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Motivations

•Understanding entanglement generation in fundamental processes;

•Quantum correlations in relativistic systems as a possible resource

for quantum information;

• Investigation of fundamental properties of (elementary) particles via

quantum correlations;

•Entanglement in high energy processes as a probe for new physics

beyond Standard Model.
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Entanglement in particle physics¶

•Entanglement, decoherence, Bell inequalities for the K0K̄0 (or

B0B̄0) system*;

•Quantumness in neutrino oscillations (entanglement�, Leggett-Garg

inequalities�, quantum correlations);

•Entanglement in scattering processes§.

*R.A.Bertlmann and B.Hiesmayr, Phys.Rev. A (2001); A.Di Domenico (Ed.)

Frascati Physics Series (2007).
�M.B. et al., EPL (2009).
�J.A. Formaggio et al., Phys. Rev. Lett. (2016).
§G. Aad et al. [ATLAS], Nature (2024)

M.B. et al., Phys.Rev. D (2024), (2025).

¶R.A.Bertlmann, Entanglement, Bell inequalities and decoherence in particle

physics, Lect. Not. Phys. (2006);

Y.Shi, Historical origins of quantum entanglement in particle physics,

arXiv:2507.13582.
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Entanglement in neutrino mixing and

oscillations



Neutrino oscillations in QM *

Pontecorvo mixing relations

|νe⟩ = cos θ |ν1⟩ + sin θ |ν2⟩

|νµ⟩ = − sin θ |ν1⟩ + cos θ |ν2⟩

– Time evolution:

|νe(t)⟩ = cos θ e−iE1t |ν1⟩ + sin θ e−iE2t |ν2⟩

– Flavor oscillations:

Pνe→νe
(t) = |⟨νe|νe(t)⟩|2 = 1− sin2 2θ sin2

(
∆E

2
t

)
= 1− Pνe→νµ

(t)

– Flavor conservation:

|⟨νe|νe(t)⟩|2 + |⟨νµ|νe(t)⟩|2 = 1

*S.M.Bilenky and B.Pontecorvo, Phys. Rep. (1978)
Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



Entanglement in neutrino mixing�

– Flavor mixing (neutrinos)

|νe⟩ = cos θ |ν1⟩ + sin θ |ν2⟩

|νµ⟩ = − sin θ |ν1⟩ + cos θ |ν2⟩

•Correspondence with two-qubit states:

|ν1⟩ ≡ |1⟩1|0⟩2 ≡ |10⟩, |ν2⟩ ≡ |0⟩1|1⟩2 ≡ |01⟩,

|⟩i denotes states in the Hilbert space for neutrinos with mass mi.

⇒ flavor states are entangled superpositions of the mass eigenstates:

|νe⟩ = cos θ |10⟩ + sin θ |01⟩.

�M.B., F.Dell’Anno, S.De Siena, M.Di Mauro and F.Illuminati, PRD (2008).
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Composite structure of Hilbert space for neutrinos

• Necessity of tensor-product structure of Hilbert space for two

generations:

Orthogonality of Hilbert spaces for fields with different masses�

Example: two scalar fields with different masses

(□+ µ2
1)ϕ1(x) = 0 , (□+ µ2

2)ϕ2(x) = 0

with boundary conditions ϕ1(0,x) = ϕ2(0,x) and ϕ̇1(0,x) = ϕ̇2(0,x)

One obtains

1⟨0|0⟩2 ≃ exp

{
− V

64π2

∫ ∞

0

dk
(µ2

1 − µ2
2)

2

k2

}
which vanishes in the infinite volume limit.

�G.Barton, Introduction to Advanced Field Theory, Intersc. Publ. (1963)
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Entanglement - mathematical definition

• Given a bipartite system H = HA ⊗HB , a system is entangled, iff

ρAB ̸=
∑
k

pk ρ
(A)
k ⊗ ρ

(B)
k

with 0 ≤ pi ≤ 1,
∑

k pk = 1.

• For a generic pure state of the form:

|ψ⟩AB =
∑
ij

cij |i⟩A ⊗ |j⟩B

the condition for entanglement reads

|ψ⟩AB ̸= |ϕ⟩A ⊗ |χ⟩B
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Single-particle entanglement*

• A state like |ψ⟩A,B = |0⟩A|1⟩B + |1⟩A|0⟩B is entangled;

– entanglement among field modes, rather than particles;

– entanglement is a property of composite systems, rather than of

many-particle systems;

– entanglement and non-locality are not synonyms;

– single-particle entanglement is as good as two-particle entanglement

for applications (quantum cryptography, teleportation, violation of

Bell inequalities, etc..).

*J.van Enk, Phys. Rev. A (2005), (2006);

J.A.Dunningham and V.Vedral, Phys. Rev. Lett. (2007).
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Protocols for extraction of single-particle entanglement �

�M.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007)
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Multipartite entanglement in neutrino mixing�

– Neutrino mixing (three flavors):

|νf ⟩ = U(θ̃, δ) |νm⟩

with |νf ⟩ = (|νe⟩, |νµ⟩, |ντ ⟩)T and |νm⟩ = (|ν1⟩, |ν2⟩, |ν3⟩)T .

– Mixing matrix (PMNS)

U(θ̃, δ) =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

where (θ̃, δ) ≡ (θ12, θ13, θ23; δ), cij ≡ cos θij and sij ≡ sin θij .

• Correspondence with three-qubit states:

|ν1⟩ ≡ |1⟩1|0⟩2|0⟩3 ≡ |100⟩, |ν2⟩ ≡ |0⟩1|1⟩2|0⟩3 ≡ |010⟩,

|ν3⟩ ≡ |0⟩1|0⟩2|1⟩3 ≡ |001⟩
�M.B., F.Dell’Anno, S.De Siena, M.Di Mauro and F.Illuminati, PRD (2008).
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(Flavor) Entanglement in neutrino oscillations§

– Two-flavor neutrino states

|ν(f)⟩ = U(θ, δ) |ν(m)⟩

where |ν(f)⟩ = (|νe⟩, |νµ⟩)T and |ν(m)⟩ = (|ν1⟩, |ν2⟩)T and

U(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.

– Flavor states at time t:

|ν(f)(t)⟩ = U(θ, δ)U0(t)U(θ, δ)−1 |ν(f)⟩ ≡ Ũ(t)|ν(f)⟩ ,

with U0(t) =

(
e−iE1t 0

0 e−iE2t

)
.

§M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009).
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– Transition probability for να → νβ

Pνα→νβ
(t) = |⟨νβ |να(t)⟩|2 = |Ũαβ(t)|2 .

•We now take the flavor states at initial time as our qubits:

|νe⟩ ≡ |1⟩e|0⟩µ ≡ |10⟩f , |νµ⟩ ≡ |0⟩e|1⟩µ ≡ |01⟩f ,

• Starting from |10⟩f or |01⟩f , time evolution generates the

(entangled) Bell-like states:

|να(t)⟩ = Ũαe(t)|1⟩e|0⟩µ + Ũαµ(t)|0⟩e|1⟩µ, α = e, µ.
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Entanglement measures

It is necessary to distinguish the various entanglement measures for

pure and mixed states (which may contain classical correlations).

Measures for pure states:

• von Neumann entropy

• Geometric Entanglement

Measures for mixed states:

• Entanglement of Formation and Concurrence

• Logarithmic negativity

• Relative Entropy of Entanglement
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Entanglement in neutrino oscillations: two-flavors

Consider the density matrix for the electron neutrino state

ρ(e) = |νe(t)⟩⟨νe(t)|, and trace over mode µ ⇒ ρ
(e)
e .

•The associated linear entropy is :

S
(e;µ)
L (ρ(e)) = 4 |Ũeµ(t)|2 |Ũee(t)|2 = 4Pνe→νe(t)Pνe→νµ(t)

The linear entropy for the state ρ(α) is:

S
(e;µ)
Lα = S

(µ;e)
Lα = 4 |Ũαµ(t)|2 |Ũαe(t)|2

= 4|Ũαe(t)|2 (1− |Ũαe(t)|2)

= 4|Ũαµ(t)|2 (1− |Ũαµ(t)|2) .

•Linear entropy given by product of transition probabilities
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Linear entropy S
(e;µ)
Le (full) as a function of the scaled time T = 2Et

∆m2
12
, with

sin2 θ = 0.314. Transition probabilities Pνe→νe (dashed) and Pνe→νµ

(dot-dashed) are reported for comparison.
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ν–oscillations as a resource for quantum information

• Single-particle entanglement encoded in flavor states |ν(f)(t)⟩ is a
real physical resource that can be used, at least in principle, for

protocols of quantum information.

– Experimental scheme for the transfer of the flavor entanglement of a

neutrino beam into a single-particle system with spatially separated

modes.

