
Martin Frank University of South Alabama1

Martin J. Frank
University of South Alabama 

on behalf of the NOvA Collaboration

September 30th, 2025
Padua, Italy

Results from the 
NOvA Experiment



Martin Frank University of South Alabama2

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy
ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe
νµ

ντ

∆m2

∆m2

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)



Martin Frank University of South Alabama3

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy
ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe
νµ

ντ

∆m2

∆m2

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)



Martin Frank University of South Alabama4

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy
ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe
νµ

ντ

∆m2

∆m2

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)



Martin Frank University of South Alabama5

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy
ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe
νµ

ντ

∆m2

∆m2

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)



Martin Frank University of South Alabama6

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction

𝜈e
𝜈𝜇𝜈𝜏

𝜈e
𝜈𝜇𝜈𝜏

𝜈3
?

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)



Martin Frank University of South Alabama7

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� measure θ13, θ23, Δm2

32

� measure δCP
CP-violating phase angle

� resolve mass hierarchy
� resolve θ23 octant

Introduction
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Beyond Oscillation Physics
¢ Non-Standard Interactions
¢ Neutrino Cross Sections
¢ Sterile Neutrinos
¢ Dark Matter
¢ Magnetic Monopoles
¢ Supernova
¢ And More!

= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢ NOνA:
� NuMI: Neutrinos at the Main Injector (νμ)
� Off-Axis: monoenergetic beam (2 GeV)
� νe Appearance (and νμ Disappearance)

¢ Physics Goals:
� Search for magnetic 

monopoles
� New results hot off 

the press today!

Introduction

P (⌫µ ! ⌫µ)
P (⌫µ ! ⌫e)

New
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Extracting Nature’s Parameters
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¢ Using the oscillation 
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Neutrino Detection
¢ We want to detect electron neutrinos (νe):

� This requires a large detector mass and good 
electron identification.

¢ NOvA is a rectangular tracking calorimeter.
� low Z materials: PVC extrusions filled with liquid scintillator

¢ radiation length ~ 40 cm, Molière radius ~ 11 cm
¢ provides many samples per radiation length (differentiate e− and π0)

� each extrusion contains one wavelength-shifting fiber
� ends of fiber read out by avalanche photo-diode (APD)

APD
32 Channels

charged-current (CC)
interaction

1 Channel

x

y
z

PVC extrusions

Detector
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Near Detector Event Display
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Far Detector Event Display

550 μs Exposure
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Time Zoom on NuMI Beam Pulse
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Close-Up of  Neutrino Interaction
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Far Detector Neutrino Prediction

¢ We use a data-driven technique to extrapolate the neutrino events 
in the near detector to the far detector:
1. Estimate true energy distribution of near detector events
2. Multiply by expected far/near event ratio and oscillation probability
3. Convert far detector true energy into reconstructed energy
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June 17, 2024 / NEUTRINO '24 J. Wolcott / Tufts U. 34

Far detector observations: νμ 

νμ νμ 

3-Kavor oscillations describe these data well: Bayesian posterior predictive p-value = 0.54

Muon Neutrino Events

¢ Muon neutrino event counts:
� 384 νμ candidates (beam: 26.6 x 1020 POT)
� 106 anti-νμ candidates (beam: 12.5 x 1020 POT)

¢ Note the dip in the energy spectra indicating the 
disappearance of muon neutrinos



Martin Frank University of South Alabama36

June 17, 2024 / NEUTRINO '24 J. Wolcott / Tufts U. 34

Far detector observations: νμ 

νμ νμ 

3-Kavor oscillations describe these data well: Bayesian posterior predictive p-value = 0.54

Muon Neutrino Events

¢ Muon neutrino event counts:
� 384 νμ candidates (beam: 26.6 x 1020 POT)
� 106 anti-νμ candidates (beam: 12.5 x 1020 POT)

¢ Note the dip in the energy spectra indicating the 
disappearance of muon neutrinos



Martin Frank University of South Alabama37

June 17, 2024 / NEUTRINO '24 J. Wolcott / Tufts U. 34

Far detector observations: νμ 

νμ νμ 

3-Kavor oscillations describe these data well: Bayesian posterior predictive p-value = 0.54

