

LEGEND:

0vββ decay search with germanium detectors

Konstantin Gusev on behalf of LEGEND collaboration

30.09.2025

0vββ search: why?

Possible in 35 even-even nuclei (β decay is energy/spin suppressed)

2νββ

- Rare process with half life is 10¹⁰ longer than the age of the universe, however already **observed** in 14 isotopes!
- Most precise measurement of 2vββ half-life in the world by **GERDA**:

$$T_{1/2}^{2\nu}(^{76}\text{Ge}) = (2.043 \pm 0.033_{stat+sys}) \cdot 10^{21}\text{yr}$$

0vββ search: why?

Possible in 35 even-even nuclei (β decay is energy/spin suppressed)

2νββ

- Rare process with half life is 10¹⁰ longer than the age of the universe, however already **observed** in 14 isotopes!
- Most precise measurement of $2v\beta\beta$ half-life in the world by **GERDA**:

$$T_{1/2}^{2\nu}(^{76}\text{Ge}) = (2.043 \pm 0.033_{stat+sys}) \cdot 10^{21}\text{yr}$$

0νββ

- Violates lepton number
- Forbidden in Standard Model
 - New BSM physics
- Creates matter w/o antimatter
- Shows, that v has Majorana mass component
- In case of light v exchange
 - would give access to v mass scale
 - would provide important input to cosmology

Link between 0vββ and ν-mass

Link between 0vββ and ν-mass

Notes:

- Recent KamLAND-Z 800 limit came to IO region
- Next generation projects fully cover IO and part of NO

 $\Delta m_{\rm sol}^2$

 $\nu_{\mu} \ \nu_{\tau}$

Experimental design considerations

- Detector performance:
 - High mass and good long-term stability to increase exposure
 - High efficiency: source = detectors
 - Good energy resolution
 - Small background:
 - Underground labs to reduce the cosmogenic
 - Materials handling and cleanliness
 - Strict radiopurity constraints
 - Passive and active (!) shielding
 - Signal discrimination techniques

"Background free" experiment

$$T_{1/2}^{0\nu} \propto \epsilon M t$$

But energy resolution still essential!

Experimental landscape

- 136Xe
- 130Te
- 100Mo
- 82**Se**

Rev. Mod. Phys. 95, 025002 (2023)

0vββ search with HPGe detectors enriched in ⁷⁶Ge

- High-Purity Germanium detectors enriched in ⁷⁶Ge
 - ββ source = detector → high efficiency
 - high purity → low intrinsic background
 - isotope enrichment → \geq 90 % ⁷⁶Ge
 - excellent energy resolution \rightarrow ~ 0.1 % FWHM @ $Q_{\beta\beta}$
 - topological discrimination → pulse shape discrimination (PSD)

History of 0v\beta\beta search with HPGe detectors

History of 0νββ search with HPGe detectors

History of 0v\beta\beta search with HPGe detectors

New history of 0vββ search with HPGe detectors

LEGEND Collaboration

58 Institutions, 12 Countries, 1 Goal:

Develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years

LEGEND-200: Location (LNGS Hall A) and design

- Up to 200 kg HPGe Detectors
- LAr instrumentation (two fiber shrouds)
- Infrastructure of GERDA
 - $T > 10^{27} yr$
- < 2·10⁻⁴ cts/(keV kg yr)

LEGEND-200: the best from GERDA and Majorana

HPGe readout electronics based on MJD Low Mass Front-End and GERDA charge sensitive amplifier (CC4)

Detector mount: underground copper, optically active PEN plates & radiopure plastics

Liquid Argon instrumentation: inner & outer fiber barrels with silicon photomultiplier (SiPM) readout at top & bottom

Larger mass (inverted coaxial) HPGe detectors with up to 4 kg

Source funnels for

²²⁸Th calibration sources

LEGEND-200: Taking first data

142 kg installation:

- Installation of all available HPGe detectors (101 detectors in 10 strings) as well as full LAr installation, DAQ, electronics (Oct'22)
- 130 kg operational (12 kg off due to hardware issues)
- LAr instrumentation operational
- About 1 year of data taking
- First results with 48 kg·yr exposure, updated with 61 kg·yr

Maintenance work started in 2024 and finished recently

LEGEND-200: Energy Scale and Resolution

- Energy scale evaluated by weekly ²²⁸Th calibration between physics runs
- Most detectors fulfill LEGEND energy resolution goal (0.12% at Q_{ββ})
- Stable energy scale among calibrations
- Data partitioned according to stability of energy observables

LEGEND-200: Signal and background discrimination

LEGEND-200: Quality, Muon Veto and Multiplicity

Blinding applied at $Q_{\beta\beta} = 2039 \text{ keV}$ (50 keV window)

- Data cleaning: 95-99% survival after removal of unphysical events
- Muon veto: 2 events removed at $Q_{\beta\beta}$
- Multiplicity cut: 26% of events rejected near Q_{ββ}

LEGEND-200: Modeling before Analysis Cuts

Bayesian background model using data before analysis cuts

- fits reproduced data well
- estimates 2-3x higher ²⁰⁸TI / ²¹⁴Bi compared to radio assay expectation
- comprehensive screening campaign performed
- cleaning procedures re-evaluated for the new deployment