Charged-current interaction between a neutrino να with flavor α and

a nucleon N gives a lepton α− and a baryon X:

να +N −→ α− +X .
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Generation of a single-particle entangled lepton state (two flavors):

In the target the charged-current interaction occurs: να + n −→ α− + p

with α = e , µ. A spatially nonuniform magnetic field B(r) constraints the

momentum of the outgoing lepton within a solid angle Ωi, and ensures

spatial separation between lepton paths. The reaction produces a

superposition of electronic and muonic spatially separated states.
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• Given the initial Bell-like superposition |να(t)⟩ the unitary process

associated with the weak interaction leads to the superposition

|α(t)⟩ = Λe|1⟩e|0⟩µ + Λµ|0⟩e|1⟩µ ,

where |Λe|2 + |Λµ|2 = 1, and |k⟩α, with k = 0, 1, is the lepton qubit.

The coefficients Λα are proportional to Ũαβ(t) and to the cross

sections associated with the creation of an electron or a muon.

• Analogy with single-photon system: quantum uncertainty on the

“which path” of the photon at the output of an unbalanced beam

splitter ⇔ uncertainty on the “which flavor” of the produced lepton.

The coefficients Λα plays the role of the transmissivity and of the

reflectivity of the beam splitter.
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Other results

• Generalization to three flavors. Extension to wave packets;*

• Flavor entanglement in Quantum Field Theory.�

*M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2015).
�M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2014).
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Quantum Field Theory of

neutrino mixing and

oscillations



Neutrino mixing in QFT

• Mixing relations for two Dirac fields

νe(x) = cos θ ν1(x) + sin θ ν2(x)

νµ(x) = − sin θ ν1(x) + cos θ ν2(x)

can be written as*

ναe (x) = G−1
θ (t) να1 (x) Gθ(t)

ναµ (x) = G−1
θ (t) να2 (x) Gθ(t)

– Mixing generator:

Gθ(t) = exp

[
θ

∫
d3x

(
ν†1(x)ν2(x) − ν†2(x)ν1(x)

)]
For νe, we get d2

dθ2
ναe = −ναe with i.c. ναe |θ=0 = να1 , d

dθ
ναe
∣∣
θ=0

= να2 .

*M.B. and G.Vitiello, Annals Phys. (1995)
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• The vacuum |0⟩
1,2

is not invariant under the action of Gθ(t):

|0(t)⟩e,µ ≡ G−1
θ (t) |0⟩

1,2

• Relation between |0⟩
1,2

and |0(t)⟩e,µ: orthogonality! (for V → ∞)

lim
V→∞ 1,2

⟨0|0(t)⟩e,µ = lim
V→∞

e
V

∫
d3k

(2π)3
ln (1−sin2 θ |Vk|2)

2

= 0

with

|Vk|2 ≡
∑
r,s

| vr†−k,1u
s
k,2 |2 ̸= 0 for m1 ̸= m2

.
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Quantum Field Theory vs. Quantum Mechanics

• Quantum Mechanics:

- finite ♯ of degrees of freedom.

- unitary equivalence of the representations of the canonical

commutation relations (von Neumann theorem).

• Quantum Field Theory:

- infinite ♯ of degrees of freedom.

- ∞ many unitarily inequivalent representations of the field algebra ⇔
many vacua .

- The mapping between interacting and free fields is “weak”, i.e.

representation dependent (LSZ formalism)*. Example: theories with

spontaneous symmetry breaking.

*F. Strocchi, Elements of Quantum Mechanics of Infinite Systems (W. Sc., 1985).

H. Umezawa, Advanced Field Theory (AIP, 1993).
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• The “flavor vacuum” |0(t)⟩e,µ is a SU(2) generalized coherent state�:

|0⟩e,µ =
∏
k,r

[
(1− sin2 θ |Vk|2)− ϵr sin θ cos θ |Vk| (αr†

k,1β
r†
−k,2 + αr†

k,2β
r†
−k,1)

+ ϵr sin2 θ |Vk||Uk| (αr†
k,1β

r†
−k,1 − αr†

k,2β
r†
−k,2) + sin2 θ |Vk|2 αr†

k,1β
r†
−k,2α

r†
k,2β

r†
−k,1

]
|0⟩

1,2

• Condensation density:

e,µ⟨0(t)|αr†
k,iα

r
k,i|0(t)⟩e,µ = e,µ⟨0(t)|βr†

k,iβ
r
k,i|0(t)⟩e,µ = sin2 θ |Vk|2

vanishing for m1 = m2 and/or θ = 0 (in both cases no mixing).

– Condensate structure as in systems with SSB (e.g. superconductors)

– Exotic condensate: mixed pairs

– Note that |0⟩e µ ̸= |a⟩1 ⊗ |b⟩2 ⇒ entanglement.

�A. Perelomov, Generalized Coherent States, (Springer V., 1986)
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Condensation density for mixed fermions

Solid line: m1 = 1, m2 = 100; Dashed line: m1 = 10, m2 = 100.

- Vk = 0 when m1 = m2 and/or θ = 0.

- Max. at k =
√
m1m2 with Vmax → 1

2 for (m2−m1)
2

m1m2
→ ∞.

- |Vk|2 ≃ (m2−m1)
2

4k2 for k ≫ √
m1m2.
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• Structure of the annihilation operators for |0(t)⟩e,µ:

αr
k,e(t) = cos θ αr

k,1 + sin θ
(
U∗
k(t)α

r
k,2+ϵ

rVk(t)β
r†
−k,2

)
αr
k,µ(t) = cos θ αr

k,2 − sin θ
(
Uk(t)α

r
k,1−ϵrVk(t)β

r†
−k,1

)
βr
−k,e(t) = cos θ βr

−k,1 + sin θ
(
U∗
k(t)β

r
−k,2−ϵrVk(t)α

r†
k,2

)
βr
−k,µ(t) = cos θ βr

−k,2 − sin θ
(
Uk(t)β

r
−k,1+ϵ

rVk(t)α
r†
k,1

)
• Mixing transformation = Rotation + Bogoliubov transformation .

– Bogoliubov coefficients:

Uk(t) = ur†k,2u
r
k,1 e

i(ωk,2−ωk,1)t ; Vk(t) = ϵr ur†k,1v
r
−k,2 e

i(ωk,2+ωk,1)t

|Uk|2 + |Vk|2 = 1
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Decomposition of mixing generator *

The mixing generator can be expressed in terms of a rotation and a

Bogoliubov transformation. Define:

R(θ) ≡ exp
{
θ
∑
k,r

[(
αr†k,1α

r
k,2 + βr†k,1β

r
k,2

)
eiψk −

(
αr†k,2α

r
k,1 + βr†k,2β

r
k,1

)
e−iψk

]}
,

Bi(Θi) ≡ exp
{∑

k,r

Θk,i ϵ
r
[
αrk,iβ

r
−k,ie

−iϕk,i − βr†−k,iα
r†
k,ie

iϕk,i

]}
, i = 1, 2

Since [B1, B2] = 0 we put B(Θ1,Θ2) ≡ B1(Θ1)B2(Θ2).

• We find:

Gθ = B(Θ1,Θ2) R(θ) B−1(Θ1,Θ2)

which is realized when the Θk,i are chosen as:

Uk = e−iψk cos(Θk,1 −Θk,2) ; Vk = e
(ϕk,1+ϕk,2)

2 sin(Θk,1 −Θk,2)

*M. B., M.V. Gargiulo and G. Vitiello, Phys. Lett. B (2017)
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Bogoliubov vs Pontecorvo

• Bogoliubov and Pontecorvo do not commute!

As a result, flavor vacuum gets a non-trivial term:

|0⟩e,µ ≡ G−1
θ |0⟩1,2 = |0⟩1,2 +

[
B(m1,m2) , R

−1(θ)
]
|0̃⟩1,2

with |0̃⟩1,2 ≡ B−1(Θ1,Θ2)|0⟩1,2.

• Non-diagonal Bogoliubov transformation

|0⟩e,µ ∼=

[
1I + θ a

∫
d3k

(2π)
3
2

Ṽk
∑
r

ϵr
(
αr†
k,1β

r†
−k,2 + αr†

k,2β
r†
−k,1

)]
|0⟩1,2 ,

with a ≡ (m2−m1)
2

m1m2
.
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Currents and charges for mixed fermions *

- Lagrangian in the mass basis:

L = Ψ̄m (i ̸∂ −Md)Ψm

where ΨT
m = (ν1, ν2) and Md =

(
m1 0

0 m2

)
.

– Lagrangian in the flavor basis:

L = Ψ̄f (i ̸∂ −M)Ψf

where ΨT
f = (νe, νµ) and M =

(
me meµ

meµ mµ

)
.

*M. B., P. Jizba and G. Vitiello, Phys. Lett. B (2001)
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– Two sets of charges:

Qi =

∫
d3x ν†i (x) νi(x) ; i = 1, 2

Qσ(t) =

∫
d3x ν†σ(x) νσ(x) ; σ = e, µ

– In presence of mixing, neutrino flavor charges not conserved charges

⇒ flavor oscillations.