Muon Neutrino Events

¢ Muon neutrino event counts:
� 384 νμ candidates (beam: 26.6 x 1020 POT)
� 106 anti-νμ candidates (beam: 12.5 x 1020 POT)

¢ Note the dip in the energy spectra indicating the 
disappearance of muon neutrinos



Martin Frank University of South Alabama38

June 17, 2024 / NEUTRINO '24 J. Wolcott / Tufts U. 35

Far detector observations: νe 

ν ν

Best It Range
Total pred 186.2 119 – 250

Wrong-sign 1.8 1.6 – 2.8

Beam bknd. 53.7

Cosmic bknd. 6.2

Total bknd 61.7 61 – 63

Best It Range

Total pred 30.4 28 – 38

Wrong-sign 2.1 1.0 – 3.2

Beam bknd. 9.0

Cosmic bknd. 1.1

Total bknd 12.2 11 – 13

Electron Neutrino Events

¢ Electron neutrino event counts
� 181 νe candidates (beam: 26.6 x 1020 POT)
� 32 anti-νe candidates (beam: 12.5 x 1020 POT)

¢ Samples divided into four selections:
� Low-Energy, Low Particle ID (PID), High PID and Peripheral
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Extract Nature’s Parameters
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Extract Nature’s Parameters

6

TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino

0.4 0.5 0.6

23θ2sin
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 e

V
-3
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2 32
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BNOvA BNOvA+T2K
BNOvA (previous result) FT2K

BT2K+SuperK FMINOS
FSuperK FIceCube

90% CI (B) or CL (F)

FIG. 2. Comparisons of the 90% intervals for �m2
32 – sin2 ✓23

in the Normal MO with NOvA 2020 results and superimposed
contours from other experiments [75–79], including the 2024
joint NOvA-T2K analysis [80, 81].The NOvA results are with
the 1D Daya Bay constraint on ✓13 applied [61]. Contours
labeled B are from Bayesian analyses, while those labeled F
are from frequentist analyses, used when Bayesian results were
not available.
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FIG. 3. Bi-event plot showing the posterior probability for
the predicted number of ⌫e and ⌫̄e events in purple, with the
1� credible interval and the FD data point marked. The two
ovals, red for the Inverted MO and blue for the Normal MO,
show the prediction at the NOvA best-fit point over a whole
range of �CP, with four �CP points marked.

MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino
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not available.
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino
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labeled B are from Bayesian analyses, while those labeled F
are from frequentist analyses, used when Bayesian results were
not available.
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino
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the 1D Daya Bay constraint on ✓13 applied [61]. Contours
labeled B are from Bayesian analyses, while those labeled F
are from frequentist analyses, used when Bayesian results were
not available.
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino
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joint NOvA-T2K analysis [80, 81].The NOvA results are with
the 1D Daya Bay constraint on ✓13 applied [61]. Contours
labeled B are from Bayesian analyses, while those labeled F
are from frequentist analyses, used when Bayesian results were
not available.
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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TABLE II. Observed and predicted numbers of ⌫µ, ⌫e and
Low-energy ⌫e events in the neutrino beam, and ⌫̄µ and ⌫̄e
events in the antineutrino beam. The low PID, high PID,
and Peripheral samples have been combined in the ⌫e (⌫̄e)
columns, while the Low-energy sample is shown separately
due to its novel status in this analysis. WS is considered sig-
nal in the ⌫µ and ⌫̄µ samples, but background in the ⌫e and
⌫̄e samples. We denote as Others the sum of all remaining
oscillation channels that are not listed explicitly in this table.
The best-fit point for the prediction is extracted from a fre-
quentist fit to the data with the Daya Bay 1D constraint on
sin2 2✓13 [61].

