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dRICH: Data Reduction

Online Signal/ Noise discrimination using ML

• Signal (i.e. Merged 
Phys Signal + Bkg):

o Dark current rate (DCR) modelled in the reconstruction stage 
(recon.rb eic-shell method)

• Physics Signal:
○ e.g DIS

• Physics Background: 
○ e/p with beam pipe
○ Synchrotron radiation (currently not including it)

• SiPM Noise:

Discriminate between Noise Only and Signal + Noise  events
ML task:
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dRICH: Dataset for training, classes
 Noise Only    Phys Signal+Phys Background+Noise
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dRICH Data Reduction Stage on FPGA
● Online «Noise only» classifier using ML: 

Study of Inference Models
Restricting our study to inference models that can be deployed on 
FPGA with reasonable effort (using a High-Level Synthesis workflow):
⇒ Multi Layer Perceptron (HLS4ML)

● Inference throughput (98.5 MHz) is the main challenge

● Deployment on multiple Felix DAMs and on an additional FPGA (TP – 
Trigger Processor) directly interconnected 

● Possibly integrate with the dRICH Interaction Tagger to boost 
performance
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dRICH: Data reduction ⇒ Subsectors
● From our design proposal, we indicate 42 input links for each DAM occurring into the streaming 

readout data reduction computation. 
⇒ This number (42) is coherent with the number of expected PDUs per subsector (~210/5 = 42).

● Thus, to cope with the realistic composition of the dRICH hardware readout, we decided to take the 
information of each PDU as input for the respective subsector MLP NN model
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dRICH: Data reduction Dataset

➢ Start from Merged FULL root files available on server and enable noise at RECO stage 
using drich-dev/recon.rb with configs (but only ~ 7k events present on dtn-eic)

➢ Run the entire simulation pipeline ourselves, starting from HEPMC files.
○ Up to now we have produced 800k events to train and test our ML models

⇒ Various noise rates and noise models for each generated dataset
 

HEPMC
MC events

FULL
Geant4

RECO
EICRecon

Geant4 hits on detectors
sensitive volume

PHYS bkg

PHYS signal e.g. DIS

                       e - beamgas 
p - beamgas 

HEPMC_merger

In dRICH case, applies 
digitization, quantum 
efficiency, safety factor.
Possibly SiPM noise 

root://dtn-eic.jlab.org//work/eic2/EPIC/FULL/2
4.05.0/epic_craterlake/BACKGROUNDS/MER
GED/HEPMC_merger-1.0.2/10x100/Realis
ticSignalPerFrame/

By default SiPM noise disabled and 
not present on
root://dtn-eic.jlab.org

ePIC simulation pipeline:

Options:
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dRICH Data reduction: Noise hits distribution
● Gaussian dark current SiPM noise hits distribution, obtained by modifying EICRecon 

source: 
○ avg = noiseRate*noiseTimeWindow*NumberOfSiPMsDRICH
○ sigma = 0.1*avg
○ noiseTimeWindow = 10 ns (no shutter)
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dRICH Data reduction: Noise hits distribution

noiseRate = 200 KHz

● Dark current SiPM noise hits distribution, obtained by 
introducing Dark Count probability of single dRICH SiPM 
with a dependence on its radial distance from the 
detector z-axis and on the integrated luminosity
⇒ Implemented in EICRecon digitization step (new 
flag to enable new model noise)

 (R. Preghenella’s contribution)
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dRICH Data reduction:
Tensorflow-Keras Model definition 
• To be coherent with the hardware design composition of the proposed system, we 

trained 30 (# of subsectors x #number of sectors) concatenated MLP networks 
into a single MLP model to be deployed on 30 DAM  FPGAs + 1 TP FGPA

 

DAM NN

Trigger Processor NN

«Distributed MLP Model»
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Distributed MLP Tensorflow Model 

Each MLP DAM output 
(8x16-bit features) is 
concatenated to the others 
to feed the final stage of 
the MLP (deployed on TP)
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dRICH Data reduction: model training & validation
➔ We trained the 30 MLP DAM models concatenated to the single MLP TP 

model by using 100k Signal+Background+Noise and 100k Noise Only 
event

➔ 200k balanced dataset (90% training set, 10% validation set)  for any of 
the considered noise hits distribution models,  varying their typical 
parameters:
◆ Gaussian model:

● noiseRate = 40 kHz, timeWindow = 10ns; 
● noiseRate = 80 kHz, timeWindow = 10ns; 
● noiseRate = 100 kHz, timeWindow = 10ns; 
● noiseRate = 300 kHz, timeWindow = 10ns; 

◆ Radial-dependent model:
● luminosity = 2 fb-1, timeWindow = 10ns; 
● luminosity = 20 fb-1, timeWindow = 10ns; 
● luminosity = 100 fb-1, timeWindow = 10ns; 