– They are still (approximately) conserved in the vertex ⇒ define

flavor neutrinos as their eigenstates.

• Problem: find the eigenstates of the above charges.
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• Flavor charge operators are diagonal in the flavor ladder operators:

:: Qσ(t) :: ≡
∫
d3x :: ν†σ(x) νσ(x) ::

=
∑
r

∫
d3k

(
αr†
k,σ(t)α

r
k,σ(t) − βr†

−k,σ(t)β
r
−k,σ(t)

)
, σ = e, µ.

Here :: ... :: denotes normal ordering w.r.t. flavor vacuum:

:: A ::≡ A − e,µ⟨0|A|0⟩e,µ

• Define flavor neutrino states with definite momentum and helicity:

|νrk,σ⟩ ≡ αr†
k,σ(0) |0⟩e,µ

– Such states are eigenstates of the flavor charges (at t=0):

:: Qσ :: |νrk,σ⟩ = |νrk,σ⟩
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Neutrino oscillation formula (QFT)

– We have, for an electron neutrino state:

Qk,σ(t) ≡ ⟨νrk,e| :: Qσ(t) :: |νrk,e⟩

=
∣∣∣{αrk,σ(t), αr†k,e(0)}∣∣∣2 +

∣∣∣{βr†−k,σ(t), α
r†
k,e(0)

}∣∣∣2
with Qσ(t) ≡

∫
d3x ν†σ(x) νσ(x).

• Neutrino oscillation formula (exact result)*:

Qk,e(t) = 1 − |Uk|2 sin2(2θ) sin2
(ωk,2 − ωk,1

2
t
)
− |Vk|2 sin2(2θ) sin2

(ωk,2 + ωk,1
2

t
)

- For k ≫ √
m1m2, |Uk|2 → 1 and |Vk|2 → 0 ⇒ Pontecorvo formula is

recovered.

*M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999).
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Lepton charge violation for Pontecorvo states�

– Pontecorvo states:

|νrk,e⟩P = cos θ |νrk,1⟩ + sin θ |νrk,2⟩

|νrk,µ⟩P = − sin θ |νrk,1⟩ + cos θ |νrk,2⟩ ,

are not eigenstates of the flavor charges.

⇒ violation of lepton charge conservation in the production/detection

vertices, at tree level:

P ⟨νrk,e| : Qe(0) : |νrk,e⟩P = cos4 θ + sin4 θ + 2|Uk| sin2 θ cos2 θ < 1,

for any θ ̸= 0, k ̸= 0 and for m1 ̸= m2.

�M. B., A. Capolupo, F. Terranova and G. Vitiello, Phys. Rev. D (2005)

C. C. Nishi, Phys. Rev. D (2008).
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Entanglement for flavor neutrino states in QFT

– Entanglement for flavor neutrino states in QFT can be expressed by

means of the variances* of the neutrino charges:� Qi, Qσ(t)

– Variance of Qi → static entanglement:

∆Qi(νe) = ⟨νrk,e|Q2
i (t)|νrk,e⟩ − ⟨νrk,e|Qi|νrk,e⟩2

= cos2 θ sin2 θ

– Variance of Qσ → flavor (dynamical) entanglement:

∆Qσ(νe)(t) = ⟨νrk,e|Q2
σ(t)|νrk,e⟩ − ⟨νrk,e|Qσ|νrk,e⟩2

= Qk
e→e(t)Qk

e→µ(t)

in formal agreement with results obtained in QM.

*A. A. Klyachko, B. Öztop, and A. S. Shumovsky, Phys. Rev. A (2007).
�M.Blasone, F. Dell’Anno, S.De Siena and F. Illuminati, EPL (2014)
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QFT flavor entanglement

QM vs. QFT flavor entanglement for |νe(t)⟩.
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Neutrino ontology: flavor or mass?

• In view of the unitary inequivalence of mass and flavor

representations, we have the problem of the fundamental (ontological)

nature of neutrino.

Flavor or mass, that is the question...
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Neutrino ontology: research directions

• How to verify the fundamental nature of neutrino states?

Two directions:

• Investigate the phenomenology of flavor neutrinos, with

corrections expected in the non-relativistic regime: oscillations,

beta decay endpoint, quantum correlations, ...

• Use the formal consistency of QFT, by comparing neutrino

processes in two different frames (inertial and comoving) for

accelerated particle: Unruh effect.*

*M. B., G. Lambiase, G. Luciano and L.Petruzziello, Phys. Rev. D (2018);

G.Cozzella, S.Fulling, A.Landulfo, G.Matsas and D.Vanzella, Phys.Rev.(2018)

M. B., G.Lambiase, G. Luciano and L.Petruzziello, Phys. Lett. B (2020)
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• Dynamical generation of fermion mixing*.

• Flavor-energy uncertainty relations for mixed states�.

• Poincaré invariance for flavor neutrinos�.

• Violation of equivalence principle§.

*M.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2019)
�M. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)
�M.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2020) ; A. E.

Lobanov, Ann. Phys. (2019)
§M.B., P.Jizba, G.Lambiase and L.Petruzziello, Phys. Lett. B (2020)
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Flavor neutrino as unstable particles

• Time-energy uncertainty relations (TEUR) in the

Mandelstam–Tamm form, furnish lower-bounds on neutrino

energy uncertainty compatible with flavor oscillations*.

• QFT formulation of neutrino oscillations suggests that these

bounds can be read as flavor-energy uncertainty relations

(FEUR)�. Energy uncertainty is connected with the intrinsic

unstable nature of flavor neutrinos.

*S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
�M. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)
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Time-energy uncertainty relations

• Mandelstam–Tamm TEUR is*:

∆E∆t ≥ 1

2

where

∆E ≡ σH ∆t ≡ σO/

∣∣∣∣d⟨O(t)⟩
dt

∣∣∣∣
Here ⟨. . .⟩ ≡ ⟨ψ| . . . |ψ⟩ and O(t) represents the “clock observable”

whose dynamics quantifies temporal changes in a system.

– The above inequality is obtained by means of the Cauchy-Schwarz

inequality and using the fact that [Ô, Ĥ] ̸= 0.

*L. Mandelstam and I.G. Tamm, J. Phys. USSR (1945)
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Clock observables
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Flavor-energy uncertainty relations

• Choose flavor charges as clock observables. Then [Qνσ (t) , H] ̸= 0 ⇒
flavor-energy uncertainty relation�:

⟨∆H⟩ ⟨∆Qσ(t)⟩ ≥ 1

2

∣∣∣∣d⟨Qσ(t)⟩
dt

∣∣∣∣
Taking the state |ψ⟩ = |νrk,σ⟩ we have ⟨Qsi(t)⟩ = Qσ→σ(t) and

⟨∆Qνσ
(t)⟩ =

√
Qσ→σ(t)(1−Qσ→σ(t)) ≤ 1

2
.

Integrating over time from 0 to T , and using the triangular inequality,

we obtain:

∆E T ≥ Qσ→ρ(T ) , σ ̸= ρ

�M. B., P. Jizba and L.Smaldone, Phys. Rev. D (2019)
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Neutrino oscillation condition

When mi/|k| → 0:

∆E ≥ 2 sin2 2θ

Losc

This relation is usually interpreted as neutrino oscillation condition�.

The situation is similar to that of unstable particles:

∆E ≈ 1

2τ

where the τ is the particle life-time.

– As for unstable particles only energy distribution are meaningful.

The width of the distribution is related to the oscillation length.

�S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
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• Electron neutrino mass

⟨H⟩|k=0 = m1 cos
2 θ + m2 sin

2 θ

∆E|k=0 ≥ sin2 2θ (m2 −m1)

4π

• Note that

σ2
Q = ⟨Q2

σ(t)⟩σ − ⟨Qσ(t)⟩2σ

= Qσ→σ(t) (1−Qσ→σ(t)) .

quantifies dynamical (flavor) entanglement for neutrino states§ since

it concides with the linear entropy in terms of the flavor qubits:

|νe⟩ ≡ |1⟩e|0⟩µ ≡ |10⟩f , |νµ⟩ ≡ |0⟩e|1⟩µ ≡ |01⟩f ,

§M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009)
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Phenomenological consequences

The tail of the tritium β spectrum for:

- a massless neutrino (dotted line);

- fundamental flavor states (continuous line);

- superimposed prediction for 2 mass states (short-dashed line):

We used me = 1.75 KeV, m1 = 1 KeV, m2 = 4 KeV, θ = π/6.
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Neutrino oscillations in the interaction picture

• Analogy with unstable particles suggests alternative approach: treat

the mixing term as a perturbation and compute oscillation formula

from QFT at finite time*.

• Decompose neutrino Lagrangian as L = L0 + Lint with

L0 =
∑

σ=e,µ

νσ (i ̸∂ −mσ) νσ

Lint = −meµ (νeνµ + νµνe)

Time-evolution operator (Hint = −Lint):

U(ti, tf ) = T exp

[
−i
∫ tf

ti

d4x : Hint(x) :

]
.

