

Neutrino Studies with

Yuxiao WANG on behalf of the FASER Collaboration

The FASER Detector

10.1088/1748-0221/19/05/P05066

FASERv Emulsion Detector

Neutrino at FASER

Neutrino at FASERv

- Measure neutrino cross-sections at TeV-scale;
- From charged current (CC) interaction;
- Flavor tagging: v_e, v_μ, v_τ
- Expected event number for 250 fb⁻¹, Run3: Phys.Rev.D 110, 012009

$$\nu_e \sim 1700$$
, $\nu_u \sim 8500$, $\nu_\tau \sim 30$

Latest results: CERN-FASER-CONF-2025-002

	ν_e CC	ν_{μ} CC
Expected signal	2.8 – 7.2	16.2 – 28.7
Expected background	$0.06^{+0.04}_{-0.02}$	$0.54^{+0.22}_{-0.17}$
Observed events	5	20

emulsion film tungsten (1.1 mm thick)

Performance validation

- 2024 testbeam data
- SPS (H8 beamline)

~ 20% resolution at 200 GeV

Data Set and Simulations

CERN-FASER-CONF-2025-002

Data Sets:

- -9.5 fb^{-1} , LHC Run 3
- Target mass: 314.7 kg in latest analysis

MC Samples:

- Light hadron production (4 samples: EPOS-LHC, QGSJET II-04, SIBYLL 2.3d, PYTHIA 8)
- Charm hadron production (1 sample: POWHEG+PYTHIA 8)

Neutrino Event Selection PhysRevLett.133.021802

ν_e CC events

CERN-FASER-CONF-2025-002

events

N events

 v_e event characteristics

- E_e = 1.5 TeV, highest v_e measured.
- MC normalized to number of observed events.

Electron energy found using multiplicity in core of EM shower: $\Delta E/E$ at (100, 2000) GeV \sim 0.21

My presentation at WIN2025

Δφ [deg]

u_{μ} CC events

 u_{μ}

beam view

0

μ

 $200 \mu m$

u_{μ} CC events

 v_{μ} event characteristics

- p_{μ} = 360 GeV.
- MC normalized to number of observed events.

CERN-FASER-CONF-2025-002

Good linearity even above 1 TeV

p_{lep} [GeV]

1500

 Based on multiple Coulomb scattering of charged particle

2000

50

100

 $\Delta \phi$ [deg]

500

1000

Neutrino Cross Section Measurements

• First observation of v_e at the LHC (2023)

- target mass 128.6 kg, 4 ν_e + 8 ν_μ
- First neutrino cross-section measurement in the TeV range (2024) PRL.133.021802
- Working on a differential cross section measurement with the full 1.1 tons detector volume for 9.5 fb^{-1} data (2025) CERN-FASER-CONF-2025-002

FASER Electronic Detector

Neutrino at FASER Electronic Detector

Muon momentum is unfolded into

- v_{μ} energy (3 bins),
- $\bar{\nu}_{\mu}$ energy (2 bins),
- a high energy bin for $v_{\mu} + \bar{v}_{\mu}$.

Latest neutrino results at FASER electronic detector

Summary and Outlook

- FASER historic achievements:
 - first neutrinos observed at a particle collider
 - first detection of u_{μ} and u_{e} at the LHC
 - first neutrino cross-section measurements in the TeV range
- Current data taking:
 - Run3 expectations: ~10,000 neutrino interactions
 - 200 times more events with full Run3 dataset
 - FASER continues through LHC Run4
- Future: Forward Physics Facility <u>ArXiv 2503.19010</u>
 - Ambitious upgrade program for HL-LHC (FASER2 & FASERv2)
 - Target: ~1,000,000 high-energy neutrino interactions

Acknowledgement

FASER is supported by:

- We also thank:
 - LHC for the excellent performance
 - ATLAS Collaboration for providing luminosity information
 - ATLAS SCT Collaboration for spare tracker modules
 - ❖ ATLAS for the use of their ATHENA software framework
 - LHCb Collaboration for spare ECAL modules
 - CERN FLUKA team for the background simulation
 - CERN PBC and technical infrastructure groups for the excellent support

BACKUP

FASER Physics Targets

- Explore forward physics
 (particles in very forward region not seen by ATLAS/CMS)
- Search for new light, longlived particles

(dark photons, ALPs, etc.)

 Detect and study collider neutrinos

(first-ever TeV neutrinos at LHC)
PRL 134.211801

Kinematic Tools Performances

- 300 nm position resolution has been achieved -> 0.04 mrad angular resolution for a 1 cm track.
- Momentum measurement from Multiple Coulomb Scattering (MCS): $\Delta P/P$ at 200 GeV \sim 0.30
- EM shower energy found using segment multiplicity in core of EM shower: $\Delta E/E$ at 200 GeV \sim 0.21

Data Set and Simulations

Data Sets:

- -2022 second module \rightarrow 9.5 fb⁻¹
- -Target mass: 128.6 kg
- $-\sim$ 1.7% of the data collected to date.

MC Samples:

- -Light hadron production (4 samples: EPOS-LHC, QGSJET II-04, SIBYLL 2.3d, PYTHIA 8)
- -Charm hadron production (1 sample: POWHEG+PYTHIA 8)

Differences between the generators checked with the same propagation model (RIVET-module)

	DPMJET	SIBYLL	Pythia8
$ u_e$, $\bar{\nu}_e$	3390 , 1024	800 , 452	826 , 477
$ u_{\mu}$, $ar{ u}_{\mu}$	8270, 2391	6571 , 1653	7120 , 2178
$ u_{ au}$, $ar{ u}_{ au}$	111 , 43	16,6	22 , 11

Systematic Uncertainties

- several factors of systematic uncertainties have been considered.
- total systematics: sum in quadrature.

Source	Relative uncertainty	
	$ u_e$	$ u_{\mu}$
Luminosity	2.2%	2.2%
Tungsten thickness	1%	1%
Interactions with emulsions	$^{+3.6}_{-0}\%$	$^{+3.6}_{-0}\%$
Flux uncertainty	$^{+70}_{-22}\%$	$^{+16}_{-9}\%$
Line of sight position	$^{+2.1}_{-2.4}\%$	$^{+1.9}_{-2.5}\%$
Efficiency from hadronization	$^{+22}_{-5}\%$	$^{+23}_{-5}\%$
Efficiency from reconstruction	20%	20%
Efficiency from MC statistics	4.9%	2.8%
Total	$^{+70}_{-22}\%$ (flux)	$^{+16}_{-9}\%$ (flux)
	$_{-21}^{+30}\%$ (other)	$^{+31}_{-21}\%$ (other)

First X-section Measurements

PhysRevLett.133.021802

- First observation of v_e at the LHC (2023)
- First neutrino cross-section measurement in the TeV range (2024)
- Large uncertainty from neutrino flux.

- expected background $0.025^{+0.015}_{-0.010}$
- significance: 5.2σ

- 8 ν_{μ} observed
- expected background $0.22^{+0.09}_{-0.07}$
- significance: 5.7σ

ν NC Cross Sections

- FASERv also measures cross-section of Neutral Current (NC) neutrino interactions [arXiv: 2012.10500].
- Non-Standard Interaction (NSI) can be explored in conjunction with measurement of CC cross-section.

DIS cross-section of CC/NC interactions

Expected sensitivity to NSI (up-quark)

