

Results from the Super-Kamiokande Experiment

September 30th, 2025

L. N. Machado a,+, on behalf of the Super-Kamiokande Collaboration

- ^a School of Physics & Astronomy, University of Glasgow
- + Correspondence: <u>lucas.nascimentomachado@glasgow.ac.uk</u>

The Super-Kamiokande Experiment

The Super-Kamiokande (SK) Neutrino Detector is a 50 kton water Cherenkov located in the Kamioka mine in Japan,

overburden with 1000 m of rock. In operation since April 1996.

Lucas N Machado (University of Glasgow)

Overburden ~1 km rock:

Inner detector: currently has around 11,000 20-inch PhotoMultipliers Tubes (PMTs).

Outer detector: water layer \sim 2m thick, with \sim 1,885 8-inch PMTs, facing the outside of the detector.

The Super-Kamiokande Collaboration

The Super-Kamiokande Collaboration consists of approximately 240 members from 54 institutions.

History of Super-Kamiokande

1996 2002 2006 2008 2019

SK-I, 1996-2001 11,146 ID PMTs (with 40% coverage)

SK-II, 2002-2005 5,182 ID PMTs (with 19% coverage + FPR)

SK-III, 2006-2008 11,129 ID PMTs (again, 40% coverage)

SK-IV, 2008-2018 11,129 ID PMTs (upgraded electronics)

SK-V, 2019-2020 11,129 ID PMTs (refurbished for Gd and with Hyper-K PMTs)

Super-Kamiokande with Gadolinium (SK-Gd)

Improve Super-Kamiokande's sensitivity electron anti-neutrinos by adding water-soluble gadolinium (Gd) salt to the water in the detector.

Isotope	neutron capture cross section
¹⁵⁷ Gd	255,000 barns
¹⁵⁵ Gd	61,000 barns
Н	0.3 barn

SK-VI:

July/August 2020

2022

13 tons Gd₂(SO₄)₃ * 8H₂O 0.01% Gd

Nuclear Inst. and Methods in Physics Research, A 1027 (2022) 166248

SK-VII/ June/July **SK-VIII:**

40 tons Gd₂(SO₄)₃ * 8H₂O 0.03% Gd

Nuclear Inst. and Methods in Physics Research, A 1065 (2024) 169480

Super-Kamiokande – Physics Goals

Super-Kamiokande is unique in covering neutrinos from MeV solar energies to TeV cosmic rays, while probing rare processes like nucleon decay.

Astrophysics

Solar neutrinos (~15 events/day)

Supernova burst neutrinos (~10,000 events galactic SN)

Diffuse Supernova Neutrino Background (few events/year, relic of all past stars)

Pre-supernova neutrinos (hours early warning signal)

Neutrino Oscillations

Atmospheric neutrinos (flux from ~100 MeV to >10 TeV) Accelerator, T2K (controlled beam, precision θ_{13} , δ_{CP} studies)

• Rare Searches

Nucleon Decay (lifetime sensitivity >10³⁴ years)
Exotic/astrophysical neutrinos (test for dark matter, GW/GRB/AGN coincidence, new physics)

Atmospheric Neutrinos

Cosmic rays (mainly protons) interact with nuclei in the atmosphere, producing particle hadronic showers (e.g., pions, kaons). These decay into neutrinos, called atmospheric neutrinos.

- Energy range few MeV to several TeV.
- Super-K observes ~8 events/day

Travel length of atmospheric neutrinos varies 15 km to \sim 13000 km. Zenith angle describes different atmospheric neutrino baselines -> matter effects induced by passage through Earth.

Oscillation probabilities for atmospheric neutrinos as a function of the cosine of the zenith angle and the neutrino energy E_{ν} .

Atmospheric neutrinos as probe of neutrino oscillations:

- v_{μ} disappearance: Δm_{32}^2 , $\sin^2 \theta_{23}$
- v_e appearance: δ_{CP} , θ_{23} octant, mass ordering

Phys.Rev.D83:123001,2011

Atmospheric Neutrinos

Cosmic rays (mainly protons) interact with nuclei in the atmosphere, producing particle hadronic showers (e.g., pions, kaons). These decay into neutrinos, called atmospheric neutrinos.

