Neutrino and Beyond Standard Model Physics Searches at the CERN ProtoDUNE Detectors

Ciaran Hasnip, CERN On behalf of the DUNE Collaboration **NuTel 2025** 30/09/2025

Deep Underground Neutrino Experiment (DUNE)

See DUNE plenary talk by David Rivera on Thursday for more details

Observe $\nu_{\mu}
ightarrow \nu_{\mu}$, $\nu_{\mu}
ightarrow \nu_{e}$, $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{e}$ Measure δ_{CP} , Δm_{32}^2 , θ_{23} , θ_{13} , mass ordering

ProtoDUNE at CERN Neutrino Platform

Two large prototypes of the DUNE FD at CERN Neutrino Platform

 Built to test LArTPC detector technology for the DUNE FD and measure hadron-Ar cross section measurements

Neutrinos and BSM Physics in ProtoDUNE

- New idea: search for neutrinos and beyond-standard model (BSM) particles at ProtoDUNE from the CERN Super Proton Synchrotron (SPS)
- Details of proposal and estimated physics sensitivity of a ProtoDUNE BSM search published: J. High Energ. Phys. 2024, 134 (2024)
- ProtoDUNE becomes a beam-dump experiment common way to search for weakly interacting long-lived particles or neutrinos

Beam-Dump Experiment

- A beam (usually protons) hitting a fixed target is a common way to produce neutrinos – or possibly something more exotic (e.g. Heavy Neutral Lepton)
- Pions, kaons etc. are produced in the target decay downstream to neutrinos/BSM
- Place a detector in path of the neutrinos/BSM to try and observe them

Beam-Dump Experiment

Beam-Dump Experiment

How can the ProtoDUNE detectors be a beam-dump experiment?

Beam-Dump Experiment

CERN SPS and Neutrino Platform

- **CERN SPS beam** accelerates protons to 400 GeV
- SPS protons hit the "T2" target
- Protons hitting T2 are aligned in the direction of the Neutrino **Platform**

The T2 Beamline

Neutrino Platform Top View

The T2 beamline

We have a 670-720m beamline (VD or HD ProtoDUNE) – neutrinos/BSM produced in T2 or downstream dump (TAX)

T2 Target Area G4 Simulation

- A full Geant4 model of the target facility around T2 has been created
- Simulate 400 GeV SPS protons hitting this facility and the subsequent hadrons produced
- Produce fluxes of BSM particles, such as Heavy Neutral Leptons (HNLs)
- Dump, magnets and ~500m of soil absorb remaining hadrons

Potential Sensitivity of ProtoDUNE BSM Program

Sensitivity for HNL benchmark model: <u>J. High Energ. Phys. 2024, 134 (2024)</u>

Proof of Principle - Observing Neutrinos at ProtoDUNE

- The aim is to do a BSM search at ProtoDUNE
- First search for something that exists
 neutrinos!
- Proof of concept: observation of neutrinos from the T2 target – becomes background in BSM search
- A sample of neutrinos in a FD-like
 LArTPC will be useful test energy
 reconstruction methods or possibly
 a cross-section measurement

What is the Neutrino Flux?

- Geant4 simulation of SPS protons hitting T2 target area and downstream facilities
- Flux peaks at 0-10 GeV and long tail to more than 100 GeV
- Very high-energy neutrinos!
- Simulate separate flux for each T2 magnet configuration

ProtoDUNE-HD (NP04)

- Horizontal drift configuration
- 4 drift volumes 2 wire planes either side of cathode
- We are ~720m downstream from T2 and only ~7m off the central axis of the beam
- Neutrinos (or BSM particles) are moving totally parallel to the central cathode
- Many of them very high energy

Data Overview at ProtoDUNE-HD

- Collected ~1 week of data
- Trigger algorithm that selects high energy events parallel to the cathode
- Need to self-trigger detector rare events and long 4.8s beam spill
- Data taken non-intrusively no effect on other CERN operations

Run 29416, Trigger 401, APA2 Plane 2 Trigger Type (Supernova), 2024-10-03 12:30:14+02:00 (CERN)

First Neutrino Candidates in Data

- Here is an identified neutrino candidate
- Identified by initial eye-scanning process by CERN Student Dario Pullia
- Real data taken when the SPS beam spill was on
- Forward-going shower with vertex within fiducial volume

First Neutrino Candidates in Data

- Here is another identified neutrino candidate
- Identified by initial eye-scanning process by CERN Student Dario Pullia
- Real data taken when the SPS beam spill was on
- Forward-going shower with vertex within fiducial volume

Data Processing to Reconstruction

- End-to-end data processing implemented
- Data has been reconstructed with Pandora analysis with cut-based neutrino selection near completion

Neutrino MC Event Simulation

- Neutrino flux passed to GENIE

 neutrino interactions in a G4
 model of ProtoDUNE-HD
- Thousands of interactions in active volume per week