➔
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G Model performance @ noiseRate = 40 KHz
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999 
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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G Model performance @ noiseRate = 80 KHz
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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R Model performance @ luminosity = 100kHz
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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G Model performance @ noiseRate = 300 KHz
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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Gaussian Model performance: summary
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R Model performance @ luminosity = 2fb-1
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 0.999

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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R Model performance @ luminosity = 20fb-1
@timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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R Model performance @ luminosity = 100fb-1 
timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 1.000

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.999

❏ Purity = TP/(TP+FP) = 0.999
❏ Recall = TP/(TP+FN) = 0.999

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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Radial-dependent Model performance: summary
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dRICH Data Reduction:
HLS4ML ⇒ HW Synthesis for DAM MLP NN

⇒ To correctly synthetize the model at 
200 MHz of operational clock, we used a 
REUSE FACTOR = 1, obtaining an 
instantiation interval lI = 2 clock cycles

⇒ Throughput = 100 MHz 

(this results are obtained after synthesis 
of the HLS4ML code on Xilinx Alveo 
U280, used in our lab as a starting 
testbed in order to validate hw 
implementation of a simple DAM+TP 
setup)
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dRICH Data Reduction: HW Implementation (U280)

  
 

➔ To validate the correct interaction between the MLP HLS4ML block(NN computation on 
FPGA) and the INFN Communication IP (in which the APE Router is responsible for the 
inter-FPGA communication), we decide to design an HW toy-model to prove the correct 
behaviour of the firmware on our Xilinx Alveo U280.

➔ data are loaded from the Host via the krnl_load HLS block, and streamed via 42 links 
(hls::stream<ap_axis<16,0,0,0>>) to the preprocessing HLS block, which prepares the input 
to feed the NN
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dRICH Data Reduction: HW Implementation (U280)

  
 

➔ a throughput issue occurred while executing the firmware on the U280 testbed
➔ despite the information present in the Vitis_HLS report (where a II=2 is indicated),  we found 

an erroneous II=12 studying the hw_emu waveforms
➔ still under investigation
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dRICH Data Reduction:
HLS4ML ⇒ HW Synthesis for TP MLP NN

⇒ We tried to synthetize the model of  the TP 
MLP model at 200 MHz of operational clock on 
the AMD Versal Prime (the FPGA equipped on 
FLX-182 in APE-Lab)
⇒ it results to be impossible to reach an II to 
cope with the required throughput

⇒ out of resources!! 183% of DSP and 142% 
required!!
 (even compiling the HLS4ML with “resource” 
flag to optimize occupation!!)

➔ HOW TO SOLVE NOW!??
  

 

!

!! !!

26



dRICH Data reduction:
New NN design ⇒ Sector MLP introduction 
• The occupation problem occurred with the TP MLP NN is connected to the huge amount of 

computation required for its first layers (240x120). Thus, we tried to re-design our global 
distributed model by introducing 6 lighter intermediate model (called Sector MLP NN) each 
working on the aggregated information of a single sector.

• The 6 outputs are then aggregated and processed in a lightweight TP NN (single MLP layer, 5 
neurons)  

⇒ WHAT ABOUT PERFORMANCE?

SECTOR NN
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dRICH DAQ and Data Reduction:
New design 
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dRICH Data Reduction:
HLS4ML 🡺 HW Synthesis for TP NN

● The new TP firmware (composed by 
5 Sector NN Hw blocks) have been 
correctly synthetized 
⇒ enough resources and II=2 
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Sec-MLP performance @ luminosity = 100fb-1 
timewindow = 10ns

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN)= 
0.997

❏ Purity = TP/(TP+FP) = 0.995
❏ Recall = TP/(TP+FN) = 0.999

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.997

❏ Purity = TP/(TP+FP) = 0.994
❏ Recall = TP/(TP+FN) = 0.999

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>

30



Conclusions

o Optimization of the performance in terms of accuracy/purity/recall (ML 
parameters) and resources/throughput (HW implementation) has been 
performed.

o The distributed MLP model has been tested on different noise hits 
distribution models (gaussian and radial-dependent) that have been 
included in the reconstruction pipeline.

o ⇒ results are nearly optimal on simulated/reconstructed data
o New design for the Sector TP NN model still under complete validation (new 

datasets training/testing, but first predictions seems accurate), but 
definitively convenient in terms of resources

o Deployment of the TP NN model on our testbed is ongoing
⇒ test for the interconnection with the DAM NN (throughput issue to be 
solved)
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Backup Slides
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Distribution of Events Particles Momenta
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Close-up 🡺 False Positive Events

Training and validating with 
datasets of 100 kHz dark count 
rates, we obtain a 99% accurate 
model.