*M. B., F. Giacosa, L. Smaldone and G.Torrieri, EPJC (2023)

C. Bernardini, L. Maiani and M. Testa, Phys. Rev. Lett. (1993).

P. Facchi and S. Pascazio, La regola d’oro di Fermi, (Bibliopolis, 1999).
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Diagrams for neutrino oscillations
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Neutrino oscillation formula

Total flavor transition probability

Pe
D(p; ∆t) = 4m2

eµ

[
W 2

p(
ω−
p

)2 sin2
(
ω−
p∆t

2

)
+

Y 2
p(

ω+
p

)2 sin2
(
ω+
p∆t

2

)]
with ω±

p ≡ ωp,e ± ωp,µ. Note that

|Up| = Wp
mµ −me

ω−
p

, |Vp| = Yp
mµ −me

ω+
p

when m1 ≈ me, m2 ≈ mµ. Then

Pe
D(p; ∆t) = sin2(2θ)

[
|Up|2 sin2

(
ω−
p∆t

2

)
+ |Vp|2 sin2

(
ω+
p∆t

2

)]

with θ = meµ/(mµ −me) ≈ sin θ. Oscillation formula of the flavor

Fock-space approach!!
Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



Results

• The interaction picture approach� matches results of the flavor Fock

space approach, at the lowest order in meµ

• It should be possible to sum up the perturbative series and recover

the flavor space (nonperturbative) result.

• Similar results for chiral oscillations (see below).

�M.B., F.Giacosa, L.Smaldone and G.Torrieri, EPJC (2023)
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Quantum correlations &

nonlocality in neutrino

oscillations



Quantum Resource Theory

Resource theories are a versatile set of tools developed in quantum

information theory�.

The basic idea of a quantum resource

theory is to study quantum information

processing under a restricted set of

physical operations, called free operations.

These allow as to prepare only certain

physical states, called free states. The

other are called resource states.

�E.Chitambar, G.Gour, Rev. Mod. Phys. (2019)

A. Streltsov, G. Adesso and M. B. Plenio, Rev. Mod. Phys. (2017),
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Entanglement in QRT

Alice and Bob work in their laboratory separated by a large distance.

They can communicate only by telephone.

The free operations consist in local operations and classical

communication (LOCC). But an entangled state cannot be generated

using LOCC ⇒ Entanglement is a (quantum) resource.
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Quantum Correlations

Quantum systems exhibit properties that are beyond our

understanding of reality. They show correlations that have no

classical counterpart.

Entanglement is the most known of these correlations. But the

terminology quantum correlations refers to a broader concept:

Quantum correlations related to entanglement:

- Bell non-locality

- Entanglement

- Quantum steering

Quantum correlations beyond entanglement:

- Quantum discord
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Quantum Correlations§

Hierarchy of quantum correlations (figure adapted from G.Adesso et al., J. Phys. A (2016))

§G. Adesso, T.R. Bromley and M. Cianciaruso, J. Phys. A (2016)
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Quantum correlations in neutrino oscillations

•Recently, quantum correlations in neutrino oscillations have been

thoroughly investigated. A partial list of publications include:

A.K.Alok et al., Quantum correlations in terms of neutrino oscillation

probabilities, Nuc. Phys. B (2016)

F. Ming et al. Quantification of quantumness in neutrino oscillations, Eur.

Phys. J. C (2020)

M.B., S.De Siena and C.Matrella, Wave packet approach to quantum

correlations in neutrino oscillations, Eur. Phys. J. C (2021)

V. Bittencourt, M.B., S.De Siena and C.Matrella, Complete

complementarity relations for quantum correlations in neutrino oscillations,

Eur. Phys. J. C (2022)

Y.W.Li et al. Genuine tripartite entanglement in three-flavor neutrino

oscillations Eur. Phys. J. C (2022)

V. Bittencourt, M.B., S.De Siena and C.Matrella, Quantifying quantumness

in three-flavor neutrino oscillations, Eur. Phys. J. C (2024)
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Non-local Advantage of Quantum Coherence�

• A state is said to be coherent provided that there are non-zero

non-diagonal elements in its matrix representation.

Coherence can be quantified by means of the l1-norm of coherence:*

Cl1(ρ) =
∑
i̸=j

|ρi,j |

If the qubit is prepared in either spin up or down state along z, it is

incoherent in z-basis (Czl1 = 0) and fully coherent in x- and y-basis

(C
x(y)
l1

= 1).

Upper bound beyond which the effects of non-locality emerge:∑
i=x,y,z

Cl1i (ρ) ≤ Cmax.

*T.Baumgratz, M.Cramer and M.B.Plenio, Phys. Rev. Lett. (2014).
�D. Mondal, T. Pramanik, A.K. Pati, Phys. Rev. A (2017).
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Non-local Advantage of Quantum Coherence

Consider a bipartite system made of two spatially separated subsystems.

Alice performs a measurement Πbi on σi eigenbasis with outcome b = {0, 1}
and probability pΠb

i
= Tr[(Πbi ⊗ 1)ρAB ].

Measured state for the two-qubit state isρAB|Πb
i
= (Πbi ⊗ 1)ρAB(Π

b
i ⊗ 1)/pΠb

i

and the conditional state for qubit B is ρB|Πb
i
= TrA(ρAB|Πb

i
).

Then Alice tells Bob her measurement choice and Bob has to measure the

coherence of qubit B at random in the eigenbases of the other two Pauli

matrices σj and σk.

If the above condition for locality is violated then we cannot have a

single-system description of the coherence of subsytem B.

The criterion for achieving a NAQC of qubit B can be written as:

Nl1(ρAB) =
1

2

∑
i,j,b

p(ρB|Πb
j ̸=i

)Cσil1 (ρB|Πb
j ̸=i

) >
√
6.
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Quantification of quantumness in neutrino oscillations

• Quantumness in neutrino oscillations has been quantified through

various correlation measures�: Non-local Advantage of Quantum

Coherence (NAQC), quantum steering and Bell non-locality.

• The criterion for NAQC is:

N l1(ρAB) =
1

2

∑
i,j,b

p(ρbΠj ̸=i
)Cσi

l1
(ρB|Πj ̸=i

) >
√
6.

• Bell non-locality (violation of CHSH inequality):

B(ρAB) = |⟨BCHSH⟩| ≤ 2.

• Quantum steering:

Fn(ρAB , ς) =
1√
n

∣∣∣∣ n∑
i=1

Tr(ρABAi ⊗Bi)

∣∣∣∣≤ 1.

�F. Ming, X-K. Song, D.Wang, Eur. Phys. J. C (2020)
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Quantumness in neutrino oscillations (Daya Bay) §

Daya Bay: sin2 2θ13 = 0.084 and

∆m2
ee = 2.42× 10−3eV 2

NAQC is a stronger nonclassical

correlation than Bell non-locality and

quantum steering.

§F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)
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Quantumness in neutrino oscillations (MINOS) ¶

MINOS: sin2 2θ23 = 0.95 and

∆m2
32 = 2.32× 10−3eV 2.

NAQC is a stronger nonclassical

correlation than Bell non-locality and

quantum steering.

¶F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)
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NAQC & Bell nonlocality in the wave packet approach**

•We have extended the studies on quantumness of neutrino

oscillations through NAQC using the wave packet approach.�

Neutrino with definite flavor:

|να(x, t)⟩ =
∑
j

U∗
αjψj(x, t)|νj⟩

where:

ψj(x, t) =
1√
2π

∫
dp ψj(p)e

ipx−iEj(p)t

with:

ψj(p) =
(
2πσPp

2)− 1
4 exp− (p− pj)

2

4σPp
2

�C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,

Oxford University Press (2007)
**M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)
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Wave packet description of neutrino oscillations

Assume the condition σPp ≪ E2
j (pj)/mj . Then we have:

Ej(p) ≃ Ej + vj(p− pj)

Integrating on p, one gets the wave packet in coordinate space:

ψj(x, t) =
(
2πσPx

2)− 1
4 exp

[
−iEjt+ ipjx− (x− vjt)

2

4σPx
2

]

Write density matrix operator ρα(x, t) = |να(x, t)⟩⟨να(x, t)|. After time

integration, one gets the oscillation formula in space

Pαβ(L) =
∑
j,k

U∗
αjUαkU

∗
βjUβk exp

[
−2πi

L

Loscjk
−
(

L

Lcohjk

)2

−2π2(1− ξ)2
(
σx
Loscjk

)2]
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Wave packet description of neutrino oscillations��

10 100 1000 10000
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1
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P
ν
e
→
ν
e

• Survival probability in the wave packet approach. E = 2MeV , ξ = 0,

sin2 2θ13 = 0.084 and ∆m2
ee = 2.42× 10−3eV 2 and σx = 3.3× 10−6m.

