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Motivations

e Understanding entanglement generation in fundamental processes;

e Quantum correlations in relativistic systems as a possible resource

for quantum information;

e Investigation of fundamental properties of (elementary) particles via

quantum correlations;

e Entanglement in high energy processes as a probe for new physics
beyond Standard Model.



Entanglement in particle physics!

e Entanglement, decoherence, Bell inequalities for the K°K° (or
B°BY) system*;

e Quantumness in neutrino oscillations (entanglement?, Leggett-Garg
inequalities?, quantum correlations);

e Entanglement in scattering processes§.

*R.A.Bertlmann and B.Hiesmayr, Phys.Rev. A (2001); A.Di Domenico (Ed.)
Frascati Physics Series (2007).

fM.B. et al., EPL (2009).

tJ.A. Formaggio et al., Phys. Rev. Lett. (2016).

§G. Aad et al. [ATLAS], Nature (2024)

M.B. et al., Phys.Rev. D (2024), (2025).

1R.A.Bertlmann, Entanglement, Bell inequalities and decoherence in particle
physics, Lect. Not. Phys. (2006);

Y.Shi, Historical origins of quantum entanglement in particle physics,
arXiv:2507.13582.



Entanglement in neutrino mixing and

oscillations



Neutrino oscillations in QM *

Pontecorvo mixing relations
|ve) = cosO|v1) + sinf |vs)
lv,) = —sinf 1) + cosf|va)
— Time evolution:

Ve (t)) = cos @ e 1t 1) + sin @ e 2 1)

— Flavor oscillations:
. AFE
P = ) = 15?20 sn? (554) = 1= P (0

— Flavor conservation:

[(Velve()* + [pulve(®)® = 1

*S.M.Bilenky and B. Pontecorvo Phys. Rep. (1978)
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Entanglement in neutrino mixing'

— Flavor mixing (neutrinos)
|ve) = cosf|vy) + sind |1s)
|v,) = —siné |v1) + cosf |va)
e Correspondence with two-qubit states:

1) = [11]0)2 = [10),  |r2) = [0)1]1)2 = [01),

|); denotes states in the Hilbert space for neutrinos with mass m;.

= flavor states are entangled superpositions of the mass eigenstates:

|ve) = cos6]10) + sind |01).

fM.B., F.Dell’Anno, S.De Siena, M.Di Mauro and F.Illuminati, PRD (2008).
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Composite structure of Hilbert space for neutrinos

e Necessity of tensor-product structure of Hilbert space for two
generations:

Orthogonality of Hilbert spaces for fields with different masses?
Example: two scalar fields with different masses
O+ u)or(@) =0 . (O+ps)pe(x) =0

with boundary conditions ¢1(0,x) = ¢2(0,x) and ¢1(0,x) = ¢2(0,x)

Vo[ = i)
1<0|0>2 ~ exp{—64ﬂ2/0 dkT

which vanishes in the infinite volume limit.

One obtains

t@.Barton, Introduction to Advanced Field Theory, Intersc. Publ. (1963)
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Entanglement - mathematical definition

e Given a bipartite system H = H4 ® Hp, a system is entangled, iff

A B
PAB F Zpk Pé., ) ®p,(f, )
k
with0<p;, <1, > . px=1

e For a generic pure state of the form:

[Wyas = > _cijli)a®|i)s

j
the condition for entanglement reads

V) aB # |6)a @ |[X)B
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Single-particle entanglement*

o A state like |¢) 4 5 = |0)4]1) B + |1) 4]0) 5 is entangled,;
— entanglement among field modes, rather than particles;

— entanglement is a property of composite systems, rather than of
many-particle systems;

— entanglement and non-locality are not synonyms;

— single-particle entanglement is as good as two-particle entanglement
for applications (quantum cryptography, teleportation, violation of
Bell inequalities, etc..).

*J.van Enk, Phys. Rev. A (2005), (2006);
J.A.Dunningham and V.Vedral, Phys. Rev. Lett. (2007).
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Protocols for extraction of single-particle entanglement

Q
$»

One photon is split, creating an
entangled one-photon state.

Q
\> —

Each photon mode interacts with a
two-level atom. Resonance is
tuned to give a 7 pulse, if a photon
is present. The excitation is
transferred to the atomic pair.

One excitation is distributed
between two atoms. A Bell state of
excited-ground states is created.

one-particle
entanglement

state transfer

two-particle
entanglement

\ome/

One atom is split between two
traps, creating an entangled one-
atom state.

N e

Each atomic trap interacts with an
attenuated atomic beam.
Resonance is tuned to create a
molecule if one atom is found in
the trap. The traps are left empty,
and the atom is transferred to the
beams.

N N
o /'l' .

The (dark grey) trapped atom is
distributed between two (light grey)
atomic beams. A Bell state of
molecule—atom states is created.

fM.O.Terra Cunha, J.A. Dunnmghdm and V.Vedral, Proc. Royal Soc. A (2007)
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Multipartite entanglement in neutrino mixing?

— Neutrino mixing (three flavors):

) = U0,0)v,)

with [1;) = (Jve), ), [v2))" and |v,,) = (v1), [ve), [vs)"

— Mixing matrix (PMNS)

—id
C12€13 S12€C13 S13¢€
) _ i i
u@,o) = —S12C23 — C12523513€¢"°  C12C23 — S12823513€" $23C13 ;
i8 i5
§12823 — €C12C€23513€ —C12523 — S12€23513€ C23C13

where (6,6) = (012,613, 023;0), cij = cos0;; and s;; = sin 0.

e Correspondence with three-qubit states:
v1) = [1)1/0)2|0)3 = [100),  [v2) = [0)1]1)2]|0)3 = |010),

lv3) = [0)1]0)2[1)s = |001)

fM.B., F.Dell’Anno, S.De Siena, M.Di Mauro and F.Illuminati, PRD (2008).
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(Flavor) Entanglement in neutrino oscillations®

— Two-flavor neutrino states

) = 0.6 1™

where [vF) = (|ve), |v,))" and [1™) = (J11), |2))” and

cos sin 6
ul) = .
©) —sinf  cos6

— Flavor states at time t:

WD) = UB,8) Ug(t) U0, 86) " v = fj(t)|2<f)>7

—iEqt
with U (t) = ( ¢ . e*?Eﬁ )

$M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009).
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— Transition probability for v, — v

Py () = [Wslva(®)® = [Tap(t)]*.

e We now take the flavor states at initial time as our qubits:

e) = 1)el0) = [10)5,  [vu) = 0)e[1), = [01),

e Starting from |10); or |01), time evolution generates the
(entangled) Bell-like states:

Va)) = Uac(®)|1)el0)y + Tap()0)e|1), o= e, .
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Entanglement measures

It is necessary to distinguish the various entanglement measures for

pure and mixed states (which may contain classical correlations).

Measures for pure states:

e von Neumann entropy
e Geometric Entanglement
Measures for mixed states:
e Entanglement of Formation and Concurrence
e Logarithmic negativity

e Relative Entropy of Entanglement
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Entanglement in neutrino oscillations: two-flavors

Consider the density matrix for the electron neutrino state

' = |ve(t))(ve(t)|, and trace over mode u = Pt

e The associated linear entropy is :

wa)(p(e)) =4 |I~Jeu(t)|2 |ﬁ€e(t)|2 = 4PV5%1/6 (t) PVQHV# (t)

The linear entropy for the state p(®) is:

S = 595 = 41U (O [Uae(t)?

4‘6ue(t)‘2 (1 - |ﬁae(t)|2)

= 4‘6uu(t)|2 (1 - ‘INJ(”L(Y‘/)F).

e Linear entropy given by product of transition probabilities
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Linear entropy S'*) (full) as a function of the scaled time T =
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v—oscillations as a resource for quantum information

e Single-particle entanglement encoded in flavor states |v(/)(t)) is a
real physical resource that can be used, at least in principle, for
protocols of quantum information.