BUT WHAT ABOUT THESE 
FALSE POSITIVE EVENTS?

WHAT THEY LOOK LIKE?

ARE THEY TRULY SHOWING 
SIGNAL+BACKGROUND 

FEATURES?



Close-up 🡺 False Positive Events

Example of a False Positive event 
(signal+background+noise, but 
classified as noise):

• Low number of dRICH hits
• No Cherenkov rings detected
• No evident dRICH hits clusters
• Homogenous dRICH hits distribution 
🡺 comparable with a noise hits 
distribution 



Close-up 🡺 False Positive ROOT TTree

MCParticles.PDG = 22, 11, 2212, 9900330, 2212, -311, 313, 2212, 11, 130, 311, 
111, 310, 22, 22, 111, 111, 22, 22, 22
MCParticles.generatorStatus = 21, 21, 21, 21, 21, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 
2, 2, 1, 1, 1
[…]
MCParticles.time = 212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 
212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 
212.173264, 212.173264, 212.173264, 212.173264, 212.184769, 212.184769, 
212.184769, 212.184769, 212.184769
[…]
MCParticles.momentum.x = 0.000092, -0.000105, -2.521645, 0.352699, -2.874251, 
0.030792, 0.321907, -2.874251, -0.000105, 0.030793, 0.075927, 0.245985, 0.075927, 
0.121866, 0.124117, 0.146451, -0.070528, 0.060760, 0.085690, -0.060012
MCParticles.momentum.y = -0.000563, 0.000807, -0.012031, 0.239004, -0.251596, 
-0.168178, 0.407180, -0.251596, 0.000807, -0.168186, 0.058748, 0.348438, 
0.058748, 0.155661, 0.192775, 0.125229, -0.066484, 0.037693, 0.087535, 0.007046
MCParticles.momentum.z = -1.228703, -8.770502, 99.992050, -0.499420, 99.262772, 
0.339107, -0.838527, 99.262772, -8.770502, 0.339123, -0.206120, -0.632420, 
-0.206120, -0.410238, -0.222180, -0.279635, 0.073525, -0.013916, -0.265717, 
0.087298



Close-up 🡺 False Positive ROOT TTree
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111, 310, 22, 22, 111, 111, 22, 22, 22
MCParticles.generatorStatus = 21, 21, 21, 21, 21, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 
2, 2, 1, 1, 1
[…]
MCParticles.time = 212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 
212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 212.173264, 
212.173264, 212.173264, 212.173264, 212.173264, 212.184769, 212.184769, 
212.184769, 212.184769, 212.184769
[…]
MCParticles.momentum.x = 0.000092, -0.000105, -2.521645, 0.352699, -2.874251, 
0.030792, 0.321907, -2.874251, -0.000105, 0.030793, 0.075927, 0.245985, 0.075927, 
0.121866, 0.124117, 0.146451, -0.070528, 0.060760, 0.085690, -0.060012
MCParticles.momentum.y = -0.000563, 0.000807, -0.012031, 0.239004, -0.251596, 
-0.168178, 0.407180, -0.251596, 0.000807, -0.168186, 0.058748, 0.348438, 
0.058748, 0.155661, 0.192775, 0.125229, -0.066484, 0.037693, 0.087535, 0.007046
MCParticles.momentum.z = -1.228703, -8.770502, 99.992050, -0.499420, 99.262772, 
0.339107, -0.838527, 99.262772, -8.770502, 0.339123, -0.206120, -0.632420, 
-0.206120, -0.410238, -0.222180, -0.279635, 0.073525, -0.013916, -0.265717, 
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APEIRON: the Node

▪ Host Interface IP: Interface the FPGA logic with the host through the system bus.
– Xilinx XDMA PCIe Gen3
▪ Routing IP: Routing of intra-node and inter-node messages between processing tasks on 

FPGA. 
▪ Network IP: Network channels and Application-dependent I/O 

– APElink 40 Gbps 
– UDP/IP over 10 GbE
▪ Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)

APEIRON node in a 3D Torus network topology

Communication IP

Alessandro Lonardo – ACAT 202240



APEIRON: Communication Latency

Inter-node LATENCY (orange line) < 1us  for packet sizes up to 1kB 
(source and destination buffers in BRAM)

Test modes
• Local-loop (red arrow)
• Local-trip (green arrows)
• Round-trip (blue arrows)
Test Configuration
• IP logic clock @ 200 MHz 
• 4 intranode ports
• 2 internode ports 
• 256-bit  datapath width
• 4 lanes inter-node channels 

Alessandro Lonardo – ACAT 202241



Felix DAQ PCIe board series
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