��C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,

Oxford University Press (2007)
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NAQC in the wave packet approach (Daya Bay)
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NAQC in the wave packet approach (MINOS)
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Results

• Our treatment based on wave packets leads to a improved

agreement with experimental data in the case of MINOS.*

• NAQC has a different long-distance behaviour for the two

experiments, due to the different values of the mixing angle.

• Existence of a “critical” angle for which NAQC exceeds the bound.

*M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)
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Complete Complementarity Relations

To better understand the above results, we resort to the recently

introduced concept of CCR.

• N.Bohr The quantum postulate and the recent development of atomic

theory, Nature (1928)

• W.K.Wootters and W.H.Zurek,Complementarity in the double-slit

experiment: quantum nonseparability and a quantitative statement of Bohr’s

principle, Phys. Rev. D (1979)

• M.Jakob and J.A.Bergou, Quantitative complementarity relations in

bipartite systems: entanglement as a physical reality, Opt. Comm. (2010)

• M.L.W.Basso and J.Maziero, Complete complementarity relations for

multipartite pure states, J. Phys. A (2020)
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Complementarity Principle�

•Complementarity: a quantum system may possess properties which

are equally real but mutually exclusive.

It is often associated with wave-particle duality, the complementarity

aspect between propagation and detection.

In the double-slit interferometer, the wave aspect is characterized by

the interference fringes visibility, while the particle nature is given by

the which-way information of the path along the interferometer.

�N. Bohr, Nature (1928)
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Double-slit

Usual view on complementarity: The complete knowledge of the path

destroys the interference pattern visibility and vice-versa.
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Quantitative wave-particle duality

• Wootters and Zurek *: first quantitative version of the wave-particle

duality. A path-detecting device can give incomplete which-way

information and a sharply interference pattern can still be retained.

Their work was then extended and formulated in terms of a

complementarity relation�

P 2 + V 2 ≤ 1

where P is the predictability and V is the visibility.

•A “quanton”� may behave partially as a wave or as a particle at

the same time.

*W.K.Wootters and W.H.Zurek, Phys. Rev. D (1979)
�D.M.Greenberger and A.Yasin, Phys.Lett. A (1988); B.-G. Englert, PRL (1996).
�J.-M.Lévy-Leblond, Physica (1988)
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Triality relation

• For bipartite systems a complete complementarity relation (CCR)

can be obtained by including the correlations between A and B

subsystems§:

V 2
k + P 2

k + C2 = 1

Vk and Pk, k = 1, 2, generate local single-partite realities which

can be related to wave-particle duality.

C is the entanglement measure concurrence which generate an

exclusive bipartite nonlocal reality.

§M.Jakob and J.A.Bergou, Opt. Comm. (2010)
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Concurrence¶

The concurrence for a generic qubit system described by the density

matrix ρ is given by

C(ρ) ≡ max{0, λ1 − λ2 − λ3 − λ4}

where the λi are the square root of the eigenvalues λ2i of the operator

ρρ̃ in decreasing order, with

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy)

¶S. A. Hill, W. K. Wootters, Phys. Rev. Lett. (1997)
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CCR for bipartite systems

Consider the most general bipartite state of two qubits:

|Θ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩

One obtains:

C = |⟨Θ|Θ̃⟩| = 2|ad− bc|

Vk = 2|⟨Θ|σ†
k|Θ⟩| →

V1 = 2|ac∗ + bd∗|
V2 = 2|ab∗ + cd∗|

Pk = |⟨Θ|σz,k|Θ⟩| →

P1 = |(|c|2 + |d|2)− (|a|2 + |b|2)|
P2 = |(|b|2 + |d|2)− (|a|2 + |c|2)|

where: |Θ̃⟩ = (σy ⊗ σy) |Θ∗⟩, σ†
k =

(
0 1

0 0

)
, σz,k =

(
1 0

0 −1

)
.

The complementarity relation is satisfied, since the left hand side is just the

square norm of the general pure bipartite state |Θ⟩:
(|a|2 + |b|2 + |c|2 + |d|2)2 = 1.
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Examples

•Bell states (maximally entangled states)

Φ± =
1√
2
(|00⟩ ± |11⟩) , Ψ± =

1√
2
(|01⟩ ± |10⟩)

We have C = 1, V1 = V2 = P1 = P2 = 0.

•Separable state

|Θ1⟩ =
1√
2
(|00⟩+ |01⟩) =

1√
2
|0⟩ (|0⟩+ |1⟩)

In this case C = 0, V1 = P2 = 0, V2 = P1 = 1.

•Unbalanced state

|Θ2⟩ =
1

2
|00⟩+

√
3

2
|11⟩.

In this case C =
√
3
2
, V1 = V2 = 0, P1 = P2 = 1

2
.
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Examples

•A separable state with all four terms

|Θ3⟩ =
1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) =

1

2
(|0⟩+ |1⟩)(|0⟩+ |1⟩).

We have C = 0, V1 = V2 = 1, P2 = P2 = 0.

•Unbalanced state with all four terms

|Θ4⟩ =
1

2
|00⟩+ 1

2
|01⟩+ 1

2
√
2
|10⟩+

√
3

2
√
2
|11⟩.

In this case we have C =
√
3−1

2
√
2
, V1 =

√
3+1

2
√
2
, V2 =

√
3+2
4

, P1 = 0, P2 = 1
4
.
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Complete Complementarity Relation for pure states

Alternative form of CCR for multipartite states*.

Consider a bipartite pure state in the Hilbert space HA ⊗HB :

ρA,B =

dA−1∑
i,k=0

dB−1∑
j,l=0

ρij,kl |i, j⟩ ⟨k, l| .

If the state of subsystem A is mixed:

Phs(ρA) + Chs(ρA) <
dA − 1

dA
.

where Phs(ρA) and Chs(ρA) are the predictability and the

Hilbert-Schmidt quantum coherence (generalization of the visibility�).

*M.L.W.Basso and J.Maziero, J. Phys. A (2020)
�T. Qureshi, Quanta (2019).
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CCR for pure states

• The missing information about subsystem A is being shared via

correlations with the subsystem B:

Phs(ρA) + Chs(ρA) + Cnl
hs(ρA|B) =

dA − 1

dA

– Predictability

Phs(ρA) ≡
dA−1∑
i=0

(ρAii)
2 − 1

dA
,

– Quantum coherence (visibility)

Chs(ρA) ≡
dA−1∑
i ̸=k

|ρAik|2

– Non-local quantum coherence (entanglement)

Cnl
hs(ρA|B) =

∑
i ̸=k,j ̸=l

|ρij,kl|2 − 2
∑

i ̸=k,j<l

ℜ(ρij,kjρ∗il,kl)

Cnl
hs(ρA|B) is equivalent to the linear entropy of subsystem A.
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CCR for pure states - entropic formulation

•Another form of CCR can be obtained by defining the predictability

and the coherence measures in terms of the von Neumann entropy:

Cre(ρA) + Pvn(ρA) + Svn(ρA) = log2 dA

where

Cre(ρA) = Svn(ρAdiag)− Svn(ρA)

Pvn(ρA) ≡ log2 dA − Svn(ρAdiag)

For pure states Svn(ρA) = −Tr (ρA log2 ρA) is a measure of

entanglement between A and B.

Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



CCR for mixed states*

•For mixed states, Svn(ρA) does not quantify entanglement, but it is

just a measure of mixedness of A. CCR have to be modified:

Pvn(ρA) + Cre(ρA) + IA:B(ρAB) + SA|B(ρAB) = log2 dA,

where:

– Pvn(ρA) ≡ ln dA − Svn(ρAdiag) is the predictability;

– Cre(ρA) = Svn(ρAdiag)−Svn(ρA) is the relative entropy of coherence;

– IA:B(ρAB) = Svn(ρA) + Svn(ρB)− Svn(ρAB) is the mutual information

of A and B;

– SA|B(ρAB) = Svn(ρAB)− Svn(ρB) is the conditional entropy:

It tells how much it is convenient knowing about subsystem A with respect

to the whole system.

*M.L.W.Basso and J.Maziero, EPL (2021)
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CCR for oscillating neutrinos�

•We now consider the CCR for neutrino oscillations, both for pure

and mixed states.

Let us consider a two-flavor neutrino state:

|να(t)⟩ = aαα(t) |να⟩+ aαβ(t) |νβ⟩

We can use the following correspondence:

|να⟩ = |1⟩α ⊗ |0⟩β = |10⟩

|νβ⟩ = |0⟩α ⊗ |1⟩β = |01⟩

For an initial electronic neutrino, we have:

|νe(t)⟩ = aee |10⟩+ aeµ |01⟩

�V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for oscillating neutrinos

The corresponding density matrix is:

ρeµ =


0 0 0 0

0 |aeµ|2 aeea
∗
eµ 0

0 aeµa
∗
ee |aee|2 0

0 0 0 0


The state of subsystems e and µ are:

ρe =

(
|aee|2 0

0 |aeµ|2

)
; ρµ =

(
|aeµ|2 0

0 |aee|2

)
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CCR for oscillating neutrinos

We verify that the CCRs for pure states are verified in the case of

neutrino. We find:�

Phs(ρe) = P 2
ee + P 2

eµ − 1

2

Chs(ρe) = 0

Cnl
hs(ρeµ) = 2PeePeµ

where |aee|2 = Pee, |aeµ|2 = Peµ and Pee + Peµ = 1.

