong SM candles