— Experimental scheme for the transfer of the flavor entanglement of a
neutrino beam into a single-particle system with spatially separated
modes.

Charged-current interaction between a neutrino v, with flavor o and
a nucleon N gives a lepton a~ and a baryon X:

Vg + N —a +X.
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Generation of a single-particle entangled lepton state (two flavors):

In the target the charged-current interaction occurs: vo +n — @~ +p
with a = e, u. A spatially nonuniform magnetic field B(r) constraints the
momentum of the outgoing lepton within a solid angle €2;, and ensures
spatial separation between lepton paths. The reaction produces a
superposition of electronic and muonic spatially separated states.
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e Given the initial Bell-like superposition |v,(¢)) the unitary process
associated with the weak interaction leads to the superposition

la(t)) = AE‘1>€‘O>M + Au|0>6‘1>u )

where [A.|? + [A,]? = 1, and |k)4, with k = 0,1, is the lepton qubit.
The coefficients A, are proportional to ﬁaﬂ(t) and to the cross

sections associated with the creation of an electron or a muon.

e Analogy with single-photon system: quantum uncertainty on the
“which path” of the photon at the output of an unbalanced beam
splitter < uncertainty on the “which flavor” of the produced lepton.

The coefficients A, plays the role of the transmissivity and of the
reflectivity of the beam splitter.
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Other results

e Generalization to three flavors. Extension to wave packets;*

e Flavor entanglement in Quantum Field Theory.®

“M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2015).




Quantum Field Theory of
neutrino mixing and

oscillations



Neutrino mixing in QFT

e Mixing relations for two Dirac fields

ve(x) = cosfvi(xz) + sinf vy(x)
vy(x) = —sinfwvi(z) + cosb va(x)

vi(e) = Gyl(t)vi(x) Go(t)
val) = Gy'() vi(x) Go(t)

— Mixing generator:

Galt) =exp |0 [ @ (vwa) — i)

2
For v., we get Ijﬁu{j = —v¢ with ic. v|,_, =1, @V !9 0 = Ve

*M.B. and G.Vitiello, Annals Phys. (1995)
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e The vacuum |0), , is not invariant under the action of Gg(?):

2

10(8)) e, = G (2) 0),,

e Relation between |0), , and [0(t)).,,: orthogonality! (for V — o0)

v/ %k ln(lfsinzG\VkF)2

i = li J(2m)3 =
VlgIcl)o 1,2<0‘0(t)>6,/1 Vlgréc € 0
with
Vil? = Z \ viTk?lu,f{Q 40 for my#mo
8

Quantum Field Theory of neutrino mixing and




Quantum Field Theory vs. Quantum Mechanics

e Quantum Mechanics:
- finite f of degrees of freedom.

- unitary equivalence of the representations of the canonical
commutation relations (von Neumann theorem).

e Quantum Field Theory:
- infinite § of degrees of freedom.

- 0o many unitarily inequivalent representations of the field algebra <
many vacua .
- The mapping between interacting and free fields is “weak”, i.e.

representation dependent (LSZ formalism)*. Example: theories with

spontaneous symmetry breaking.

*F. Strocchi, Elements of Quantum Mechanics of Infinite Systems (W. Sc., 1985).
H. Umezawa, Advanced Field Theory (AIP, 1993).
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e The “flavor vacuum” |0(t)),, is a SU(2) generalized coherent state!:

0)e, = H {(1 —sin? 0 |Vi|?) — €"sin @ cos 6 |Vi| (afjl Do Ty kal)
k,r

+€" sin 9|Vk|‘Uk| O‘k 1 TLk,l - O‘lrj,z o)+ sin 0 ‘Vk|2ak 1 Tkz Ijz 1110):
e Condensation density:
en(0()og 0 ;100 = e (OB BE10()) e = sin 0 [Vie|®
vanishing for m; = mz and/or = 0 (in both cases no mixing).

— Condensate structure as in systems with SSB (e.g. superconductors)
— Exotic condensate: mixed pairs

— Note that [0)c, # |a)1 ® |b)2 = entanglement.

tA. Perelomov, Generalized Coherent States, (Springer V., 1986)
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Condensation density for mixed fermions

Vil

10 100 1000

Loglk|

Solid line: mj = 1, mo = 100; Dashed line: mj = 10, mg = 100.

- Vk = 0 when m; = ms and/or 6 = 0.
2

- Max. at k = \/mims with V00 — % for (m2—mi)” o

mime

) 2
- Vil = 2o for ks .
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e Structure of the annihilation operators for [0(%))e,,:

O (1) = cos O, +sind (U () o p+e Vic(t) A )
g (1) = cosf oy 5 — sind (Uk(t) o 1 —€ Vic(t) BiTkJ)
By e(t) =cost By | +sinb (Uk( ) Bl =€ Vac(t) oy 2)

B (£) = 080 71— sin® (Vi) B+ Viclt) o)
e Mixing transformation = Rotation + Bogoliubov transformation .
— Bogoliubov coeflicients:
_ rioor i(wr2—wr, 1)t . _ vt r i(wr 2wk 1)t
Uk(t) = wloug, e ; Vi(t) =€ w0y e

Ul® + Vil =
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Decomposition of mixing generator *

The mixing generator can be expressed in terms of a rotation and a
Bogoliubov transformation. Define:

R(0) = exp {0 [(aliaka + Bl Bz )€™ — (ailakn + BB )] .
k,r

B;(6©;) —(-‘Xp{Z@kLE [akzﬁ K,i€ e Ok _ gl klosz 74”“}}7 i=1,2

Since [Bl, Bz] = 0 we put B((“)l, (")2) = Bl(@l) BQ(@Q).
e We find:
Gy = B(01,05) R() B71(01,0,)

which is realized when the ©y ; are chosen as:

(1 +%k,2)

Ux = eiiwk COS(@k,l — @k,g) ; Vk=e 2 sin(@k,l — @kyg)

*M. B., M.V. Gargiulo and G. Vitiello, Phys. Lett. B (2017)
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Bogoliubov vs Pontecorvo

e Bogoliubov and Pontecorvo do not commute!

As a result, flavor vacuum gets a non-trivial term:
10)e, = G0V 12 = |0)12 + [B(mi,ma), R7H(0)] [0)12
with [0)12 = B~1(01,02)[0)1 2.

e Non-diagonal Bogoliubov transformation

|0)e. =

d 3 k - r rtoor rt ort
I+ 6a ok Vi Ze (ak,l k.2 —"_ak,QBfk,l) 10)1,2,

2
r

— (map—my)®
- mimo

with a
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Currents and charges for mixed fermions *

- Lagrangian in the mass basis:

L=V, (i@ M)V,
where U1 = (11, 15) and My = m 0

mo

— Lagrangian in the flavor basis:

L=T;(iP—M)Ty

, Me M
where U7 = (v.,v,) and M = -

Mep my

*M. B., P. Jizba and G. Vitiello, Phys. Lett. B (2001)
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— Two sets of charges:
Q: = /d3x l/lT(l) vi(x) ; i=1,2
Q.(t) = /d3x Vi (x) ve(z) ; c=eu

— In presence of mixing, neutrino flavor charges not conserved charges
= flavor oscillations.

— They are still (approximately) conserved in the vertex = define
flavor neutrinos as their eigenstates.

e Problem: find the eigenstates of the above charges.