Thus:

Phs(ρe) + Chs(ρe) + Cnl
hs(ρeµ) =

1

2

as expected.

�V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for oscillating neutrinos

Analogously:

Pvn(ρe) = 1 + |aee|2 log2 |aee|2 + |aeµ|2 log2 |aeµ|2

Cre(ρe) = 0

Svn(ρe) = −|aee|2 log2 |aee|2 − |aeµ|2 log2 |aeµ|2

and the CCR is verified:

Pvn(ρe) + Cre(ρe) + Svn(ρe) = 1
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CCR for neutrino mixed state

In a wave-packet description of neutrino oscillations, one starts with a pure

state ρα(x, t) which become mixed after time integration:

ρα(x) =
∑
k,j

UαkU
∗
αjfjk(x) |νj⟩ ⟨νk| ,

where:

fjk(x) = exp

[
−i

∆m2
jkx

2E
−
(

∆m2
jkx

4
√
2E2σx

)2]
By considering:

|νi⟩ =
∑
α

Uαi |να⟩ , |να⟩ = |δαe⟩e |δαµ⟩µ |δατ ⟩τ

we can write:

ρα(x) =
∑
βγ

Fαβγ(x) |δβeδβµδβτ ⟩ ⟨δγeδγµδγτ |

where:

Fαβγ(x) =
∑
kj

U∗
αjUαkfjk(x)UβjU

∗
γk
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CCR for neutrino mixed state

• We consider the CCR in the case of a two-flavor neutrino

oscillation, for an initial electron neutrino

Pvn(ρe) + Cre(ρe) + IA:B(ρeµ) + Se|µ(ρeµ) = log2 de,

where:

Pvn(ρe) = logde
−Svn(ρediag

)

Cre(ρe) = Svn(ρediag
)− Svn(ρe)

IA:B(ρeµ) = Svn(ρe) + Svn(ρµ)− Svn(ρeµ)

Se|µ(ρeµ) = Svn(ρeµ)− Svn(ρµ)

For a generic matrix ρ, the von Neumann entropy is defined as

Svn(ρ) = −
∑

i λi log2 λi, where λi are the eigenvalues of ρ.
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CCR for neutrino mixed state

The starting density matrix is:

ρeµ(x) =


0 0 0 0

0 F e
ee F e

eµ 0

0 F e
µe F e

µµ 0

0 0 0 0


and the reduced density matrices are:

ρe(x) =

(
F e
ee 0

0 F e
µµ

)
ρµ(x) =

(
F e
µµ 0

0 F e
ee

)
By evaluating the eigenvalues of these matrices, we obtain:

Pvn(ρe) = 1 + F e
ee log2 F

e
ee + F e

µµ log2 F
e
µµ

Cre(ρe) = 0

Ie:µ(ρeµ) + Se|µ(ρeµ) = −F e
ee log2 F

e
ee − F e

µµ log2 F
e
µµ

By adding all the terms we find that the CCR for mixed states is

satisfied for a neutrino state.
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CCR for neutrino mixed state

The sum of the non-local terms of the CCR is equal to the Quantum

Discord, defined as:

QD(ρAB) = I(ρAB)− CC(ρAB),

where I(ρAB) is the total correlations between the subsystems A and

B; and CC(ρAB) quantifies the classical correlations. We have

QD(ρAB) = Svn(ρA)− Svn(ρAB) + min
{Πb

i}
Svn,{Πb

i}(ρA|B)

that, for the neutrino density matrix under consideration, gives

QD(ρeµ) = −F e
ee log2 F

e
ee − F e

µµ log2 F
e
µµ
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CCR for neutrino oscillations* - DAYA BAY
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(a) DAYA BAY (L ∈ [364m, 1912m])

∆m2
ee = 2.42× 10−3eV 2, sin2 2θ13 = 0.084, E = 4MeV

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for neutrino oscillations� - KamLAND
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(b) KamLAND (L = 180 Km)

∆m2
12 = 7.49× 10−5eV 2, tan2 2θ12 = 0.47, E = 2MeV

�V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for neutrino oscillations� - MINOS
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(c) MINOS (L = 735 km)

∆m2
32 = 2.32× 10−3eV 2, sin2 2θ23 = 0.95, E = 0.5GeV

�V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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Results

• We have studied CCR for the oscillating neutrino systems, both in

the pure and in the mixed case.

• Complete characterization of quantum correlations in neutrino

oscillations.

• Interesting long-distance behaviour of the correlations, depending

on the mixing angle.
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CCR for neutrino oscillations - 3 flavors*

Tripartite pure state:

ρABC =

dA−1∑
i,l=0

dB−1∑
j,m=0

dC−1∑
k,n=0

ρijk,lmn |i, j, k⟩ABC ⟨l,m, n| .

State of subsystem A:

ρA =

dA−1∑
i,l=0

(
dB−1∑
j=0

dC−1∑
k=0

ρijk,ljk

)
|i⟩A ⟨l| ≡

dA−1∑
i,l=0

ρAil |i⟩A ⟨l| ,

CCR

Phs(ρA) + Chs(ρA) + Cnl
hs(ρA|BC) =

dA − 1

dA

The non local coherence is given by:

Cnlhs (ρA|BC)=
∑
i̸=l

∑
j ̸=m
k ̸=n

+
∑
j=m
k ̸=n

+
∑
j ̸=m
k=n

|ρijk,lmn|2−2
∑
i ̸=l

∑
j=m
k<n

+
∑
j<m
k=n

+
∑
j<m
k ̸=n

ℜ(ρijk,ljkρ∗imn,lmn).

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)
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CCR for 3 flavor neutrino oscillations

•Entropic form of CCR still valid for the single-partite subsystems A,

B and C. For the subsystem AB, we have:

Cre(ρAB) + Pvn(ρAB) + Svn(ρAB) = log2(dAdB),

and similar ones for AC and BC.

•For tripartite mixed states, CCR for subsystem AB takes the form:

Pvn(ρAB) + Cre(ρAB) + SAB|C(ρABC) + IAB:C(ρABC) = log2(dAdB),

•The state for the subsystem C, on the other hand, satisfy the CCR:

Pvn(ρC) + Cre(ρC) + SC|AB(ρABC) + IC:AB(ρABC) = log2(dC).
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CCR 3 flavors – plane waves*

• CCR terms and tripartite entanglement for an initial electron neutrino

state.

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)
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CCR 3 flavors – plane waves*

• CCR terms and tripartite entanglement for an initial muon neutrino state.

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)
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CCR 3 flavors – wave packets*

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)
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CCR 3 flavors with CP violation*

• Recent review of neutrino correlations for three flavors:

W. Guangjie, S. Xueke, Y. Liu and W. Dong, Acta Phys. Sin. (2025)

*M.B., S. De Siena and C. Matrella, Int. J. Quant. Inf. (2024).
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Violations of macrorealism in neutrino oscillations

• The notion of Macroscopic realism (Macrorealism) tries to encode

our intuition of macroscopic world*

• Violations of macrorealism tested by Leggett-Garg inequalities

(LGIs): temporal analogue of Bell inequalities

• Violations of LGIs in neutrino oscillations have been proved by

using the MINOS data�

• Bell vs LGIs:

• Bell inequalities: necessary and sufficient for local realism�,

• LGIs: only necessary but not sufficient for macrorealism.

*A. J. Leggett and A. Garg, Phys. Rev. Lett. (1985)
�J. Formaggio, D. Kaiser, M. Murskyj, and T. Weiss, Phys. Rev. Lett. (2016)
�A. Fine, Phys. Rev. Lett. (1982).
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Violations of macrorealism in neutrino oscillations

• A necessary and sufficient condition can be formulated in terms

of two set of equalities*: non-signaling in time (NSIT) and arrow

of time (AoT).

• We computed NSIT/AoT in the case of two-flavor neutrino

oscillations in the wave-packet formalism� and in the case of

meson oscillations�

• NSIT/AoT reveal violations of macrorealism hidden by LGIs.

