

The XENON collaboration

- XENON
- MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

- 180 scientists, 30 institutions,
 12 countries
- Laboratori Nazionali del Gran Sasso (LNGS)
- Dual phase liquid-gas xenon time projection chamber
- Primar goals to detect search for dark matter (e.g., <u>Weakly</u> <u>Interactive Massive Particles</u>)

The Daily Business of XENONnT

Combination of S1 and S2 signals allows for:

- 3D position reconstruction
- $E_{dep} \propto (n_{\gamma} + n_{e^-})$
 - ER/NR discrimination via the charge-to-light ratio

Scintillation photons (S1) and free electrons (\propto S2) are produced from an impinging particle.

The XENONnT experiment

- Depth: 1400 m (3800 m w.e.)
- Three nested detectors (muon veto, neutron veto, TPC) in a ~10 m ×10 m water tank
- Three-floor auxiliary building hosting experiment infrastructure

detectors by solar neutrinos

Solar neutrinos – Electron recoils from neutrinos

Search for solar-pp elastic electron neutrino scattering

- Dominant in solar neutrino flux (91%)
- Electron recoil signal below 250 keV

- Free electron approximation (FEA) assume electrons are free
- FEA + stepping approximation for accounting for electron binding energy
- Relativistic random phase approximation (RRPA) for calculation of the atomic many-body wave functions

We are in the final stages of this analysis. Today I will discuss our methods and outlook, with final results to be unveiled soon!

Science data collection

Efficiency & Threshold

Signal and Event Reconstruction

- How well we reconstruct individual S1 and S2 signals.
- How good we pair S1-S2 signals to construct physical events.
- Achieved 1 keV low-energy threshold.

Selection criteria

- How good we select physical data
- Rejecting unphysical events and improperly reconstructed events
- Fairly flat and ~90% in the ROI

- ²¹⁴Pb daughter of ²²²Rn contributed via the β decay in the ROI
- Online cryogenic distillation to remove radon based on the difference volatility of Rn and Xe:
 - ²²²Rn in SR0 ~1.9 μBq/kg
 - ²²²Rn in SR1 \sim 0.9 μ Bq/kg \longrightarrow

Comparable level to solar neutrino background!

- ²²²Rn calibration in SR1 Dedicated estimate the ²¹⁴Pb/²²²Rn ratio to constraint ²¹⁴Pb in science data
- Measure a constant ratio of 0.67 ± 0.03

Background contribution: ²¹⁴Pb

- ²¹⁴Pb daughter of ²²²Rn contributed via the β decay in the ROI
- Online cryogenic distillation to remove radon based on the difference volatility of Rn and Xe:
 - 222 Rn in SR0 \sim 1.9 μ Bq/kg
 - ²²²Rn in SR1 \sim 0.9 μ Bq/kg \longrightarrow

Comparable level to solar neutrino background!

- Dedicated ²²²Rn calibration in SR1 to estimate the ²¹⁴Pb/²²²Rn ratio to constraint ²¹⁴Pb in science data
- Measure a constant ratio of 0.67 ± 0.03

Background contribution: 85Kr

- chromatographic system and mass spectrometer
- ⁸⁵Kr internal background in LXe, introduced as a contaminant during xenon's extraction from air:
 - β decay Q value ~ 687 keV $T_{1/2}$ ~ 10.76 y 85 Kr/ nat Kr ~ 2×10⁻¹¹ mol/mol
- Multiple operations by cryogenic distillation column: 10 ppb (10^{-8}) \rightarrow 60 ppq (6×10^{-14}) ^{nat}Kr/Xe
- Xenon samples from the detector measured at Max-Planck-Institut für Kernphysik in Heidelberg

XENON

Background contribution: radiogenic gamma-ray from materials

- Radiogenic contaminants contribute to the low-energy ER background via Compton scattering of high-energy gamma rays.
- The self-shielding of LXe confines this background primarily to the outer region of the active volume.
- Careful material selection and screening make this a subdominant background.
- Constrained by comparing (subtracted) data and Monte Carlo simulations in an edge volume outside the fiducial volume.

That's all folks!

That's all folks!
Or maybe not...

First Indication of Solar ⁸B

Neutrinos via Coherent Elastic Neutrino
Nucleus Scattering with XENONnT

CEUNS = Coherent Elastic Neutrino-Nucleus Scattering

- Measured by COHERENT (2017) with spallation neutron source
- $\sigma \propto N^2$ and only at low momentum transfer \rightarrow small recoil energies
- In LXe TPC induce a signal indistinguishable from WIMPs
- Developed a dedicate analysis pipeline to measure ⁸B solar neutrino via CEvNS

Snapshot of 8B analysis

Background-only hypothesis disfavoured at 99.68% \rightarrow 2.73 σ

Fix cross-section - Measurement of the solar ⁸B flux:

$$4.7^{+3.6}_{-2.3} \times 10^6 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

Fix flux - First measurement of the CEUNS cross-section in xenon:

$$1.1^{+0.8}_{-0.5} \times 10^{-39} \,\mathrm{cm}^{-2}$$

How did we get there?

- Low energy deposited: > 90% of detectable recoils below 2.1 keV
- Decent exposure (\sim 3.5 t × yr) by combining full SR0 and SR1
- Lowering down PMT coincidence for event reconstruction from 3 to 2
- Calibrating the low-energy NR response with 152 keV neutrons from an external 88YBe source
- Enhancing the sensitivity through refined background constraints and a dedicated inference parameter space

Expected Background:

 26.4 ± 1.5

Expected Signal:

12 ± 3

Events Observed:

37

Best-fit number of 8B signal events:

 $10.7^{+3.7}_{-4.2}$

XENONnT 8.5 t

BACK-UP SLIDES

Background contribution: ²¹²Pb

- ²¹²Pb, daughter of ²²⁰Rn which is continuously emanated from detector materials contributed via the β decay of in the ROI
- Concentration a factor ×10 smaller compared to ²²²Rn makes this less problematic
- A plate out model is established using ²²⁰Rn calibration data, which allows for constraining the ²¹²Pb background rate using the ²¹²Bi-Po rate that is easy to measure.

²²⁴Ra t_{1/2}= 3.6 d

220Rn t_{1/2}= 55.8 s

216Po

²²⁰Rn

²¹²Po

Other backgrounds contribution

Intrinsic background

- Xe136: 2υββ decay constrained from EXO half life and measured isotopic abundance.
- Xe124: 2ECEC decay possibility to leave it free of constrained using XENON1T measurement.
- Bi214: from Rn222 high energy gammas from an-instrumented liquid xenon, subdominant.

Possible contamination

- Kr83m: IC leftovers from by-weekly calibration campaigns, unharmful.
- H3-like: from SR1 contamination.

Neutron activation

- Xe125 per-se unharmful however leads to I125. Negligible
- Xe133m: β +γ(81 keV) left free in the inference
- Xe129m and Xe131m outside ROI

SR0 low-ER search

Energy [keV]

Measurement for the pp neutrino

Low-E neutrino physics

- Measurement for ve survival probability (Pe-e)
- Measurement for the Weinberg angle
- Search for exotic neutrino interactions (ex. Magnetic moment)

Goal for XENONnT: Demonstration with 30

Measurement with few % precision expected in future experiment