Quantum Field Theory of neutrino mixir d oscillations




e Flavor charge operators are diagonal in the flavor ladder operators:

1Qu(t): = /d3X s vi(2) v () =

2 [ (a3l (ako6) = 57,05, 0) o= e
Here : ... = denotes normal ordering w.r.t. flavor vacuum:

“ A=A — 6;#<O|A|O>elu
e Define flavor neutrino states with definite momentum and helicity:
o) = i, (0)[0)c,u

— Such states are eigenstates of the flavor charges (at t=0):

“ QO' = "/17;,0'> = |Vl:o'>
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Neutrino oscillation formula (QFT)

— We have, for an electron neutrino state:

Qk,n(t) = <Vil;,€i| B Qg(t) B |V1:,8>

2

{oto@, . @} + {5, 0,00}

with Q. (t) = [ d*x vl (z) ve(z).

e Neutrino oscillation formula (exact result)*:

OQk.e(t) =1 — |Ui|” sin®(26) sin <w t) — | Vi|? sin®(26) sin’ (w t)

- For k> /mima, |Ux|®> — 1 and |Vi|*> — 0 = Pontecorvo formula is
recovered.

*M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999).
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Lepton charge violation for Pontecorvo states'

— Pontecorvo states:
[Vkep = cost [V ) + sind [V )
[V, )p = —sind |V ) + cosf [V ,),
are not eigenstates of the flavor charges.

= wviolation of lepton charge conservation in the production/detection

vertices, at tree level:

P{Vikel 1 Qe(0) : Vi ) p = cos? 0 + sin* 0 + 2|Uy| sin®fcos? § < 1,

for any 6 # 0, k # 0 and for my # ma.

fM. B., A. Capolupo, F. Terranova and G. Vitiello, Phys. Rev. D (2005)
C. C. Nishi, Phys. Rev. D (2008).
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Entanglement for flavor neutrino states in QFT

— Entanglement for flavor neutrino states in QFT can be expressed by
means of the variances* of the neutrino charges:t Q;, Q. (t)

— Variance of (); — static entanglement:

A(w)i(Ve)

Vi Q2O — Ve QA )2
= cos? 0 sin? @
— Variance of @, — flavor (dynamical) entanglement:
AQo(ve)(t) = (Vi@ W)Vie) = (Vieel Qo)
= Q8.1 Q5,,(t)

in formal agreement with results obtained in QM.

*A. A. Klyachko, B. Oztop, and A. S. Shumovsky, Phys. Rev. A (2007).
fM.Blasone, F. Dell’Anno, S.De Siena and F. Illuminati, EPL (2014)
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QFT flavor entanglement

1.0~

06
4Q, (0

0.4

T,
QM vs. QFT flavor entanglement for |ve (£)).
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Neutrino ontology: flavor or mass?

e In view of the unitary inequivalence of mass and flavor
representations, we have the problem of the fundamental (ontological)

nature of neutrino.

Flavor or mass, that is the question...
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Neutrino ontology: research directions

e How to verify the fundamental nature of neutrino states?

Two directions:

e Investigate the phenomenology of flavor neutrinos, with
corrections expected in the non-relativistic regime: oscillations,

beta decay endpoint, quantum correlations, ...

e Use the formal consistency of QFT, by comparing neutrino
processes in two different frames (inertial and comoving) for
accelerated particle: Unruh effect.”

*M. B., G. Lambiase, G. Luciano and L.Petruzziello, Phys. Rev. D (2018);
G.Cozzella, S.Fulling, A.Landulfo, G.Matsas and D.Vanzella, Phys.Rev.(2018)
M. B., G.Lambiase, G. Luciano and L.Petruzziello, Phys. Lett. B (2020)
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Dynamical generation of fermion mixing*.

Flavor-energy uncertainty relations for mixed states?.
. s, . . +
e Poincaré invariance for flavor neutrinos*.

Violation of equivalence principleS.

*M.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2019)

fM. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)

fM.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2020) ; A. E.
Lobanov, Ann. Phys. (2019)

$M.B., P.Jizba, G.Lambiase and L.Petruzziello, Phys. Lett. B (2020)
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Flavor neutrino as unstable particles

e Time-energy uncertainty relations (TEUR) in the
Mandelstam—Tamm form, furnish lower-bounds on neutrino
energy uncertainty compatible with flavor oscillations®*.

e QFT formulation of neutrino oscillations suggests that these
bounds can be read as flavor-energy uncertainty relations
(FEUR)'. Energy uncertainty is connected with the intrinsic
unstable nature of flavor neutrinos.

*S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
fM. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)
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Time-energy uncertainty relations

e Mandelstam—Tamm TEUR is*:

AE At >

N | =

where

AE=op Atan/'(M?iit»’

Here (...) = (¢]...[¢) and O(t) represents the “clock observable”
whose dynamics quantifies temporal changes in a system.

— The above inequality is obtained by means of the Cauchy-Schwarz
inequality and using the fact that [O, fI] #0.

*L. Mandelstam and I.G. Tamm, J. Phys. USSR (1945)
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Clock observables

Probability
=]
&

e
=

=}
2

=4
=

0 1000 2000 3000 4000
L/E (km /Ge V)
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Flavor-energy uncertainty relations

e Choose flavor charges as clock observables. Then [, (t), H] # 0 =
flavor-energy uncertainty relationt:

1(Qu(0)
() Qi) > 5|1

Taking the state [¢) = |1 ) we have (Qs(t)) = Qy—0(t) and

1

<AQV,, \/Qn‘—)a 1 - QO‘—)O’( )) S i

Integrating over time from 0 to 7', and using the triangular inequality,

we obtain:
AET > Qo,(T), o#p

fM. B., P. Jizba and L.Smaldone, Phys. Rev. D (2019)
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Neutrino oscillation condition

When m,;/|k| — 0:
o2
AE > 2 sin“ 26
LOS(,’

This relation is usually interpreted as neutrino oscillation condition?.

The situation is similar to that of unstable particles:

AE%i
2T

where the 7 is the particle life-time.

— As for unstable particles only energy distribution are meaningful.
The width of the distribution is related to the oscillation length.

£S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
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e Electron neutrino mass
_ 2 . 9
(H)|g=o = mqcos” 6 + mysin” 0

sin? 20 (mg — my)
47

AE‘k:O

v

e Note that
op = (Q5(1)e — (Qu(1)5
= Qosolt) (1= Qoa(t)) -

quantifies dynamical (flavor) entanglement for neutrino states® since
it concides with the linear entropy in terms of the flavor qubits:

e) = 1)el0) = [10)5,  [vu) = [0)e[1), = [01),

$M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009)
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Phenomenological consequences

dK

The tail of the tritium [ spectrum for:

- a massless neutrino (dotted line);

- fundamental flavor states (continuous line);

- superimposed prediction for 2 mass states (short-dashed line):
We used me = 1.75 KeV, m1 = 1 KeV, m2 =4 KeV, 6 = /6.
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Neutrino oscillations in the interaction picture

e Analogy with unstable particles suggests alternative approach: treat
the mixing term as a perturbation and compute oscillation formula
from QFT at finite time*.

e Decompose neutrino Lagrangian as £ = Ly + L;,; with
Ly = Z Us (i @ —mey) Vs
o=e.n
Ling = —mey (Tely +Tuve)
Time-evolution operator (Hint = —Lint):

ty
U(ti,ty) = Texp |:L/ d*z : Hipe () :} .