*L. Clemente and J. Kofler, Phys. Rev. A (2015).
�M.B., F.Illuminati, L.Petruzziello, K.Simonov and L.Smaldone. Eur. Phys. J. C

(2023)
�M.B., F.Illuminati, L.Petruzziello, K.Simonov and L.Smaldone. Phys. Rev. A

(2024).
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Chiral oscillations



Chiral oscillations

• Taking into account (bi)spinorial nature of neutrinos and chiral

nature of weak interaction, one naturally gets chiral oscillations *

• Interplay with flavor oscillations in the non-relativistic region�

• For CνB, chiral oscillations reduce detection by a factor of 2.�

*A. Bernardini and S. De Leo, Phys. Rev. D (2005)
�V.A.Bittencourt, A.Bernardini and M.B.,Eur.Phys.J.C(2021);EPL Persp.(2022);

M. W. Li, Z. L. Huang and X. G. He, Phys. Lett. B (2024);

K. Kimura and A. Takamura, Annals Phys. (2025).

T. Morozumi, and T. Tahara, Prog. Theor. Exp. Phys. (2025)

V. Bittencourt, M. B. and G. Zanfardino, Phys. Lett. B (2025)
�S.-F. Ge and P.Pasquini, Phys. Lett. B (2020)
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Chiral oscillations

Chiral representation of the Dirac matrices

αi =

[
σi 0

0 −σi

]
, β =

[
0 I2

I2 0

]
,

and γ5 = (I2,−I2). Any bispinor |ξ⟩ can be written in this representation as

|ξ⟩ =

[
|ξR⟩
|ξL⟩

]
,

The Dirac equation HD |ξ⟩ = i ˙|ξ⟩ can then be written as

i∂t |ξR⟩ − p · σ |ξR⟩ = m |ξL⟩ ,

i∂t |ξL⟩+ p · σ |ξL⟩ = m |ξR⟩ ,

• Evolution under the free Dirac Hamiltonian ĤD induces left-right chiral

oscillations.
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Take initial state |ψ(0)⟩ = [0, 0, 0, 1]T which has negative helicity and

negative chirality: γ̂5 |ψ(0)⟩ = − |ψ(0)⟩.

The time evolved state |ψm(t)⟩ = e−iĤDt |ψ(0)⟩ is given by

|ψm(t)⟩ =

√
Ep,m +m

4Ep,m

[(
1 +

p

Ep,m +m

)
e−iEp,mt |u−(p,m)⟩

−
(
1− p

Ep,m +m

)
eiEp,mt |v−(−p,m)⟩

]
,

with (for one-dimensional propagation along the ez direction)

|u±(p,m)⟩ =

√
Ep,m +m

4Ep,m

(1± p
Ep,m+m

)
|±⟩(

1∓ p
Ep,m+m

)
|±⟩

 ,
|v±(p,m)⟩ =

√
Ep,m +m

4Ep,m

 (1± p
Ep,m+m

)
|±⟩

−
(
1∓ p

Ep,m+m

)
|±⟩

 ,
with |±⟩ eigenstates of σz.
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• Survival probability of initial left-handed state

P(t) = | ⟨ψm(0)|ψm(t)⟩ |2 = 1− m2

E2
p,m

sin2 (Ep,mt) ,

Average value of the chiral operator ⟨γ̂5⟩(t)

⟨γ̂5⟩(t) = ⟨ψm(t)|γ̂5 |ψm(t)⟩ = −1 +
2m2

E2
p,m

sin2 (Ep,mt) .

– Chiral oscillation period: Tch = 2π
Ep,m

– Chiral oscillation length: Lch = v 2π
Ep,m

= 2πp
E2

p,m
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Chiral and flavor oscillations

• State of a neutrino of flavor α at a given t:

|να(t)⟩ =
∑
i

Uα,i |ψmi
(t)⟩ ⊗ |νi⟩ ,

where |ψmi(t)⟩ are bispinors.

• The state at t = 0 reads

|να(0)⟩ = |ψ(0)⟩ ⊗
∑
i

Uα,i |νi⟩ = |ψ(0)⟩ ⊗ |να⟩ ,

where |ψ(0)⟩ is a left handed bispinor.

• Survival probability:

Pα→α = |⟨να(0)|να(t)⟩|2 =

∣∣∣∣∣∑
i

|Uα,i|2 ⟨ψ(0)|ψmi
(t)⟩

∣∣∣∣∣
2

.
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Two flavor mixing:

|νe(t)⟩ =
[
cos2 θ |ψm1(t)⟩+ sin2 θ |ψm2(t)⟩

]
⊗ |νe⟩

+sin θ cos θ [|ψm1(t)⟩ − |ψm2(t)⟩]⊗ |νµ⟩ ,

• The survival probability can be decomposed as

Pe→e(t) = PS
e→e(t) +Ae(t) + Be(t).

PSe→e(t) is the standard flavor oscillation formula

PSe→e(t) = 1− sin2 2θ sin2

(
Ep,m2 − Ep,m1

2
t

)
and

Ae(t) = −
[
m1

Ep,m1

cos2 θ sin (Ep,m1t) +
m2

Ep,m2

sin2 θ sin (Ep,m2t)

]2
,

Be(t) =
1

2
sin2 2θ sin(Ep,m1t) sin(Ep,m2t)

(
p2 +m1m2

Ep,m1Ep,m2

− 1

)
,

are correction terms due to the bispinorial structure.

• Agreement with the QFT formula.
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l − ν̄ entanglement and chiral oscillations*

Chiral oscillations, we consider induced spin correlations in pion

decay products (π → l + ν̄)

*V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)
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Spin entanglement at t = 0

• The state of the lepton-antineutrino pair is then described in the

composite Hilbert space HCν̄ ⊗HSν̄ ⊗HCl
⊗HSl

.

• It is a 4-qubit entangled state.

• We can write |Ψ(0)⟩ = |+Cν̄ ⟩ ⊗ |−Cl
⟩ ⊗ |ΨSν̄ ,Sl

⟩, with |±A⟩
denoting the positive (negative) chirality of A = Cν̄,l, and

|ΨSν̄ ,Sl
⟩ = A(p,ml,mν̄)| ↑Sν̄ ⟩ ⊗ | ↓Sl

⟩ − B(p,ml,mν̄)| ↓Sν̄ ⟩ ⊗ | ↑Sl
⟩

is the joint spin state at t = 0.
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Spin entanglement at t ̸= 0

• The reduced matrix ρSν̄ ,Sl
(t) = TrChirality [|Ψ(t)⟩⟨Ψ(t)|] describes a

mixed state with entanglement dynamics directly affected by chiral

oscillations.

• Entanglement between the spins at time t

NSν̄ ,Sl
(t) ≡ N [ρSν̄ ,Sl

(t)] = ||ρTSν̄ ,Sl
(t)|| − 1 = NSν̄ ,Sl

(0)Γ(t)

with

Γ(t) =
∏
j=ν̄,l

[
1− p2

m2
j

(⟨γ̂5⟩j(t)− 1)2
] 1

2

.

The average chiralities are given by ⟨γ̂5⟩A(t) = TrA[ρA(t)] with A = ν̄, l:

⟨γ̂5⟩ν̄(t) = 1− m2
ν̄

E2
p,mν̄

[1− cos (2Ep,mν̄ t)] ,

⟨γ̂5⟩l(t) = −1 +
m2
l

E2
p,ml

[1− cos (2Ep,mlt)] .
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Spin entanglement at t ̸= 0

• Tr[ρ2Sν̄ ,Sl
(t)] < 1 ⇒ entanglement initially encoded only in the spins

redistributes into spin-chirality entanglement.

• Entanglement encoded in the bipartition (Cν̄ , Sν̄); (Cl, Sl) is

conserved:

Tr[ρ2ν̄(t)] = Tr[ρ2l (t)] = A4(p,ml,mν̄) + B4(p,ml,mν̄)

= 1−
N 2

Sν̄ ,Sl
(0)

2
< 1.
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Figure 1: (a) Average lepton chirality, (b) average antineutrino chirality and (c)

spin-spin entanglement as a function of the momentum and of time.

Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



Chiral oscillations and Bell spin correlations

The quantity

B[ρ(t)] = |⟨Ŝν̄,1 ⊗ Ŝl,1⟩+ ⟨Ŝν̄,1 ⊗ Ŝl,2⟩+ ⟨Ŝν̄,2 ⊗ Ŝl,1⟩ − ⟨Ŝν̄,2 ⊗ Ŝl,2⟩|,

is the Bell observable first proposed to investigate non-local

correlations*.

For pure states, B[ρ] > 2 indicates that the correlations shared

between the spins are non-local and that the state is entangled.

*N.Brunner et al., Rev. Mod. Phys. (2014)
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• Bell observable as a function of the momentum (in units of the

antineutrino mass and in log scale) and of time for ml/mν̄ = 102.
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Results

• We find that chiral oscillations do affect spin-spin correlations for

the entangled lepton–antineutrino couple.

• Resonance of oscillation amplitude at neutrino mass: possibility of

extracting fundamental information via quantum correlations.

• We have extended the study to the case in which flavor mixing is

included: neutrino state is an hyperentangled state with three DoFs:

chirality, spin and flavor.�

�V.A.Bittencourt, M.B. and G.Zanfardino, Physica Scripta (2024)
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Quantum field theory of chiral oscillations�

• Dirac Lagrangian density

L = ψ (iγµ∂µ −m)ψ

Invariance under global phase transformations ⇒ conserved charge

Q =

∫
d3xψ†(x)ψ(x)

Dirac field ψ can be split as ψ = ψL + ψR where

ψL ≡ PLψ(x) =
1− γ5

2
ψ(x), ψR ≡ PRψ(x) =

1 + γ5

2
ψ(x)

and hence Dirac Lagrangian can be written as

L = ψL iγ
µ ∂µ ψL + ψR iγ

µ∂µψR −m
(
ψL ψR + ψR ψL

)
�V. Bittencourt, M. B. and G. Zanfardino, Phys. Lett. B (2025)
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• Chiral symmetry is explicitly broken by the Dirac mass term.