- Energy range few MeV to several TeV.
- Super-K observes ~8 events/day

Travel length of atmospheric neutrinos varies 15 km to \sim 13000 km. Zenith angle describes different atmospheric neutrino baselines -> matter effects induced by passage through Earth.

Oscillation probabilities for atmospheric neutrinos as a function of the cosine of the zenith angle and the neutrino energy E_v.

Atmospheric neutrinos as probe of neutrino oscillations:

- v_{μ} disappearance: Δm_{32}^2 , $\sin^2 \theta_{23}$
- v_e appearance: δ_{CP} , θ_{23} octant, mass ordering

Phys.Rev.D83:123001,2011

Atmospheric Neutrinos in Super-Kamiokande (1)

Most recent analysis: Phys. Rev. D 109, 072014 (2024):

- 6,511 days of atmospheric neutrino data (SK-I to SK-V, start until July 2020)
- Expanded fiducial volume: cut 100 cm from detector walls (before 200 cm) -> 20% increase in statistics.
- Search for neutron captures to improve $\nu/\bar{\nu}$ separation using Boosted Decision Tree, improved charged current/neutral current separation.

29 analysis samples: Sub-divided by event topology: (FC/PC,UP- μ), energy range, e/ μ -like, and number of rings, number of neutron candidates. Multi-GeV e-like samples are divided into v-like and v-like samples to improve sensitivity for mass hierarchy.

Best-fit, normal ordering: $\delta_{CP} \sim -\pi/2$ $\sin^2\theta_{23} \sim 0.45$ $\Delta m^2_{32} \sim 2.4 \times 10^{-3} \text{ eV}^2$

Mass ordering: $\Delta \chi^2$ (NO - IO) \sim -5.7

Reject inverted ordering at the 92.3% CL

Atmospheric Neutrinos in Super-Kamiokande (2)

<u>Phys.Rev.D 112 (2025) 1, 012004</u>: Measurement of total neutron production following atmospheric neutrino interactions in SK (including SK-VI).

Compare neutrino generator/interaction models to data (from atmospheric neutrino).

- \triangleright Better-tuned neutron modeling \rightarrow stronger v/\bar{v} separation \rightarrow improved mass ordering & δ_{CP} sensitivity
- 4,270 days total; includes 564 days at 0.01% Gd.
- New neural network-based selection, validated with Am/Be source.
- Compute average neutron-capture multiplicity per event vs visible energy (30 MeV-10 GeV).

Models used: NEUT 5.4/5.6; GENIE (hA, hN, BERT, INCL) × hadron transport (GCALOR/Geant4 Bertini/INCL) Model discrimination: Predictions vary by up to ~50%;

Mean (n,y) multiplicity vs visible energy

Best agreement:

GENIE-INCL + **G4 BERT-PC** are preferred -> baseline for future modelling of neutron production.

Reduces uncertainty in total neutron production from atmospheric neutrinos in approximately 10%.

Early SK-Gd validates n-tagging; **full atmospheric-v fits with Gd are in preparation.** SK + T2K joint fit -> **Results from the T2K Experiment** talk (S. King)

Nucleon Decay Searches (1)

Grand Unified Theories (GUTs): most predict protons to decay into lighter particles (baryon-number-violating proton decay). Nucleon decay is direct probe for GUTs.

Phys.Rev.D 102 (2020) 11, 112011: Improvement in analysis: enlarge fiducial volume 22.5 kton to 27.2 kton -> exposure 450 kton·years. Reanalyzed past data (SK-I to SK-IV)

Total Mass [MeV/c²]

Lifetime limit (90% CL,450 kton-years)

$$p \rightarrow e^+ \pi^0$$
 2.4 × 10³⁴ yr

Phys. Rev. D 110 (2024), 112011: Search for proton decay into $e^+=\mu^+$ and a η meson, 373 kton-years exposure.

Proton

$$p \to \mu^+ \, \eta$$
 7.3 × 10³³ yr

Nucleon Decay Searches (2)

Many searches for other decay modes.

Analysis advances:

- Enlarged fiducial volume → more exposure
- Refined analysis techniques (spectrum fit, multivariate techniques, etc).
- Improved atmospheric v background modeling.

 $p \to \mu^+ K^0$, 370 kton·years, **Phys.Rev.D 106 (2022) 7, 072003.** Lifetime limit: 3.6 × 10³³ year sat 90% C.L.