Jt,;

*M. B., F. Giacosa, L. Smaldone and G.Torrieri, EPJC (2023)
C. Bernardini, L. Maiani and M. Testa, Phys. Rev. Lett. (1993).
P. Facchi and S. Pascazio, La regola d’oro di Fermi, (Bibliopolis, 1999).
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Diagrams for neutrino oscillations
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Neutrino oscillation formula

Total flavor transition probability
W2 wo At Y2 wliAt
Pph(p; At) = 4m?, l P sin® < .4 ) + ( P sin® < p2 >

with wg = Wp,e & wp,,- Note that

my, —m
Up| = Wp———,

Wp Wp
when m; = me, ma = m,. Then

At At
Po(mia0) = sin(e0) |10 sn? (B ) 4 vl s (£ )

with 8 = m.,/(m, —m.) ~ sinf. Oscillation formula of the flavor
Fock-space approach!!
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Results

e The interaction picture approach’ matches results of the flavor Fock

space approach, at the lowest order in me,

e It should be possible to sum up the perturbative series and recover
the flavor space (nonperturbative) result.

e Similar results for chiral oscillations (see below).

fM.B., F.Giacosa, L.Smaldone and G.Torrieri, EPJC (2023)

Quantum Field Theory of neutrino mixir d oscillations




Quantum correlations &
nonlocality in neutrino

oscillations



Quantum Resource Theory

Resource theories are a versatile set of tools developed in quantum

. . +
information theory+.

The basic idea of a quantum resource
theory is to study quantum information
processing under a restricted set of
physical operations, called free operations.

These allow as to prepare only certain

other are called resource states.

L L, physical states, called free states. The
i~

ON

E. Chitambar, G. Gour, Rev. Mod. Phys. (2019)
A. Streltsov, G. Adesso and M. B. Plenio, Rev. Mod. Phys. (2017),



Entanglement in QRT

Alice and Bob work in their laboratory separated by a large distance.
They can communicate only by telephone.

s

A

The free operations consist in local operations and classical
communication (LOCC). But an entangled state cannot be generated
using LOCC = Entanglement is a (quantum) resource.

Quantu




Quantum Correlations

Quantum systems exhibit properties that are beyond our
understanding of reality. They show correlations that have no

classical counterpart.
Entanglement is the most known of these correlations. But the

terminology quantum correlations refers to a broader concept:

Quantum correlations related to entanglement:

- Bell non-locality
- Entanglement
- Quantum steering

Quantum correlations beyond entanglement:

- Quantum discord



Quantum Correlations?

Bell non-locality

Quantum Steering

Entanglement

Quantum Discord

Hierarchy of quantum correlations (figure adapted from G.Adesso et al., J. Phys. A (2016))

8G. Adesso, T.R. Bromley and M. Cianciaruso, J. Phys. A (2016)



Quantum correlations in neutrino oscillations

e Recently, quantum correlations in neutrino oscillations have been
thoroughly investigated. A partial list of publications include:

A.K. Alok et al., Quantum correlations in terms of neutrino oscillation
probabilities, Nuc. Phys. B (2016)

F. Ming et al. Quantification of quantummness in neutrino oscillations, Eur.
Phys. J. C (2020)

M.B., S.De Siena and C.Matrella, Wave packet approach to quantum
correlations in neutrino oscillations, Eur. Phys. J. C (2021)

V. Bittencourt, M.B., S.De Siena and C.Matrella, Complete
complementarity relations for quantum correlations in neutrino oscillations,
Eur. Phys. J. C (2022)

Y.W.Li et al. Genuine tripartite entanglement in three-flavor neutrino
oscillations Eur. Phys. J. C (2022)

V. Bittencourt, M.B., S.De Siena and C.Matrella, Quantifying quantumness
in three-flavor neutrino oscillations, Eur. Phys. J. C (2024)

i neutrino mixing and oseillations Quantum Field Theory of neutrino mixing and oscillations Quantu



Non-local Advantage of Quantum Coherencef

e A state is said to be coherent provided that there are non-zero

non-diagonal elements in its matrix representation.

Coherence can be quantified by means of the /1-norm of coherence:*

Cl1 (p) = Z |p177|

i

If the qubit is prepared in either spin up or down state along z, it is
incoherent in z-basis (C}; = 0) and fully coherent in x- and y-basis
(€ =1).

Upper bound beyond which the effects of non-locality emerge:

Z Cfl(p) S Cmaw-

1=x,Y,2

“T.Baumgratz, M.Cramer and M.B.Plenio, Phys. Rev. Lett. (2014).
fD. Mondal, T. Pramanik, A.K. Pati, Phys. Rev. A (2017).



Non-local Advantage of Quantum Coherence

Consider a bipartite system made of two spatially separated subsystems.
Alice performs a measurement I on o; eigenbasis with outcome b = {0,1}
and probability py» = Tr[(T1° ® 1)paz].

Measured state for the two-qubit state isp ,p v = (M ®1)pap(lE®@1)/p
and the conditional state for qubit B is pp e = Tra(pspme)-

Then Alice tells Bob her measurement choice and Bob has to measure the
coherence of qubit B at random in the eigenbases of the other two Pauli

matrices o; and oy.

If the above condition for locality is violated then we cannot have a

single-system description of the coherence of subsytem B.

The criterion for achieving a NAQC of qubit B can be written as:

Ni, (pas) ZP meb I1 (PB|1‘[_’;¢1) > V6.

LJb



Quantification of quantumness in neutrino oscillations

e Quantumness in neutrino oscillations has been quantified through
various correlation measurest: Non-local Advantage of Quantum
Coherence (NAQC), quantum steering and Bell non-locality.

e The criterion for NAQC is:

N"(pap) = Zp (P )Cr (P, ) > V6.

i,7,b
e Bell non-locality (violation of CHSH inequality):

B(pag) = |(Bcusu)| < 2.

e Quantum steering:

1 n
— ZTT([)ABAi ® B;)|<1
Vi i=1

. Ming, X-K. Song, D. Wang, Eur. Phys. J. C (2020)

Fn(pABag) =




Quantumness in neutrino oscillations (Daya Bay) *
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$F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)



Quantumness in neutrino oscillations (MINOS) 1
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1F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)



NAQC & Bell nonlocality in the wave packet approach**

e We have extended the studies on quantumness of neutrino
oscillations through NAQC using the wave packet approach. |

Neutrino with definite flavor:

‘l/a T, t ZUn]w] Zl' t)|]/]>

where:
z, t ’Lp(E*iEj(p)t
by ( \/ﬂ/ dp ;(p
with: 5
(p—pj)

D) = P2y~ _
¥i(p) = (2m0;, ") Texp 40>

Ic. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,
Oxford University Press (2007)
**M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)



Wave packet description of neutrino oscillations

Assume the condition o, < E3(p;)/m;. Then we have:
Ej(p) ~ Ej +v;(p — pj)

Integrating on p, one gets the wave packet in coordinate space:

(z — Ujf)2]

P2
4U:v

P2

_1
¥ (z,t) = (270, ) *exp |:_7:Ejt +ipjx —

Write density matrix operator pa(z,t) = |va(z,t))(va(z,t)|. After time
integration, one gets the oscillation formula in space

* * . L L 2 p x 2
Paﬁ (L) = Z U4Yj U‘)’kUﬁj Uﬁk exp |:727TZ L().Z(: - (L(:oh,) 7271—2(1 - 5)2 (LO(—)IZ() :|
Jk Jjk Jk

gk



Wave packet description of neutrino oscillations'

Il
10 100 1000 10000
L(m)

e Survival probability in the wave packet approach. E =2 MeV, £ =0,
sin? 2013 = 0.084 and Amge =242 x 1073eV? and o, = 3.3 x 10~ %m.

tC. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,
Oxford University Press (2007)



NAQC in the wave packet approach (Daya Bay)

I
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NAQC in the wave packet approach (MINOS)

NAQC Inequality

L(km)

B-CHSH Inequality




Results

e Our treatment based on wave packets leads to a improved
agreement with experimental data in the case of MINOS.*

e NAQC has a different long-distance behaviour for the two
experiments, due to the different values of the mixing angle.

e Existence of a “critical” angle for which NAQC exceeds the bound.