Neutrino Antineutrino
Beam Beam

Sample ⌫µ ⌫e
Low-

⌫̄µ ⌫̄eenergy

⌫µ !⌫µ 372.3 4.3 0.3 24.4 0.2
⌫̄µ !⌫̄µ 24.5 0.1 0.0 71.5 0.2
⌫µ !⌫e 0.4 125.3 3.4 0.0 2.1
⌫̄µ !⌫̄e 0.0 1.8 0.1 0.0 18.9
Beam ⌫e + ⌫̄e 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6+26.8
�24.2 125.3+5.1

�5.1 3.4+1.0
�0.8 96.0+5.2

�5.7 18.9+0.8
�0.9

Background 11.0+1.3
�1.2 55.4+2.6

�1.7 7.1+1.3
�1.1 1.7+0.2

�0.2 12.2+0.5
�0.7

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

ing posterior-predictive p-values (PPP), where sampled
models that describe the data well will have values close
to 0.5 [74]. With the 1D Daya Bay constraint on ✓13,
the total PPP across all data samples is 0.48, indicating
good agreement between the data and the model. The
PPP does not change significantly when either no exter-
nal constraint on ✓13 is used or when the two-dimensional
sin2 2✓13–�m2

32 constraint from Daya Bay is applied [62].

The NOvA data lie in the degenerate region of pa-
rameter space which can be accommodated within either
MO by varying the preferred values of �CP, as shown
in Fig. 3. Bayes factors, representing ratios of posterior
probabilities between two hypotheses, are used here to
represent how much more probable one model is over an-
other. Bayes factors for the preference of CP violation
over CP conservation were extracted using the Savage-
Dickey method [82, 83] based on the Jarlskog invari-
ant [84], with Jarlskog invariant of 0 representing CP
conservation, resulting in a factor of 1.1 (containing 51%
of the posterior probability) in the Normal MO and 4.3
(81%) in the Inverted MO.

This analysis reports the most precise single-
experiment measurements of �m2

32, achieving a frac-
tional uncertainty of 1.5%. This improved precision
provides an additional lever for probing the neutrino

0.4 0.5 0.6

23θ2sin

1.8

2

2.2

2.4

2.6

2.8

)2
 e

V
-3

 (1
0

2 32
m

∆

over orderings, Normal MO
Marginalized separately

NOvA HPD

BNOvA BNOvA+T2K
BNOvA (previous result) FT2K

BT2K+SuperK FMINOS
FSuperK FIceCube

90% CI (B) or CL (F)

FIG. 2. Comparisons of the 90% intervals for �m2
32 – sin2 ✓23

in the Normal MO with NOvA 2020 results and superimposed
contours from other experiments [75–79], including the 2024
joint NOvA-T2K analysis [80, 81].The NOvA results are with
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labeled B are from Bayesian analyses, while those labeled F
are from frequentist analyses, used when Bayesian results were
not available.
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MO [85, 86]. Reactor and long-baseline accelerator mea-
surements of �m2

32 should agree only under the correct
MO hypothesis. Fig. 4 shows a comparison of the NOvA
and the 2D Daya Bay constraints in the sin2 2✓13–�m2

32

plane under the two MO hypotheses, with somewhat bet-
ter agreement in the Normal MO. Without any external
✓13 constraint, NOvA data show a slight preference for
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FIG. S5. Posterior probability densities for the Jarlskog invariant, marginalized separately over each ordering, and shown for
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Neutrino Oscillation Results

¢ We measured the most precise single-experiment constraint 
on the atmospheric neutrino mass-splitting! 

Parameter Best-fit Normal Ordering Preference (�)

sin2 (✓23) 0.546+0.032
�0.075 W/ 1D Daya Bay

constraint
p-value 0.1731

1.36 �
�m2

32

⇣
10�3 eV2

⌘
2.433+0.035

�0.036
W/ 2D Daya Bay

constraint
p-value 0.1158

1.57 ��CP (⇡) 0.875
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Magnetic Monopole Search
¢ “The magnetic monopole is the 

most venerable member of the 
mythological bestiary of physics.”
                         – Don Groom

¢ We search for magnetic monopoles.
¢ If they exist, they will deposit energy 

in our detector.
¢ NOvA has the unique potential to 

probe a new region of phase space:
� due to our large surface area
� and our location on the surface.