• Separate global phase transformations for ψL and ψR lead to the

non-conserved chiral charges

QL(t) =

∫
d3xψ†

L(x)ψL(x), QR(t) =

∫
d3xψ†

R(x)ψR(x).

• The total (conserved) charge is equal to the sum of the (time

dependent) chiral charges

Q = QL(t) + QR(t).
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Diagonalization of chiral charges

• Introduce the following canonical (Bogoliubov) transformation:

αk,L = cos θk α
2
k − eiϕk sin θk β

2†
−k

β†
−k,L = cos θk β

1†
−k − e−iϕk sin θk α

1
k

αk,R = cos θk α
1
k + eiϕk sin θk β

1†
−k

β†
−k,R = cos θk β

2†
−k + e−iϕk sin θk α

1
k

• Condition for diagonalization

cos2 θk =
1

2

(
1 +

|k|
ωk

)
, sin2 θk =

1

2

(
1− |k|

ωk

)
,

cos 2θk =
|k|
ωk
, sin 2θk = −m

ωk
, ϕk = 2ωkt.
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• Chiral charges are diagonal in the new operators

QL(t) =

∫
d3k

(
α†
k,L(t)αk,L(t)− β†

−k,L(t)β−k,L(t)
)
,

QR(t) =

∫
d3k

(
α†
k,R(t)αk,R(t)− β†

−k,R(t)β−k,R(t)
)
.

• The above defined chiral ladder operators are time-dependent and

satisfy (equal time) canonical anticommutation relations (CAR):{
αr
k,L(t), α

s†
k,L(t)

}
= δ3(k−p)δrs ,

{
βr
k,L(t), β

s†
k,L(t)

}
= δ3(k−p)δrs
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Dirac field expansion:

ψ(x) =

∫
d3k

(2π)3
eik·x

[
u1k

(
cos θk αk,R − eiϕk sin θk β

†
−k,L

)
e−iωkt

+u2k

(
cos θk αk,L + eiϕk sin θk β

†
−k,R

)
e−iωkt

+v1−k

(
cos θk β

†
−k,L + e−iϕk sin θk αk,R

)
eiωkt

+v2−k

(
cos θk β

†
−k,R − e−iϕk sin θk αk,L

)
eiωkt

]
can be rearranged in the following form (using ϕk = 2ωkt)

ψ(x) =

∫
d3k

(2π)3

[
uk,L αk,L(t) e

−iωkt + v−k,L β
†
−k,L(t) e

iωkt
]
eik·x

+

∫
d3k

(2π)3

[
uk,R αk,R(t) e

−iωkt + v−k,R β
†
−k,R(t) e

iωkt
]
eik·x

= ψL(x) + ψR(x)

Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



with

uk,L ≡ cos θk u
2
k − sin θk v

2
−k, uk,R ≡ cos θk u

1
k + sin θk v

1
−k

v−k,L ≡ cos θk v
1
−k − sin θk u

1
k, v−k,R ≡ cos θk v

2
−k + sin θk u

2
k

u†
k,Luk,L = u†

k,Ruk,R = 1 , v†−k,Lv−k,L = v†−k,Rv−k,R = 1

u†
k,Luk,R = v†−k,Lv−k,R = 0 , u†

k,Lv−k,L = u†
k,Rv−k,L = 0

and the completeness relation:

uk,R u
†
k,R + uk,L u

†
k,L + v−k,R v

†
−k,R + v−k,L v

†
−k,L = 11

Consistency relations:

PL uk,L = uk,L , PL v−k,L = v−k,L

PR uk,R = uk,R , PR v−k,R = v−k,R

PR uk,L = PR v−k,L = PL uk,R = PL v−k,R = 0
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The Bogoliubov transformation is written as

αk,L = G−1
t α2

kGt , βk,L = G−1
t β1

kGt

αk,R = G−1
t α1

kGt , βk,R = G−1
t β2

kGt

with generator

Gt(θ, ϕ) = exp

[∑
r

∫
d3k θkϵ

r
(
e−iϕkαr

kβ
r
−k − eiϕkβr†

−kα
r†
k

)]

• Explicit form for the massive chiral vacuum:

|0̃(t)⟩LR =
∏
k,r

[
cos θk + ϵreiϕk sin θkα

r†
k β

r†
−k

]
|0⟩

• The massive chiral vacuum |0̃(t)⟩LR and the Dirac vacuum |0⟩ are
orthogonal in the infinite volume limit:

lim
V→∞

⟨0|0̃(t)⟩LR = 0,

generating unitarily inequivalent representations of the field algebra.
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Chiral oscillation formula

Define the state |αL⟩ ≡ α†
k,L|0̃⟩LR, with |0̃⟩LR ≡ |0̃(0)⟩LR.

Left chiral operator at time t

αk,L(t) = cos θk e
−iωkt α2

k − sin θk e
iωkt β2†

−k

• Chiral oscillation formula

⟨αk,L|QL(t)|αk,L⟩ = |{αk,L(t), α
†
k,L(0)}|

2

with

{αk,L(t), α
†
k,L(0)} = cos2 θke

−iωkt + sin2 θke
iωkt

We obtain

⟨αk,L|QL(t)|αk,L⟩ = 1− sin2(2θk) sin
2(ωkt) = 1− m2

ω2
k

sin2(ωkt)
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Ontology of weak interactions: flavor/mass, chiral-

ity/energy ?

• unitary inequivalence between mass and flavor representations and

between chiral and energy representations ⇒ nontrivial nature of

weak interactions.
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Chiral oscillations: perturbative approach

Fermion Hamiltonian density*

H0 =
∑

σ=L,R

ψσi/∂ψσ , Hint = −m
(
ψLψR + ψRψL

)
Massless fields with definite chirality

ψσ(x) =
1√
V

∑
k

(
uk,σ αk,σ e

−ikx + vk,σ β
†
k,σ e

ikx
)

Chiral states

|ψp,σ⟩ ≡ α†
p,σ|0⟩

with αk,σ|0⟩ = 0 = βk,σ|0⟩

*M. B., F. Giacosa, L. Smaldone and G. Torrieri, Eur. Phys. J. C (2025)
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Survival diagrams

• Second-order diagrams for the L survival probability. Time flows from left

to right.
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Chiral oscillations probability

At the quadratic order in m

AL→L(p; ti, tf ) = 1− 1

2
A(2)

L→L(p; ti, tf ) ,

with

A(2)
L→L(p; ti, tf ) ≈ m2

∫ tf

ti

dt1

∫ tf

ti

dt2 e
2i|p|(t1−t2)

Chiral oscillation probability

PL→L(p; ∆t) = 1− m2

|p|2
sin2 (|p|∆t) .

It coincides with the one computed in QM and QFT (at o(m2) order).

Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantum correlations & nonlocality in neutrino oscillations Chiral oscillations



QFT flavor/chiral oscillation formula�

• By considering expectation values of flavor/chiral charges, we obtain:

⟨QLe (t)⟩ ≡ Pe→e(t) = P e→e
S (t) +Ae(t) +Be(t).

where P e→e
S (t) is the standard (Pontecorvo) flavor oscillation formula:

P e→e
S (t) = 1− sin2(2θ) sin2

(ω2 − ω1

2
t
)
,

and

Ae(t) = −
(
m1

ω1
cos2(θ) sin(ω1t) +

m2

ω2
sin2(θ) sin(ω2t)

)2

,

Be(t) =
1

2
sin2(2θ) sin(ω1t) sin(ω2t)

(
k2 +m1m2

ω1ω2
− 1

)
,

• Agreement with formula obtained by Dirac equation

�V.Bittencourt, M.B. and G.Zanfardino, arXiv:2507.09645 [hep-ph]
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Criticism to our work

Recently, some papers appeared which deny the existence of chiral

oscillations:

– A. Y. Smirnov, Chiral interactions, chiral states and “chiral

neutrino oscillations”, [arXiv:2505.06116 [hep-ph]].

– E. Akhmedov, On chirality and chiral neutrino oscillations,

[arXiv:2505.20982 [hep-ph]].

Work in progress in replying to these criticisms...
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Standard argument for pion decay (Thomson)
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Criticism to our work: reply (preliminary)

The argument by Smirnov is based on the construction of neutrino

state as superposition of helicity eigenstates.

However, if we consider the case of massless neutrino, the helicity of

the associated lepton is fixed, and chiral projector applies, so chiral

oscillations occur.

In this case, there is no possibility to define a state which is

superposition of helicity states!
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