“M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)



Complete Complementarity Relations

To better understand the above results, we resort to the recently
introduced concept of CCR.

e N.Bohr The quantum postulate and the recent development of atomic
theory, Nature (1928)

o W.K.Wootters and W.H.Zurek, Complementarity in the double-slit
experiment: quantum nonseparability and a quantitative statement of Bohr’s
principle, Phys. Rev. D (1979)

e M.Jakob and J.A.Bergou, Quantitative complementarity relations in
bipartite systems: entanglement as a physical reality, Opt. Comm. (2010)

e M.L.W.Basso and J.Maziero, Complete complementarity relations for
multipartite pure states, J. Phys. A (2020)



Complementarity Principlef

e Complementarity: a quantum system may possess properties which
are equally real but mutually exclusive.

It is often associated with wave-particle duality, the complementarity
aspect between propagation and detection.

In the double-slit interferometer, the wave aspect is characterized by
the interference fringes visibility, while the particle nature is given by
the which-way information of the path along the interferometer.

fN. Bohr, Nature (1928)



Double-slit

Usual view on complementarity: The complete knowledge of the path
destroys the interference pattern visibility and vice-versa.

Quantu




Quantitative wave-particle duality

e Wootters and Zurek *: first quantitative version of the wave-particle
duality. A path-detecting device can give incomplete which-way
information and a sharply interference pattern can still be retained.

Their work was then extended and formulated in terms of a
complementarity relation?

P?+V2<1
where P is the predictability and V is the visibility.

e A “quanton”! may behave partially as a wave or as a particle at
the same time.

“W.K.Wootters and W.H.Zurek, Phys. Rev. D (1979)
"D.M.Greenberger and A.Yasin, Phys.Lett. A (1988); B.-G. Englert, PRL (1996).
J.-M.Lévy-Leblond, Physica (1988)



Triality relation

e For bipartite systems a complete complementarity relation (CCR)
can be obtained by including the correlations between A and B
subsystems$:

Vi+ Pl +C? =1

Vi and Py, k = 1,2, generate local single-partite realities which
can be related to wave-particle duality.

C is the entanglement measure concurrence which generate an

exclusive bipartite nonlocal reality.

$M.Jakob and J.A.Bergou, Opt. Comm. (2010)



Concurrence!

The concurrence for a generic qubit system described by the density
matrix p is given by

C(p) = max{O, )\1 — )\2 — )\3 - )\4}

where the \; are the square root of the eigenvalues A\? of the operator
pp in decreasing order, with

p=(oy®@ay)p*(oy @0y)

1s. A. Hill, W. K. Wootters, Phys. Rev. Lett. (1997)



CCR for bipartite systems

Consider the most general bipartite state of two qubits:

1©) = a|00) +b[01) + ¢ |10) + d|11)

One obtains:
C= \<@|é)\ = 2|ad — bc|

Vi = 2|lac* + bd*
Vi = 2@lotjey —» 4 =2 |
Vo = 2Jab* + cd”|

] Pr=|(|c|* +|d al®* +1b
Py = |(O]c4|0)] — v = (] \2 |d|?) — (la]* + [b?)]
Py = [([b]* +[d*) = (|a* + |c]*)]

where: |0) = (0, ® 0,) |0*), of = 8 (1) , Oak = (1) f]l

The complementarity relation is satisfied, since the left hand side is just the
square norm of the general pure bipartite state |©):

(laf* + [b]* + [e]* + |d|*)* =

Q uantu



Examples

e Bell states (maximally entangled states)

ot = 447000>im11» vt = 447001>¢¢10»
v V2
We have C =1, Vi = Vo= P = P, =0.
e Separable state
1
|©1) = *(|00>+|01>) = —=10) (0) + 1))
V2 V2
In thiscase C =0, Vi= P,=0, Vo= P, =1

e Unbalanced state

102) = %\00)+§\11>.

= V2=0, b= P=1.

In this case C = l

=



Examples

e A separable state with all four terms

1 1
©3) = 5 (100) +|01) +[10) +[11)) = (|0} +[1))(|0) +|1))-
We have C' =0, Vi = Vo=1, Po=PFP,=0.
e Unbalanced state with all four terms
1 1 V3
O4) = —|00) + -|01) + 10) + 11
©4) = 3100) + 5101) + S 7oj10) + 2.
In this case we have C = {ﬂl, V= ‘f’\gl, Vo = \/54+27 P=0, P,= %




Complete Complementarity Relation for pure states

Alternative form of CCR for multipartite states*.
Consider a bipartite pure state in the Hilbert space H4 ® Hp:

da—1dp—1

PA,B = Z Z Pij kl |7/.7> <kl‘

i,k=0 j,1=0

If the state of subsystem A is mixed:

dg—1
da

Phs (PA) + C}Ls (/JA) <

where Prs(pa) and Chs(pa) are the predictability and the
Hilbert-Schmidt quantum coherence (generalization of the visibility').

“M.L.W.Basso and J.Maziero, J. Phys. A (2020)
"T. Qureshi, Quanta (2019).



CCR for pure states

e The missing information about subsystem A is being shared via
correlations with the subsystem B:
dy —1

Pus(pa) + Cns(pa) + Ciialpa) = = -

— Predictability
Pus(pa) = Y (0f3)* — e

— Quantum coherence (visibility)
da—1

Chs(pa) Z o7kl
i#k

— Non-local quantum coherence (entanglement)

l *
Chtlpas) = Y lpijwl> =2 > R(pijniPiip)
ik 1 i#k,j<l

C’,’j; (pa|B) is equivalent to the linear entropy of subsystem A.



CCR for pure states - entropic formulation

e Another form of CCR can be obtained by defining the predictability
and the coherence measures in terms of the von Neumann entropy:

Ore (PA) + Pun,(pA) + S’U’IL(pA) - 10g2 dA

where
Cre (PA) - Svn (pAdiag) - Sﬂn (PA)
PU’H,(pA) = 1()g2 dA - S’lm,(/)Adiag)
For pure states Sy, (pa) = —Tr (palog, pa) is a measure of

entanglement between A and B.



CCR for mixed states®

e For mixed states, Sy, (pa) does not quantify entanglement, but it is
just a measure of mixedness of A. CCR have to be modified:

Pyn(pa) + Cre(pa) + Ia:(paB) + Sap(pap) = logyda,

where:

— Pyn(pa) =Inda — Sun(padiag) is the predictability;
— Cre(pa) = Son(padiag) — Svn(pa) is the relative entropy of coherence;

—Ta:8(paB) = Son(pa) + Sen(pB) — Sun(pan) is the mutual information
of A and B;

— SaB(paB) = Sun(pan) — Svn(ps) is the conditional entropy:
It tells how much it is convenient knowing about subsystem A with respect
to the whole system.

*M.L.W.Basso and J.Maziero, EPL (2021)



CCR for oscillating neutrinos'

e We now consider the CCR, for neutrino oscillations, both for pure
and mixed states.

Let us consider a two-flavor neutrino state:
[Va(t) = aa(t) [Va) + aap(t) ‘V/3>
We can use the following correspondence:

Vo) = |1>a ® |O>/3 = [10)
lvg) =10}, ® [1)5 = |01)

For an initial electronic neutrino, we have:

[Ve(t)) = aee [10) + ac,, [01)

TV Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)



CCR for oscillating neutrinos

The corresponding density matrix is:

0 0 0 0

|0 |aep]? eeay, O
Pen = 0 aepag |aee|2 0
0 0 0 0

The state of subsystems e and p are:

o |a’(i(i|2 0 . _ ‘a‘ﬁ/‘/|2 0
Pe= 0 |aeu|2 7 P 0 |aee|2



CCR for oscillating neutrinos

We verify that the CCRs for pure states are verified in the case of
neutrino. We find:*

Phs(pe) = P2 +P2, — %
Chs(pe) = 0
Cﬁi(/’c#) = 2P.FP,,
where |ace|> = Pec, |aeu|* = Pey and Pee + Pey = 1.