¢ NOvA has dedicated triggers to write 
out monopole-like events.

¢ First search published in 2021.

D.E. Groom, Physics Reports 140, 6, pg. 323 (1986)
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Magnetic Monopole Search
¢ “The magnetic monopole is the 

most venerable member of the 
mythological bestiary of physics.”
                         – Don Groom

¢ We search for magnetic monopoles.
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in our detector.
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� and our location on the surface.
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Magnetic Monopole Search
¢ “The magnetic monopole is the 

most venerable member of the 
mythological bestiary of physics.”
                         – Don Groom
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� and our location on the surface.
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Magnetic Monopole Energy Deposition

¢ Groom’s summary 
of the magnetic 
monopole energy 
deposition as 
calculated from EM.

¢ Monopole 
interaction is similar 
to particle with 
charge Z = 69 at 
high β.

1000 ⨉ MIP
β = 10-1

100 ⨉ MIP
β = 10-2

10 ⨉ MIP
β = 10-3

� =
v

c
=

velocity

speed of light
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Analysis Strategy

¢ We divide the 
magnetic monopole 
searches into two 
broad categories 
based on:

A. Ionization
B. Timing

IO
NI
ZA
TI
ON

TI
MI
NG
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Analysis Strategy

Large energy deposition 
is suppressed through 

Birks effect.
¢ A lot of work went 

into verifying that 
these effects were 
properly accounted 
for in our simulation.

IO
NI
ZA
TI
ON
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Analysis Strategy

Large energy deposition 
is suppressed through 

Birks effect.

Fast monopoles (β ≳ 0.7) 
produce Cherenkov light.

¢ A lot of work went 
into verifying that 
these effects were 
properly accounted 
for in our simulation.

IO
NI
ZA
TI
ON
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Analysis Strategy

¢ A lot of work went 
into verifying that 
these effects were 
properly accounted 
for in our simulation.Fast monopoles (β ≳ 0.7) 

produce Cherenkov light.

Large energy deposition 
is suppressed through 

Birks effect.

IO
NI
ZA
TI
ON
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Acceptance Region
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Data Samples

¢ Ionization Search: 
� October 2015 – February 2025
� 2,904 days (2,713 days marked as good)

¢ Timing Search: 
� February 2016 – October 2024
� 2,985 days (2,743 days marked as good)

2012 2014 2016 2018 2020 20242022

Build Data

Detector Gain 
Settings Changed
October 13, 2015

Analyzed Data

Now

Data
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Raw Data with Simulated Monopole

50 μs Exposure

Search for Fast Magnetic Monopoles with
NOvA Far Detector

Lipsarani Panda on Behalf of the NOvA Collaboration

National Institute of Science Education and Research(HBNI), India

Motivation

Existence of magnetic monopoles would explain the
quantization of electric charge.
Introduction of magnetic monopoles would restore symmetry
between electricity and magnetism.
Magnetic monopoles naturally appear in Grand Unification
Theories (GUT).

The NOvA Experiment

NuMI O↵-axis ⌫e Appearance
NOvA is the long-baseline experiment that primarily studies
the oscillation properties of the neutrino.

NOvA detectors[1].

Cell: single unit of
detector[1].

Two functionally identical detectors 810 km
apart.

Segmented plastic and scintillator tracking
calorimeter.

Far detector: 14 kt, on the surface, o↵-axis.

Near detector: 290 t, underground, 1 km from
NuMI target.

Each cell is 3.9 cm x 6.0 cm x 15.6 m large
and filled with scintillator oil.

The trajectory of a charged particle is
determined as it passes through adjacent
horizontal and vertical planes.

NOvA Far Detector is a large fine-grained detector
on the surface with greater sensitivity to an extensive
range of monopole mass and velocity.

Searching Strategies in NOvA

The Dirac’s electric charge quantization relation says e⇥g =
n⇥~c

2 , where e is a basic electric charge, g is the magnetic
charge and n is an integer.
g = 68.5⇥e. Monopoles are highly ionizing because of such
a large charge.

Energy loss by monopoles[2].

Search Method
Fast Monopole:

Monopoles with
� � 10�2.