	Weekly interactions		
Magnet Conf.	w000	w133	wNP04
$ u_{\mu}$ -40Ar – CC	2983	464	2597
$ u_{\mu}$ -40Ar – NC	955	150	823
$\overline{ u_{\mu}}$ - $^{40}\mathrm{Ar}-\mathrm{CC}$	1248	305	1574
$\overline{ u_{\mu}}$ - $^{40}\mathrm{Ar}-\mathrm{NC}$	495	121	615
Total	5681	1040	5609

J. Hernandez Garcia

Neutrino MC Event Simulation

- Neutrino flux passed to GENIE neutrino interactions in a G4 model of ProtoDUNE-HD
- Simulated neutrinos with cosmic overlay reconstructed with Pandora

Estimate Rate of Triggering Neutrinos with Simulation

- Simulation has realistic detector and trigger simulation
- Estimate proportion of neutrinos we trigger for
- Same trigger algorithm simulated as used for data
- Achieve ~24% trigger
 efficiency for ν and E > 10 GeV
- ~1400 triggering neutrinos per week with this magnet configuration

Analysis Strategy for ProtoDUNE-HD

- Trigger due to a cosmic muon 1-2 times per second
- Trigger due to neutrino once every few minutes (depending on magnet configuration)
- First remove dominant cosmic background
- Measure our cosmic background rate from our Spill OFF data

Analysis Strategy for ProtoDUNE-HD

- Fortunately, neutrinos look quite different from most cosmics
- Event selection aims to show an excess of beam-aligned high-energy showers arising from a vertex
- Selection also under development to distinguish HNL decays from neutrinos

Looking to the Future – Vertical Drift

- Argon has been moved to **ProtoDUNE-VD** and is taking data now!
- Investigate searching for neutrinos/BSM physics in NP02
- Take data whilst the SPS is on
- Simulate neutrinos to estimate the rate
- Event selection to search for beam-aligned showers from a vertex

Looking to the Future – Vertical Drift

- Neutrino flux simulation repeated for ProtoDUNE-VD
- Similar position off-axis, but fiducial volume ~70% the size of ProtoDUNE-HD
- Still estimating thousands of interaction in active detector volume per week of SPS beam
- Expect similar trigger efficiency
- Developing an upgraded ML-based trigger algorithm

Conclusions

- Opportunity to search for neutrinos and BSM physics at ProtoDUNE detectors
- These searches can be run non-intrusively
- We have ~1 week of data with at ProtoDUNE-HD seen first neutrino candidates in ProtoDUNE!
- End-to-end data processing for neutrino search complete
- End-to-end neutrino simulation complete
- Aim to neutrino search analysis first as a proof-of-principle of a future BSM program
- Large sample of neutrinos in a DUNE FD-like detector very useful for testing energy reconstruction methods for the future FD

Thank you for listening!

The ProtoDUNE-BSM Group:

H. Amar, C. Andreopoulos, A. Chatterjee, S. Bianco, E. van Campenhout, P. Coloma, A. De Roeck, G. Gurung, C. Hasnip, J. Hernández García, W. Ketchum, F. Lanni, J. López-Pavón, J. Martin-Albo, L. Molina-Bueno, O. Palamara, J. K. Plows, F. Pietropaolo, D. Pullia, F. Resnati, P. Sajitha, H. Sieber, C. Touramanis, S. Urrea

Backup

Primary Target T2

LLP decays

Detector

In this study one ProtoDUNE

detector considered (NP02)

Could investigate decay or scattering channels

Scattering

Detector

P. Coloma, J. López-Pavón, L. Molina-Bueno and S. Urrea, JHEP 01 (2024), 134 doi:10.1007/JHEP01(2024)134

Backup

The current on these magnets depend on H4/H2 user They are called "wobbling"

Backup: Possible Schedule for BSM Program

- Run parasitically at SPS (not interfering with other experiments at H4/H2)
- Proton run at SPS can be up to 6 months depending on the year
- We consider 5 years to collect 1.75x1019 POT

From: http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm 2021 2022 2023 2024 2025 2026 2027 2028 2029 JIPMAMI JASONO JEMAMI (DNO SALLEMAMI LONO SALLEMAMI (DNO SALLEMAMI LONO SALLEMAMI LONO SALLEMAMI JASONO JEMAMI JFMAMJJASONDJFMAMJJASONDJFMAMJJASOND Run 3 Long Shutdown 3 (LS3) 2030 2031 2032 2033 2034 2035 2036 2037 2038 JIFMAMIJJASONDJFMAMIJJASONDJFMAMIJJASONDJFMAMIJJASONDJFMAMIJJASONDJFMAMIJJASOND

Backup: Possible Schedule for BSM Program

Separate neutrino flux simulation for each magnet wobbling configuration

Data Processing Procedure

- End-to-end data processing implemented and running through to fully reconstructed events
- Reconstruction uses FD neutrino pandora + PD-HD cosmic tagging
- Produce a flag for whether SPS spill was ON/OFF
- Filter for ground shake removal
- 1 week of data processed to reconstruction and cut-based analysis on-going