Thus: ]
Py (p(z) + Chs (pc) + Clrylg (pcu) = i

as expected.

iV.BittenCourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)



CCR for oscillating neutrinos

Analogously:
Pon(pe) = 1+ lace|*1ogy |ace|* + [acu|*logy Jac|”
Cre(pe) = 0
Sun(pe) = —lace|*10gy |ace|® — lac,|* log, |ac,|®

and the CCR is verified:

Pl)’ri,(ﬂe) + C’r‘fi(pe) + S’uu(pe) =1



CCR for neutrino mixed state

In a wave-packet description of neutrino oscillations, one starts with a pure
state pa(z,t) which become mixed after time integration:

z) = UarUs;i fir(@) |v;) (v,

k,j

i Amjkr Am?km 2
foule) = exp | i S — ([

where:

By considering;:
) = 3 Vailva) s 1va) = [Fae), 10an) 10ar),

we can write:

pal(z ZFﬁ ) |08e08u057) (e 0rubyr |

where:

(@) = S Ul Uk fi (2)Uny Ul

kj



CCR for neutrino mixed state

o We consider the CCR in the case of a two-flavor neutrino
oscillation, for an initial electron neutrino

Pyn(pe) + Cre(pe) + IA:B’(peu) —+ Se\u(peu) = log, de,
where:

= logy, —Sun(Pesin,)

= Son(Pegiag) — Svn(pe)

= Sun(pe) + Sun(pp) — Svn(pep)
= Sun(pep) = Son(pu)

Py (pe
Cre(pe

)
)
ITa.B(pep)

Selp(pep)

For a generic matrix p, the von Neumann entropy is defined as
Sun(p) = —>_; Ailogy Ai, where \; are the eigenvalues of p.



CCR for neutrino mixed state

The starting density matrix is:

0 0 0 O

0 FL F5 0

Pep (1‘) = 0 Fe¢ Fe 0
ne L

0 0 0 O

and the reduced density matrices are:

F 0 Fe 0
— ee ) — o
(7 2 o= (B )

By evaluating the eigenvalues of these matrices, we obtain:
R)TL (P() =1+ Fce(z 10g2 Fcec + Fﬁ/t 10g2 Fﬁu
C’r‘e (pe) =0
Ie:u(peu) + Sem(pe,u) = _Fée IOgQ Fe(e - Fﬁu 10%'2 F;ip,

By adding all the terms we find that the CCR for mixed states is
satisfied for a neutrino state.



CCR for neutrino mixed state

The sum of the non-local terms of the CCR is equal to the Quantum
Discord, defined as:

QD(pap) = I(pag) — CC(pagn),

where I(pap) is the total correlations between the subsystems A and
B; and CC(pap) quantifies the classical correlations. We have

Q@D(paB) = Swn(pa) = Swlpan) + ?ﬁllli Sen,(mity (PaB)

that, for the neutrino density matrix under consideration, gives

QD(P@“) - 7Fzze(: log2 F(iz - F/iu, logQ Fﬁ/l.



CCR for neutrino oscillations* - DAYA BAY
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*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)




CCR for neutrino oscillations’ - KamLAND
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TV Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)



CCR for neutrino oscillations* - MINOS

CCR

1500
x(km) x(km)
(¢) MINOS (L =735 km)

Am3y = 2.32 x 1073eV?2, sin? 2053 = 0.95, E = 0.5GeV

¥V Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)



Results

e We have studied CCR for the oscillating neutrino systems, both in

the pure and in the mixed case.

e Complete characterization of quantum correlations in neutrino

oscillations.

e Interesting long-distance behaviour of the correlations, depending

on the mixing angle.



CCR for neutrino oscillations - 3 flavors*

Tripartite pure state:

dp—1dp—1 dc—1

PABC = Z Z Z Pijk,imn |1, J, k>ABC (L,m,nl.

i,l=0 j,m=0 k,n=0

State of subsystem A:

da—1 fdp—1dc—1 da—1
iz 3 (z S ) =S s, al

i,I=0 \ j=0 k= i,1=0

CCR
dyg — 1

da

Pas(pa) + Chs(pa) + Ci(pajpe) =

The non local coherence is given by:

C’hs(pA\B(V Z Z+Z+Z |p1]klmn _QZ Z+Z+Z %(pijk.ljkp;mn,hnn)‘

i#l \j#Em  j=m j#m i#l \j=m  j<m  j<m
k#n k#n k=n k<n k=n k#n

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)



CCR for 3 flavor neutrino oscillations

e Entropic form of CCR still valid for the single-partite subsystems A,
B and C. For the subsystem AB, we have:

Cre(paB) + Pon(pap) + Svn(pan) = logy(dadp),

and similar ones for AC and BC.

e For tripartite mixed states, CCR for subsystem AB takes the form:
Pun(paB) + Cre(paB) + Sapjc(paBc) + Lap.c(papc) = logy(dadp),
e The state for the subsystem C, on the other hand, satisfy the CCR:

Pyn(pc) + Cre(pc) + Sciap(papc) + Ic.ap(papc) = logy(de).



CCR 3 flavors — plane waves*
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CCR 3 flavors — plane waves*

CCR Components
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e CCR terms and tripartite entanglement for an initial muon neutrino state.
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CCR 3 flavors — wave packets®

AOyy)
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Figure 2: CCR terms for two flavor subsystems ey (a), er (b) and p7 (c) as function of & - muon neutrino.

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C (2024)




CCR 3 flavors with CP violation*
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Fig. 6. Difference between neutrino and anti-neutrino CCR terms for bipartite subsystems ey, et
and p7 as function of L /E in the case of an initial electronic neutrino.

e Recent review of neutrino correlations for three flavors:
W. Guangjie, S. Xueke, Y. Liu and W. Dong, Acta Phys. Sin. (2025)

*M.B., S. De Siena and C. Matrella, Int. J. Quant. Inf. (2024).
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Violations of macrorealism in neutrino oscillations

e The notion of Macroscopic realism (Macrorealism) tries to encode

our intuition of macroscopic world*

e Violations of macrorealism tested by Leggett-Garg inequalities
(LGIs): temporal analogue of Bell inequalities

e Violations of LGIs in neutrino oscillations have been proved by
using the MINOS datat

e Bell vs LGIs:

e Bell inequalities: necessary and sufficient for local realism?,
e LGIs: only necessary but not sufficient for macrorealism.

*A. J. Leggett and A. Garg, Phys. Rev. Lett. (1985)
tJ. Formaggio, D. Kaiser, M. Murskyj, and T. Weiss, Phys. Rev. Lett. (2016)
fA. Fine, Phys. Rev. Lett. (1982).



Violations of macrorealism in neutrino oscillations

e A necessary and sufficient condition can be formulated in terms
of two set of equalities*: non-signaling in time (NSIT) and arrow
of time (AoT).

e We computed NSIT/AoT in the case of two-flavor neutrino
oscillations in the wave-packet formalism’ and in the case of

. . +
meson oscillations*

e NSIT/AoT reveal violations of macrorealism hidden by LGIs.

*L. Clemente and J. Kofler, Phys. Rev. A (2015).

fM.B., F.Illuminati, L.Petruzziello, K.Simonov and L.Smaldone. Eur. Phys. J. C
(2023)

fM.B., F.Illuminati, L.Petruzziello, K.Simonov and L.Smaldone. Phys. Rev. A
(2024).