Highly ionizing, high
dE/dx compared to
cosmic muons.

Slow Monopole:

Monopoles with
�  10�2.

Slower tracks, take a
longer time to pass
across the detector
than cosmic muons.

Monopole Simulation in NOvA Framework

Event display of one simulated monopole overlaid with
non-bias cosmics. Hits are colored by ADC. The long red
colored signal is caused by simulated monopole.

No prior knowledge of the direction of magnetic
monopoles. Isotropic monopoles are simulated
with a fixed mass = 1016 GeV

c2 .
Monopoles with generated � in range
[10�4,0.8].
The generated monopoles possess one unit of
magnetic charge and zero electric charge.

Energy loss of monopoles.

Event Distribution on detector surface.

Simulated monopoles are overlaid
with non-bias comics.

Trigger Scheme

We have developed the data-driven
trigger(DDT), a robust trigger algorithm
optimized for continuously searching the
magnetic monopole-like patterns in the
live data.
Here trigger e�ciency is defined as the
number of monopoles passing trigger
cuts divided by number of monopoles
simulated.

High ADC

Hits Cluster

Min. Hits

Time-Space

Matching

Penetration

Check

Other Cuts Trigger e�ciency vs. �MC

O✏ine Reconstruction

Evd for track reconstruction from overlaid event.

A monopole track is identified from the
overlaid sample, and variables like
positions, velocity, etc., are determined.
Tracker purity and completeness are used
to validate reconstruction performance.

Tracker completeness. Tracker purity.

NOvA Sensitivity

Data of 12 years run would give an
estimated flux limit of 4⇥ 10�16

cm�2s�1sr�1 for monopoles with
3⇥ 10�4 < � < 0.8, covering a wider
range of monopole masses.

Summary

Magnetic monopoles with � in the range
[10�4,0.8] are generated.
In order to properly model the detector
activity at far detector, simulated
monopoles are overlaid with zero-bias
cosmics.
We have developed a robust trigger and
o✏ine reconstruction algorithm to extract
monopole-like patterns out of the cosmic
flux.
Next plan is to simulate cosmics and
check if we could find any activity like
monopole. Then optimize final event
selection cuts.

References

[1] NOvA Experiment.
Available at https://novaexperiment.fnal.gov/.

[2] Donald E Groom.
Physics Reports, 140(6):323–373, 1986.
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Analysis Strategy 
1. Trigger on monopole-like patterns 

with high energy depositions in 
live data stream.

2. Reconstruct event kinematics 
offline.
� ~100% track purity for β > 10−3

� ~90% track completeness for β > 10−2
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Offline Analysis Strategy
¢ Data: 

� Triggered by ionizing 
monopole algorithm

¢ MC: 
� Simulated monopole overlaid 

with cosmic data
¢ Select events with high energy 

deposition
¢ Select narrow events:

� Removes energetic showering 
muons that tend to be wider
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Offline Analysis Strategy
¢ Data: 

� Triggered by ionizing 
monopole algorithm

¢ MC: 
� Simulated monopole overlaid 

with cosmic data
¢ Select events with high energy 

deposition
¢ Select narrow events:

� Removes energetic showering 
muons that tend to be wider
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Signal Search
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Signal Search
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Magnetic Monopole Flux Limits
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Monopole Simulation

¢ We used simulation to determine the efficiency of selecting 
monopole tracks for 10−4 < β < 10−2.

¢ The monopoles were simulated using an isotropic flux.
¢ Each simulated monopole was combined with 5 ms of zero 

bias data (i.e. data with typical running conditions).

5 ms of zero bias data
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Monopole Simulation

¢ We used simulation to determine the efficiency of selecting 
monopole tracks for 10−4 < β < 10−2.

¢ The monopoles were simulated using an isotropic flux.
¢ Each simulated monopole was combined with 5 ms of zero 

bias data (i.e. data with typical running conditions).

5 ms of zero bias data
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Monopole Simulation

¢ We used simulation to determine the efficiency of selecting 
monopole tracks for 10−4 < β < 10−2.