LEGEND-200: HPGe Pulse Shape Discrimination

Pulse shape classifier: A/E = max(current) / energy

LEGEND-200: Spectrum after PSD

- Strong suppression of surface α and β (42K) events
- ~60% suppression of Compton multi-site events at $Q_{\beta\beta}$
- 0vββ decay survival fraction of ~85%

LEGEND-200: Argon anti-coincidence

Signal w/o scintillation light

Background w/ scintillation light

- Strong suppression of background above 2νββ
- $\beta\beta$ decay signal acceptance of ~93%

LEGEND-200: Spectrum after all cats

LEGEND-200: First results

- 11 events surviving
- background indices:

$$BI_{gold} = 5.4^{+2.7}_{-2.0} \times 10^{-4} \ cts/(keV \cdot kg \cdot yr)$$

 $BI_{silver} = 13^{+8.0}_{-5.4} \times 10^{-4} \ cts/(keV \cdot kg \cdot yr)$

golden dataset: 48 kg·yr

silver dataset: 13 kg·yr (mainly coax)

GERDA, MAJORANA and LEGEND combined fit:

T⁰v_{1/2} lower limits (90% frequentist C.L.)

Sensitivity	Observed
$2.8 \times 10^{26} \text{ yr}$	$> 1.9 \times 10^{26} \text{ yr}$

- Frequentist and Bayesian statistical analysis \rightarrow no evidence of $0v\beta\beta$ signal
- World leading sensitivity, event at 1.4 σ from $Q_{\beta\beta}$ weakens combined limit

LEGEND-200: Status

LEGEND

- ! In July 2025 ~138 kg of HPGe detectors were redeployed (60 detectors in 9 strings) then data taking was restarted
- ! The operational strategy of LEGEND-200 has been modified to primarily utilize IC detectors, aligning more closely with the LEGEND-1000 concept (aims to employ exclusively ICs)
- ! The total deployed detector mass remained comparable to previous configuration; however, the number of channels was reduced by 40% (less materials close to detectors)

Mirion ORTEC

LEGEND. Episode 1000: A new hope

LEGEND-1000 @ LNGS Hall C

LEGEND-1000: Designed for an Unambiguous Discovery Legend

- Up to 1000 kg HPGe Inverted Coaxial Detectors
- New cryostat
- Large-mass IC detectors:
 - **Excellent FWHM**
 - **Great PSD**
 - Less cables and holder materials
- Underground LAr reentrant tube in an atmospheric LAr cryostat
- Single string design, modular approach
- Radiopure components
- $T^{0v}_{1/2} > 1.10^{28} \text{ yr}$
- Background: <1x10⁻⁵ cts/(keV kg yr)

LEGEND-1000 Pre-Conceptual Design Report arXiv:2107.11462

LEGEND-1000: Radiopure Components

Underground electroformed Cu for detector holders and reentrant tube

Example: L200 Detector holder

PEN: scintillating (self-vetoing) high-purity detector support

LEGEND-1000: Background Model

Simulated total background spectrum after cuts

Expected background contributions (preliminary)

Projected background index ~ 10⁻⁵ cts/(keV kg yr)

LEGEND-1000: Sensitivity

- LEGEND will span the inverted ordering and a large part of the normal ordering space
- Discovery sensitivity <18.4 meV for 12/15 calculations

LEGEND-1000: Designed for an Unambiguous Discovery

LEGEND-1000: Timeline & Outlook

2023 2024 2025 2026 2027 2031 2032 2033 2034 2035 2036 2028 2029 2030 Full Data Taking First Data Design & Reviews

Construction, Detector Production & Installation

*Technically driven schedule

- LEGEND-1000 is optimized for a quasi-background-free 0vββ search
 - It builds on breakthrough developments by GERDA, MAJORANA, and LEGEND-200
 - LEGEND has a low-risk path to meeting its background goal of 10-5 counts/(keV kg yr)

Low backgrounds, excellent resolution, and event topology discrimination allow for an

unambiguous discovery of $0v\beta\beta$ decay at $T_{1/2} = 10^{28}$ years

LEGEND Website https://legend-exp.org/

Summary

• LEGEND-200

collected over a year of exposure

- first unblinding with combined world-leading sensitivity:

 $2.8 \times 10^{26} \text{ yr}$

background studies completed

- array redeployed in Summer 2025 with newly produced

detectors

data taking restarted

• LEGEND-1000

- design is well underway
- technical preparations @ LNGS started
- funding is being pursued in the US and Europe

Summary

• LEGEND-200

collected over a year of exposure

- first unblinding with combined world-leading sensitivity:

 $2.8 \times 10^{26} \text{ yr}$

background studies completed

array redeployed in Summer 2025 with newly produced detectors

data taking restarted

LEGEND-1000

- design is well underway
- technical preparations @ LNGS started
- funding is being pursued in the US and Europe

PSD in details

LAr scintillation principle

Wavelength Shifting Reflector

It restricts the LAr volume around the detectors.

Also shifts scintillation light to blue and reflects it back towards the LAr instrumentation

LEGEND LAr monitoring Apparatus

Virtual depth by active background rejection

- depth-dependent in-situ production of ^{77(m)}Ge by muon-induced neutron capture,
 (0.21+-0.01) nuclei/(kg yr) in GERDA at LNGS
- single-beta ^{77m}Ge background can be reduced by delayed tagging cuts, active reduction cuts place LNGS at ~5000 m.w.e virtual overburden