Chiral oscillations



Chiral oscillations

e Taking into account (bi)spinorial nature of neutrinos and chiral
nature of weak interaction, one naturally gets chiral oscillations *

e Interplay with flavor oscillations in the non-relativistic region®

e For CuB, chiral oscillations reduce detection by a factor of 2.%

“A. Bernardini and S. De Leo, Phys. Rev. D (2005)

$V.A‘Bittencourt, A.Bernardini and M.B.,Eur.Phys.J.C(2021);EPL Persp.(2022);
M. W. Li, Z. L. Huang and X. G. He, Phys. Lett. B (2024);
K. Kimura and A. Takamura, Annals Phys. (2025).
T. Morozumi, and T. Tahara, Prog. Theor. Exp. Phys. (2025)
V. Bittencourt, M. B. and G. Zanfardino, Phys. Lett. B (2025)

¥S-F. Ge and P.Pasquini, Phys. Lett. B (2020)



Chiral oscillations

Chiral representation of the Dirac matrices

(o] 0 0 12
a; = ) ﬁ = )
0 —0; 12 0

and v5 = (I2, —I2). Any bispinor |£) can be written in this representation as
&) = |
§c) |
The Dirac equation Hp |€) = i|¢) can then be written as

10 |€r) — P -0 |Er) =m [€L),
i0:|€L) +p-olér) =mEr),

o Evolution under the free Dirac Hamiltonian H p induces left-right chiral
oscillations.



Take initial state |1(0)) = [0, 0, 0, 1]7 which has negative helicity and
negative chirality: 95 [¢(0)) = — [¢(0)).

The time evolved state |1, (t)) = e~Hpt |1)(0)) is given by

LB ,m +m p —iEp mt
[Ym(t)) = ZT [(1 + m) e Frmt lu_(p,m))
p,m p,m
(1 ) e e
p,m

with (for one-dimensional propagation along the e, direction)

Em+m 1:|:E,5+'m ‘:t>
|uﬂ:(p7 TTL)> = ZT I’é )
p,m 1 F 7Ep,7n+7"' ‘:l:>

Epm+m (liﬁ> H:>
|Ui(p7 m)> = ZT ” j_ )
pom o (1 + Ep.’VIVL+7”r> H:>

with |+) eigenstates of 0.




e Survival probability of initial left-handed state

2
m* .
sin? (Epmt) ,

P(t) - ‘ <wm<0)|¢m(t)> |2 =1-

2
p,m

Average value of the chiral operator (95)(t)

) R 2m?
(35) (8) = (W (8) 35 [tom (£)) = =1+ Z5— sin® (Bpmt) .
p,m
— Chiral oscillation period: T; = 2%
— Chiral oscillation length: L., = v Eiﬂn = 52&



Chiral and flavor oscillations

e State of a neutrino of flavor « at a given t:
V(1) ZUmwm )@ v,

where |, (t)) are bispinors.

e The state at t = 0 reads

‘Vw( W} ®ZU,,,|Z/, WJ )>®‘Vor>7

where [(0)) is a left handed bispinor.
e Survival probability:

2

,Paﬂa - |<VO/( |Vn Z ‘UO/ L‘ |l/}m ( )>



Two flavor mixing:
lve(®)) = [cos® 0[tmy (8)) +sin® 0 [1hm, (2))] @ |ve)
+sin 6 cos 0 [|thm, (t)) — [thm, (£))] @ |vi) ,

e The survival probability can be decomposed as
Peose(t) = Pfﬁe(t) + Ae(t) + Be (t)
P2, (t) is the standard flavor oscillation formula

E Mg - E m
PLLo(t) = 1 — sin® 20 sin® (%t)

and
m m ?
Ac(t) = — L cos? Osin (Bpm, t) + 2 sin? O sin (Epmyt)|
Ep1m1 Ep,mz
1 2
Be(t) = = sin2208in(Epm,t)sin(Epm,t) [ Eam2 )
2 ' : Epmy Epms

are correction terms due to the bispinorial structure.

e Agreement with the QFT formula.
- Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantu



| — v entanglement and chiral oscillations*

Chiral oscillations, we consider induced spin correlations in pion
decay products (7 — | + D)

(@ D) (b) \\If(t = O))
e Al-@- -»>+B|@~° )
Chiralities {7s): © “I/(t > 0)>

* | -1 (left handed)

® | +1 (right handed) | @ \/*>+B(t)|-©+ ~@~>

*V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)



Spin entanglement at ¢t =0

e The state of the lepton-antineutrino pair is then described in the
composite Hilbert space He, @ Hs, ® Heo, @ Hs,

e [t is a 4-qubit entangled state.

e We can write |[U(0)) = |+¢,) @ |—¢,) @ |¥s, s,), with |[£4)
denoting the positive (negative) chirality of A = Cy;, and
|\PSV~,SI> = A(p7 ml77n17)| TSV> ® l \I/Sl> - B(p7 ’I’TL[,T)”L{,)‘ \L5u> ® | TSI,>

is the joint spin state at t = 0.

(a) Spin-Spin Entanglement
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Spin entanglement at ¢ # 0

e The reduced matrix pg, s, (t) = Trchiraiity [|V(2))(¥Y(t)|] describes a
mixed state with entanglement dynamics directly affected by chiral

oscillations.

e Entanglement between the spins at time ¢

Ns,.5,(t) = Nlps, s, (1) = 05, 5,()l| = 1 = N, 5, (0)L'(2)

with
re) =[] [kp—(m()flf ’

m
j=u,l J

The average chiralities are given by (95)a(t) = Tra[pa(t)] with A = o,

2

~ my

Gsolt) = 1= 25— [1—cos (2Bpm,1)],
p,mi

N 'I’TL

Gh(t) = —1+ 2o [1 = cos (2Bpm,1)].
p,my



Spin entanglement at ¢ # 0

° Tr[p%u’ s,(t)] <1 = entanglement initially encoded only in the spins
redistributes into spin-chirality entanglement.

e Entanglement encoded in the bipartition (Cy, S3); (Cy,S)) is
conserved:

Te[p; ()] = Trlpf(t)] = A*(p,m1,mz) + B (p,ma, m)

2
2 (0
— 1_%1()<1.



(a) Lepton Chirality (b) Antineutrino Chirality
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Figure 1: (a) Average lepton chirality, (b) average antineutrino chirality and (c)
spin-spin entanglement as a function of the momentum and of time.




Chiral oscillations and Bell spin correlations

The quantity
Blp(t)] = |(S51 ® 811) + (S5.1 ® S1.2) + (Sp2 © S11) — (So0 ® S1.0)],

is the Bell observable first proposed to investigate non-local
correlations™.

For pure states, B[p] > 2 indicates that the correlations shared
between the spins are non-local and that the state is entangled.

“N.Brunner et al., Rev. Mod. Phys. (2014)
- Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantu
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Results

e We find that chiral oscillations do affect spin-spin correlations for
the entangled lepton—antineutrino couple.

e Resonance of oscillation amplitude at neutrino mass: possibility of

extracting fundamental information via quantum correlations.

e We have extended the study to the case in which flavor mixing is
included: neutrino state is an hyperentangled state with three DoF's:
chirality, spin and flavor.

#V.A.Bittencourt, M.B. and G.Zanfardino, Physica Scripta (2024)



Quantum field theory of chiral oscillations?

e Dirac Lagrangian density
L=19 (170 —m) ¥

Invariance under global phase transformations = conserved charge
Q= [ @xvl @i

Dirac field ¢ can be split as ¥ = 91, + g where

vu=P(e) = ST, en= Poe) = L0

and hence Dirac Lagrangian can be written as

L =iy 8L + Yriy"Our —m (YR + YrYL)

V. Bittencourt, M. B. and G. Zanfardino, Phys. Lett. B (2025)



e Chiral symmetry is explicitly broken by the Dirac mass term.

e Separate global phase transformations for ¢);, and ¢ lead to the
non-conserved chiral charges

Qult) = / Fxgl@L),  Qrlt) = / PBx (@) bR ().

e The total (conserved) charge is equal to the sum of the (time
dependent) chiral charges

Q = Qr(t) + Qr(?).