¢ The monopoles were simulated using an isotropic flux.
¢ Each simulated monopole was combined with 5 ms of zero 

bias data (i.e. data with typical running conditions).

5 ms of zero bias data
+ simulated monopole
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Analysis Strategy – Trigger

¢ The NOvA detectors are equipped with a data-driven trigger 
(DDT) system that continuously examines the live data 
stream on over 100 computing nodes. 

¢ The monopole trigger algorithm examines pairs of hits on the 
surface of the detector for each event (5 ms).
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Analysis Strategy – Trigger

¢ The NOvA detectors are equipped with a data-driven trigger 
(DDT) system that continuously examines the live data 
stream on over 100 computing nodes. 

¢ The monopole trigger algorithm examines pairs of hits on the 
surface of the detector for each event (5 ms).
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Analysis Strategy – Trigger

¢ The NOvA detectors are equipped with a data-driven trigger 
(DDT) system that continuously examines the live data 
stream on over 100 computing nodes. 

¢ The monopole trigger algorithm examines pairs of hits on the 
surface of the detector for each event (5 ms).
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Trigger and Reconstruction Efficiencies

¢ Efficiency constant:
� from β ~ 5x10−4

� to β ~ 5x10−3

¢ Some efficiency lost 
due to tracks parallel 
to the detector planes.
� |θ| ~ 90°

¢ Improvements in the 
trigger and offline 
reconstruction 
algorithms have 
increased efficiency 
since the 2021 result!
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Trigger and Reconstruction Efficiencies

¢ Efficiency constant:
� from β ~ 5x10−4

� to β ~ 5x10−3

¢ Some efficiency lost 
due to tracks parallel 
to the detector planes.
� |θ| ~ 90°
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Trigger and Reconstruction Efficiencies

¢ Efficiency constant:
� from β ~ 5x10−4

� to β ~ 5x10−3

¢ Some efficiency lost 
due to tracks parallel 
to the detector planes.
� |θ| ~ 90°

¢ Improvements in the 
trigger and offline 
reconstruction 
algorithms have 
increased efficiency 
since the 2021 result!
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Offline Reconstruction

5 ms Exposure
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Remove Low Energy Hits

5 ms Exposure
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Identify Cosmic Rays

5 ms Exposure
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Remove Cosmic Rays

5 ms Exposure
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Identify Groups of  Correlated Hits

5 ms Exposure
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Time Zoom on Monopole Group of  Hits

Zoom in to 4.8 ms – 4.9 ms
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Identify Straight Line Features (Hough Tracking)

Zoom in to 4.8 ms – 4.9 ms
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Identify Monopole Track 

Zoom in to 4.8 ms – 4.9 ms
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Analysis Strategy – Offline

t
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¢ We want to 
identify straight 
line tracks.

¢ Two powerful 
discriminators:
� Correlation 

coefficient: r2

� Time gap 
fraction: f
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Analysis Strategy – Offline
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¢ We want to 
identify straight 
line tracks.

¢ Two powerful 
discriminators:
� Correlation 

coefficient: r2

� Time gap 
fraction: f
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Correlation Coefficient
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Signal Search
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Signal Search
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No Magnetic Monopole Event Found!



Martin Frank University of South Alabama93

Signal Search
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Interesting Events
(far from signal region)
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Interesting Event 1 – Timing Search

• No slow activity
• High energy activity
• FEB flash
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Interesting Event 2 – Timing Search

• No slow activity
• High energy activity
• FEB flash
• Beautiful event!
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Magnetic Monopole Flux Limits
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Magnetic Monopole Flux Limits
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¢ We continue to untangle the oscillation parameter phase space.
� Stay tuned for our combined results with T2K (up next)!

¢ We searched for magnetic monopoles.  In the absence of any signal, 
we set limits as low as 2×10−16 cm−2s−1sr−1.

¢ Thanks to the NOvA Collaboration!
¢ Thanks to our funding agencies for supporting the NOvA 

experiment (see next slide) and my work (NSF-2412236).

Summary

>266 scientists and engineers
from 51 institutions from 8 countries
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Signal Search – L > 20 m
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