 $n \rightarrow \overline{v}$ K° (new SK result), 401 kton·years, <u>e-Print: 2506.14406</u>. Strongest limits to date: 7.8×10^{32} years at 90% C.L.

Systematic searches yield limits in the 10³²–10³⁴ year range.

Super-Kamiokande sets the world's strongest constraints on nucleon decay.

Solar Neutrinos (1)

Neutrinos produced in the sun through fusion processes. SK: 8B and hep neutrinos.

Measurements of ⁸B neutrinos with high statistics recorded by SK with direction and energy information.

Study of neutrino oscillations

- θ_{12} , Δm_{21}^2
- Day/night asymmetry
- Solar upturn: MSW oscillations between 1-5 MeV

Other topics such as flux modulation and anti-neutrino search.

Phys. Rev. D 109 (2024), 092001: full SK-IV (October 2008 to May 2018) data.

Analysis improvements (lower threshold, reduction in spallation background using neutron

clustering events, improved energy reconstruction).

[3.49-19.49] MeV electron kinetic energy region (SK-IV): 65443^{+390}_{-388} (stat.) \pm 925(syst.) events

$$\Phi_B = (2.314 \pm 0.014 \pm 0.040) \times 10^6 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

Comparison of ⁸B solar neutrino flux among different SK phases.

Solar Neutrinos (2)

Solar upturn favoured by 2.1σ for SK+SNO.

Checking solar angle distributions < 4 MeV using the Wideband Intelligent Trigger (WIT) data.

- Signal not observable in E_{kin} < 2.99 MeV.
- Hint of solar peak in 2.99 MeV < E_{kin} < 3.49 MeV. -> 2.66 σ .

More details in the contributed talk "Enhancing Low-Energy Neutrino Sensitivity in Super-Kamiokande with the Wide-band Intelligent Trigger".

 $A_{D/N}$ (all SK, fit) = -0.0286 ± 0.0085 (stat.) ± 0.0032 (syst.) 3.2 σ direct evidence of earth matter effects!

Solar Neutrinos (3)

Solar oscillation parameters, for combined 5805 days of SK data:

$$sin^2\theta_{12} = 0.324^{+0.027}_{-0.023}$$

 $\Delta m^2_{21} = (6.10^{+1.26}_{-0.86}) \times 10^{-5} \text{ eV}^2$

$$sin^2\theta_{12} = 0.306^{+0.013}_{-0.013}$$

 $\Delta m^2_{21} = (6.10^{+0.95}_{-0.81}) \times 10^{-5} \text{ eV}^2$

$$sin^2\theta_{12} = 0.307^{+0.012}_{-0.012}$$

 $\Delta m^2_{21} = (7.50^{+0.19}_{-0.18}) \times 10^{-5} \text{ eV}^2$

Best-fit from all solar data:

$$sin^2\theta_{13} = 0.032^{+0.021}_{-0.022}$$

Solar + KamLAND:

$$sin^2\theta_{13} = 0.030^{+0.015}_{-0.014}$$

Analysis of additional SK data in on-going.

Reactor Neutrinos

The efficient neutron identification provided by gadolinium allows the search for signals from

nuclear power reactors (electron anti-neutrinos from fission products).

- Primarily a result of the activity of Japanese nuclear power reactors (small contribution from Korean reactors);
- Constrain neutrino oscillation parameters, complementary to solar sector.
- Expected ~ 5 events/day in SK.

Expected reactor events in SK (model Huber/Muller)

Two analyses are currently being carried out using two different low energy triggers (SLE and WIT).

ON/OFF analysis

Energy spectrum

More details in the contributed talk "Enhancing Low-Energy Neutrino Sensitivity in Super-Kamiokande with the Wide-band Intelligent Trigger".

Reactors from Wakasa-Bay: Mihama 3 (146 km), Ohi 3, 4 (179km), Takahama 1, 2 3, 4 (191 km)

Diffuse Supernova Neutrino Background (1)

The Diffuse Supernova Neutrino Background (DSNB) is a steady redshifted flux of neutrinos from all past core-collapse supernovae in the history of the Universe.

Redshift-dependent star formation rate

Supernova neutrino emission spectrum

Detecting it would provide unique insight into stellar evolution and the cosmic supernova rate, but the signal is extremely faint.