Diagonalization of chiral charges

e Introduce the following canonical (Bogoliubov) transformation:

ok, = cosb ai — €' sin 6, /Bi
ﬁT_k’L = cos0y /J{Tk — e % sin 6y, ay

ox,r = cosby af + €9 sin 6y, ﬂﬁk
ﬂik,R = costy B2+ e sinfy al

e Condition for diagonalization

1 k 1 k
cos?f, = = 1+u . sin?6, = = 1,u ,
2 Wik 2 Wi
k )
cos20, = u, sin 20y, = —ﬂ, O = 2wyt.
Wi WE



e Chiral charges are diagonal in the new operators

Q) = [ @k (ol as(®) - By, O5-1u(0).
@n() = [ &% (o] qOrn(t) - HipOFsn(D) .

e The above defined chiral ladder operators are time-dependent and
satisfy (equal time) canonical anticommutation relations (CAR):

{okr®. 0,0} = P 0p)ins.  {Bin®).B1L(1)} = 6 (k-p)o



Dirac field expansion:

Pk ) |
’QZ)(ZL') — / (2 )3 6zk-x [Ull( (COS ek QR — el@k sin 0k ﬁik L) efzwkt
s s
+ug (cos by cuer, + € siny, BT e iwnt
k KR

oty (COS@k ﬂikﬁL + e ' sin6 (xkﬁ) glwrt

—i—v%k (cos 0, Bik,R — 7% gin 6, ak,L) e'“kt}

can be rearranged in the following form (using ¢y = 2wit)

Y(z) = / (;]7:{)3 [uk,L g (t) e oy g /)’ik’L(t) e“"“} etkx

dSk —tw ] Tw 1k-x
/W {Uk,R ar r(t)e ™ + v g Bl p(t)e€ kt}e K

Yr(x) + Yr(x)

_|_



with

2 . 2 1 . 1
uk,;, = cosbOpuyr — sinfp vy, ukr = cosliux + sinfpv_y

1 . 1 2 . 2
ok, = cosOpv_y — sinbpux, v_xr=coslpviy + sinb uy

T _ _ T _ ., f _
Uy [ Uk,L = Uy gUK,R = 1, UVl LU—k,L = ULy pU_kR = 1

T _ . f _ T . _
Uy [Uk,R = V. [ V-k,R = 0, Uy [ V—k,L = Uy gU—k,[ = 0
and the completeness relation:

Uk, R UL,R + uk,r UL,L + vrV R+ VoKL vlk,L =1

Consistency relations:

Prux,r, = uxr, Pro_xr, = v_kr
Prux,r = ukRr, Prv_xr = v_x,R
Prux,, = Prv_xr = Pruxr = PLv_xr =0



The Bogoliubov transformation is written as

—1 2 —11
ok = Gy oGy . B = Gy PGy

1 1 g2
xR G, oy Gy . Bur = Gy B Gy

with generator
Gi(0,0) = exp [Z / K O (e’w”“cy{;/ﬁlk — el ﬁﬁkaﬁ)]

e Explicit form for the massive chiral vacuum:

0(t))Lr = H [cos Or + €"e'" sin F)kak } |0)
k,r

e The massive chiral vacuum |0(¢))zz and the Dirac vacuum |0) are
orthogonal in the infinite volume limit:

lim (00(t))Lr = 0,

V—oo

generating unitarily inequivalent representations of the field algebra.



Chiral oscillation formula

Define the state |az) = oz;L|f)>LR, with [0)zr = [0(0)) L&

Left chiral operator at time ¢
e (1) = cos O e “F ol — sin Oy ekt ﬂi
e Chiral oscillation formula

(0, L|Qr (1) |one,1) = [{oue,1.(8), af, 1 (0)}]?

with
{ak (1), alt 1 (0)} = cos? Oe ™kt 4 sin? Gy e'rt
We obtain
2
(oe.1|Qr(V)]ak.) = 1 —sin®(26},) sin®(wyt) = 1 — % sin? (wyt)
k



Ontology of weak interactions: flavor/mass, chiral-
ity /energy ?

e unitary inequivalence between mass and flavor representations and

between chiral and energy representations = nontrivial nature of

weak interactions.




Chiral oscillations: perturbative approach

Fermion Hamiltonian density™

Ho = > pidhbe, Hine = —m (Vrr+Prir)

o=L,R

Massless fields with definite chirality

1 —gkr Lo
/(/)U(CU) = ﬁ Z (uk‘U Q.0 € ika + Vko /811;,0 ezk.L)
k

Chiral states
[Ypo) = o, ,10)

with ok »]0) = 0 = Px,+|0)

*M. B., F. Giacosa, L. Smaldone and G. Torrieri, Eur. Phys. J. C (2025)
- Entanglement in neutrino mixing and oscillations Quantum Field Theory of neutrino mixing and oscillations Quantu



Survival diagrams

Y —

VY X
3 J/l_
K
wvr 3

(b)

\ 4

(a)

e Second-order diagrams for the L survival probability. Time flows from left
to right.




Chiral oscillations probability

At the quadratic order in m
L@
Arsr(pitity) = 1= A7 (piti ty),
with
ty 'ty )
AfLL(P%ti,ff) ~m? / dtq / dty e2iIPl(ti—t2)
Jt; Jt;

Chiral oscillation probability
m?
Prorn(p; At) = 1— PP sin? (|p| At) .

It coincides with the one computed in QM and QFT (at o(m?) order).



QFT flavor/chiral oscillation formulaf

e By considering expectation values of flavor/chiral charges, we obtain:

(QE(1)) = Pese(t) = PS7C(t) + Ac(t) + Be(t).

where P§7°(t) is the standard (Pontecorvo) flavor oscillation formula:

PETC(t) = 1 — sin®(26) sin® <%t> 7
and

2
Ac(t) = — (Zl—ll cos”(0) sin(wit) + 2—122 sin®(0) sin(wzt)) ,

2
Be(t) = %sin2(29) sin(w ¢) sin(wat) (m - 1> ,

wiw?2

e Agreement with formula obtained by Dirac equation

tV.Bittencourt, M.B. and G.Zanfardino, arXiv:2507.09645 [hep-ph]



Criticism to our work

Recently, some papers appeared which deny the existence of chiral
oscillations:

— A. Y. Smirnov, Chiral interactions, chiral states and “chiral
neutrino oscillations”, [arXiv:2505.06116 [hep-ph]].

— E. Akhmedov, On chirality and chiral neutrino oscillations,
[arXiv:2505.20982 [hep-phl]].

Work in progress in replying to these criticisms...



Standard argument for pion decay (Thomson)

*Hence MT:PRMT_‘_PLMT:% (]+ﬁ%> MR+%(I_£ﬁ> ur,

RH Helicity RH Chiral LH Chiral

«In the limit E > m, as expected, the RH chiral and helicity states are identical

+Although only LH chiral particles participate in the weak interaction
the contribution from RH Helicity states is not necessarily zero !

Vi ¢ @) N

m, = 0: RH Helicity =RH Chiral | mu¢ 0: RH Helicity has
LH Chiral Component

* Expect matrix element to be proportional to LH chiral component of RH Helicity

electron/muon spinor
m from the kinematics

! Bl _
Lo~ — I L —
MfL 2 ( 1 E+m) my +m of pion decay at rest

* Hence because the electron mass is much smaller than the pion mass the decay
T~ — e V. isheavily suppressed.

Prof. M.A. Thomson Michaelmas 2009 299



Criticism to our work: reply (preliminary)

The argument by Smirnov is based on the construction of neutrino
state as superposition of helicity eigenstates.

However, if we consider the case of massless neutrino, the helicity of
the associated lepton is fixed, and chiral projector applies, so chiral

oscillations occur.

In this case, there is no possibility to define a state which is
superposition of helicity states!
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