

Electron Cloud Mitigation Strategies for the EIC: INFN's Research on Coated Surfaces

Marco Angelucci Laboratori Nazionali di Frascati

Giornate Nazionali ePIC Italia Padova June 18th, 2025

EIC = Decades of Discovery Potential

Polarized electrons colliding with polarized protons, polarized light ions, and heavy ions will allow to study sea-quarks and gluons to understand:

- Mass and spin of the proton
- Spatial and momentum distribution
- Possible gluon saturation
- Hadron formation

EIC – CDR 2021

EIC Requirements

- High Luminosity: L= 10³³ 10³⁴cm⁻² sec⁻¹, 10 – 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- Large Center of Mass Energy Range:
 E_{cm} = 20 140 GeV
- Large Ion Species Range: Protons Uranium
- Large Detector Acceptance
- Accommodate a Second Interaction Region (IR)

EIC – CDR 2021

Table 1.1: Maximum luminosity parameters.

Parameter	hadron	electron
Center-of-mass energy [GeV]	104.9	
Energy [GeV]	275	10
Number of bunches	1160	
Particles per bunch [10 ¹⁰]	6.9	17.2
Beam current [A]	1.0	2.5
Horizontal emittance [nm]	11.3	20.0
Vertical emittance [nm]	1.0	1.3
Horizontal β -function at IP β_x^* [cm]	80	45
Vertical β -function at IP β_y^* [cm]	7.2	5.6
Horizontal/Vertical fractional betatron tunes	0.228/0.210	0.08/0.06
Horizontal divergence at IP $\sigma_{x'}^*$ [mrad]	0.119	0.211
Vertical divergence at IP $\sigma_{u'}^*$ [mrad]	0.119	0.152
Horizontal beam-beam parameter ξ_x	0.012	0.072
Vertical beam-beam parameter ξ_y	0.012	0.1
IBS growth time longitudinal/horizontal [hr]	2.9/2.0	-
Synchrotron radiation power [MW]	-	9.0
Bunch length [cm]	6	0.7
Hourglass and crab reduction factor [17]	0.94	
Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	1.0	

Facility Overview

- Most existing RHIC infrastructure to be reused but...
 - Additional 142,000 ft² in support buildings
 - New substations (65MW) and overhead 13.8kV power line
- Upgrade RHIC -> <u>Hadron Storage Ring (HSR)</u>
 - Major modification to vacuum system
 - · Low energy bypass for synchronization with electrons
- Strong hadron cooling to control emittance growth

New electron accelerator system

- Polarized electron source
- 400 MeV LINAC
- Rapid Cycling Synchrotron RCS (400MeV -> 18GeV)
- Electron Storage Ring ESR (up to 2.5A)
- New central detector
 - High luminosity (10³⁴/cm²/s)
 - 25mrad crossing angle with crab cavities

Marco Angelucci – Padova, 18/06/2025

NEW

Existing Vacuum System

- Two existing <u>super conducting rings</u>
 - Warm sections between arcs
- A total of 8 arcs from RHIC will be reused

- Arc length ~480m
 - Seven arcs require beam screens
- Each arc consists of ~72 magnets
 - >500 beam screens (72 magnets x 7 arc)
- Majority of arcs are dipoles and CQS (67%)
 - 30 dipoles
 - 35 CQS (Corrector, quad, sext)

Challenges

- Aggressive new parameters required for EIC
 - High stored current (0.72 A vs 0.27 A)
 - Reduced bunch length (60 cm vs 600 cm)
 - Short bunch spacing (10 ns vs 108 ns)
 - High bunch charge (1.2x10¹¹ ppb)
- Existing cold bore beam pipes are stainless steel
 - High surface resistance → Excessive resistive wall heating
 - High secondary electron yield (SEY) → <u>Electron cloud</u> <u>formation</u>
- Electron cloud formation can lead to:
 - heat load;
 - vacuum degradation;
 - beam instabilities;
 - emittance growth;
 - etc.

Challenges

- Aggressive new parameters required for EIC
 - High stored current (0.72 A vs 0.27 A)
 - Reduced bunch length (60 cm vs 600 cm)
 - Short bunch spacing (10 ns vs 108 ns)
 - High bunch charge (1.2x10¹¹ ppb)
- Existing cold bore beam pipes are stainless steel
 - High surface resistance → Excessive resistive wall heating
 - High secondary electron yield (SEY) → <u>Electron cloud</u> <u>formation</u>
- Electron cloud formation can lead to:
 - heat load;
 - vacuum degradation;
 - beam instabilities;
 - emittance growth;
 - etc.

e-cloud

R. Cimino, T. Demma; Electron cloud in accelerators International Journal of Modern Physics A Vol. 29, No. 17 (2014) 1430023

 In the non-cryogenic (warm) sections, the electron cloud can be mitigated by using non-evaporable getter (NEG) coating.