Super-K has the world's leading sensitivity. Detection through IBD, main backgrounds:

- Reactor neutrinos
- Spallation-induced (mainly ⁹Li)
- Atmospheric neutrinos (both CC, NC)

Diffuse Supernova Neutrino Background (2)

Many analysis improvements:

- New reduction for atmospheric NCQE interactions event using gamma-ray cut variable (further 90% reduction)
- Dedicated machine learning techniques implemented for neutron tagging.

Performed both energy-binned analysis and unbinned energy spectrum fitting.

M. Harada et al, Phys. Rev. Lett. 951, L27 (2023):

552 days (SK-VI, 0.01% Gd)

Recent studies:

404 days (SK-VII, 0.03% Gd)

Diffuse Supernova Neutrino Background (3)

No significant excess observed (min. p-value=0.04). Sensitivity reaches model prediction region for $E_{\nu} > 14$ MeV.

SK starting to probe into the predicted DSNB signal region!

Competitive SK-Gd with < 1000 days exposure with 3000 days of pure-water period.

Diffuse Supernova Neutrino Background (4)

Spectrum fitting analysis to extract detection significance:

- Total of 6779 days of SK (5823 days pure-water + 956 days with Gd).
- Analysis threshold: $E_v > 17.3$ MeV (to avoid spallation background).
- Define main/side-band regions based on Cherenkov angle
- Suppress uncertainty of background prediction by fitting IBD-like and non IBD-like events.
- Profile likelihood ratio.

Best-fit rate: 2.9 events · year-1

> Best-fit flux: 1.4 cm⁻² s⁻¹

Spectral fitting for a DSNB theoretical model (Horiuchi+09), showing all individual SK phases considered and their combination

2.3σ rejection of a background-only hypothesis (very preliminary).

Gravitational Wave Coincidence Searches

Compact binary mergers are prime candidates for neutrino–gravitational wave coincidence searches:

- Neutron Star-Black Hole (NSBH) mergers:
 may produce both high-energy and thermal neutrinos, depending on remnant and ejecta.
- Binary Neutron Star (BNS) mergers: emit low-energy neutrinos (MeV) within milliseconds of the GW signal.
- Black Hole—Black Hole (BBH) mergers: no neutrino emission expected, but some models allow for high-energy neutrino production if matter is present (e.g. accretion disk).

Models expect that BNS and NSBH mergers emit thermal MeV neutrinos within < 1 s of merger, with peak luminosity $> 10^{53}$ erg/s, in the 5 to 30 MeV range.

Searches in SK for coincidences with the first period of GW-O4 run (O4a) from May to October 2023. **No significant excess is observed.**

Upper limits (90% confidence level) were obtained for both low and high energy samples:

Flux limits: $\sim 10^3 - 10^4$ GeV cm⁻²

Summary

Super-Kamiokande is a neutrino observatory running since 1996, with a broad physics program in **neutrino astrophysics**, **neutrino oscillations** and **rare searches**. In 2020, the experiment started the **SK-Gd** phase, in which gadolinium was added to the water in the detector to increase its sensitivity to electron antineutrinos.

Atmospheric neutrinos:

- Combined SK-I to V data with expanded fiducial volume (27.2 kton) and improved selections
- Preference for normal mass ordering, rejecting inverted ordering at the 92.3% CL;
- Analysis in agreement with T2K on mass ordering & δ_{CP} (previous talk).
- Neutron production modeling validated with early SK-Gd data.

Search for Nucleon Decay:

- Systematically searches for many different decay modes to probe Grand Unified Theories;
- Imposing very strict lifetime limits.

Solar Neutrinos:

- Full SK-IV (October 2008 to May 2018) data analyzed;
- Solar upturn favoured by 2.1σ for SK+SNO;
- 3.2σ direct evidence of earth matter effects.

Reactor Neutrinos:

- First searches of reactor neutrino signal in SK, using two low energy triggers;
- Expected event rates consistent with data
- On/off reactor analysis shows excellent agreement.

Diffuse Supernova Neutrino Background:

- There is no significant DSNB signal, but SK starting to probe into the predicted DSNB signal region.
- 2.3σ tension from non-DSNB hypothesis

Coincidence with gravitational waves:

- GW-O4as search of neutrino counterparts. No significant excess observed.
- Flux limits set $\sim 10^3 10^4$ GeV cm⁻².