• To avoid high RW heating

and electron cloud, a beam

screen (BS) will be installed

in the beampipe of the RHIC

superconducting magnets.

RHIC arc dipole cross section

EIC HSR beam screen

must ensure:

- Adequate Vacuum level and stability.
- Low impedance to limit dynamic heat load and to avoid impedance-driven instabilities.
- The control of e-cloud build up.

EIC HSR beam screen

will be made of:

- Non-magnetic 316LN stainless steel.
- Oxygen-free high-conductivity (OFHC) copper.

• Low Secondary Electron Yield coating.

amorphous carbon (a-C) coating on copper clad stainless steel

Marco Angelucci – Padova, 18/06/2025

10

[C. Hetzel et al.]

EIC HSR beam screen

will be made of:

- Non-magnetic 316LN stainless steel.
- Oxygen-free high-conductivity (OFHC) copper.
- Low Secondary Electron Yield coating. (SEY < 1.1)

LHe cooling tube

amorphous carbon (a-C) coating on copper clad stainless steel

Marco Angelucci – Padova, 18/06/2025

11

[C. Hetzel et al.]

Secondary Electron Yield of Materials

Three-step process:

- Production of SE at a depth z
- Transport of the SE toward the surface
- Emission of SE across the surface barrier

$$SEY = \frac{I_{out}}{I_{in}}$$

Intrinsic property of materials, strongly dependent on the surface characteristics:

> chemistry

adsorbates, even at sub-monolayer coverage
 morphology

SEY of Materials

<u>Chemisorbed</u> compounds modify the chemical bonds at the metal surface

Marco Angelucci – Padova, 18/06/2025

Marco Angelucci – Padova, 18/06/2025

Low SEY mitigation Strategies

M. Angelucci et. al; Phys. Rev. Research Rapid comm. 2, 032030(R) (2020)

Morphology

Coatings

Validation at CERN of a-C coatings

Courtesy of B. Bradu (CERN)

- One quadrupole was coated with amorphous carbon during 2020: Q5L8
- About 60 W was observed during scrubbing in 2018 in this magnet
- No heat load observation in 2022 (sync . rad. + image cur < 2 W, not observable)</p>

➔ e-cloud heat loads have been removed after a-C coating as expected ☺

Marco Angelucci – Padova, 18/06/2025

Modification of surface

R. Larciprete et al., Appl. Surf. Sci. (2015)

Amorphous C coating

ultra high vacuum RF magnetron sputtering 50W p(Ar) 6x10⁻² mbar a-C (~ 20 nm)/poly Cu

Modification of surface

Amorphous C-coating

<u>Thermal graphitization of thin</u> amorphous C layers deposited by magnetron sputtering on Cu substrates

Defects

Modification of surface

Requirements on a-C SEY

PyECLOUD Calculation for EIC

- Dipoles <= 1.08
- Quadrupoles <=1.08
- Sextupoles <=1.02
- No magnetic regions <1.1
- Quadrupoles and Sextupoles occupy the same beam screen
 - More stringent requirement to be followed
- SEY limits apply after adequate scrubbing
 - Requirement needs to be established
 - Cryogenic design budget can support an SEY 1.1 in all beam screens

Qualification and SEY experimental characterization of coatings SEY are mandatory for the new BS!

INFN (LNF) – EIC Collaboration

This Collaboration aims to:

Perform, at LNF, surface studies for qualifying the Beam Screen (BS) prototypes of the hadron ring vacuum chamber of EIC.
 Provide a complete, turn-key SEY measurement system to be delivered to EIC to 'in-house' qualify the BS mass production.

Brookhaven National Laboratory a-C EIC The **mitigation of collective effects** (e-cloud, etc.) impedance driven instabilities in circular and Sample accelerators are also based on the definition of new Production constructive materials and on their Secondary @BNL Electron Yield (SEY) characterization. LNF-INFN will perform the necessary studies to validate prototype materials and coatings to define SEY/XPS the best practices for final production. Studies Procedure @LNF Upgrade Conditioning • Low Temperature **Third Party Contract**

Experimental stations at XUV MaSSLab - INFN

SEY/XPS Studies @LNF

State of the art apparata for Surface Science Studies

UHV µ-metal Chamber:

- 1x10⁻¹⁰ mbar base pressure
- XPS set-up (AI and Ag monocromatic and AI and Mg nonmonocromatic sources)
- Electron gun (5-1000 eV, 1nA-1µA)
- Flood gun (5-1000 eV, 100nA 500mA)
- Quadrupole Mass Spectrometer (100 amu)
- Low temperature Manip. (T range: 10 – 300 K)

Marco Angelucci – Padova, 18/06/2025

SEY of Materials

Marco Angelucci – Padova, 18/06/2025

Pressure(Pa

300 K)

INFN (LNF) – EIC Collaboration

This Collaboration aims to:

Perform, at LNF, surface studies for qualifying the Beam Screen (BS) prototypes of the hadron ring vacuum chamber of EIC.
 Provide a complete, turn-key SEY measurement system to be delivered to EIC to 'in-house' qualify the BS mass production.

The **qualification of materials during their mass-production** is a necessary end step of the manufactory chain. The possibility to have a measurement mock-up system to qualify materials in situ, is therefore essential to avoid expensive and time-consuming materials' validation from external laboratories.

LNF-INFN will design, set-up, test and deliver a full-working turn-key SEY measurement system to be available in-house, for BS large scale production validation.

INFN (LNF) in-kind contribution to EIC

Conclusions

LNF - INFN can significantly contribute having a "state of the art" laboratory, competences and experienced people to perform such studies and design the measurement system to be delivered.

Thanks to the BNL – EIC vacuum group team

C. Hetzel

attention

Thank you for your kind

Thanks to the MaSSLab team at LNF

L. Spallino

R. Cimino

R. Larciprete

Tanks to the technical support of: M. Pietropaoli, V. Sciarra and G. Viviani

30

Electron-Ion Collider

Multidisciplinary activities

CERN (2016) a-C coating at cryogenic temperature

a-C H_2 adsorption isotherms at 6.5 K and

R. Salemme et al., Proceedings of IPAC2016, Busan, Korea

Those results depend on surface morphology Improvement of the cryogenic vacuum performance

The CERN a-C film increases the adsorption capacity by a factor 100 (~ 10^{17} H₂/cm²) compared to flat SS and Cu

TDS for H₂, N₂ and CO measured for a-C coating as function of θ_0 and β

The CERN a-C film presents higher desorption temperatures for H_2 and CO, respectively, 30 and 60 K.

R. Salemme et al., Proceedings of IPAC2016, Busan, Korea

Existing Vacuum System

- Two existing <u>super conducting rings</u>
 - Warm sections between arcs
- A total of 8 arcs from RHIC will be reused
 - Inner ring used as a low energy bypass at 1 o'clock
 - Inner ring used as a transport to injection at 4 o'clock NOT UPGRADED

Arc Layout

- Arc length ~480m
 - Seven arcs require beam screens
- Each arc consists of ~72 magnets
 - >500 beam screens (72 magnets x 7 arc)
- Majority of arcs are dipoles and CQS (67%)
 - 30 dipoles
 - 35 CQS (Corrector, quad, sext)

- Design based on LHC screen
- Copper cladded stainless steel
 - P506 stainless steel
 - C10100 OFE copper
- Baseline design wall thickness: 1.0mm
 - Investigated 0.8mm to reduce installation forces
- Profile will be roll formed with a single weld
 - Fabricator is confident welding on flat

Marco Angelucci – Padova, 18/06/2025

Cooling tube weld bushing

- · Beam facing surfaces will be coated with amorphous carbon
 - Keep SEY values below requirement
- Slots in screen for pumping
 - Working with vendor on randomizing slot pattern
 - Controls gas density
 - Equilibrium pressure defined by slot conduction
- Cryo absorber outside of beam channel
 - Only on one side of beam screen
 - Additional pumping capacity for H2
 - Considering a-C carbon coating

Cooling Pipe Extraction

- Extraction of cooling line from UHV required
 - Needed to bypass interconnect bellows
 - Requires modification to existing cold bore
 - Work to be done in situ
- Taper lock fixes beam screen to cold bore
- One fixed side and one movable side
 - Provides compliance between cold bore and beam screen

[C. Hetzel et al.]

Installation Challenges

- In situ installation
- Dipoles have sagitta (40mm)
- Access only through interconnect (35cm)
- Shield existing stripline BPMs
- UHV work

Installation Approach

- In situ installation
 - Limited access between magnets
 - Additional obstacles (process lines, etc)
 - Screen sequence must be in order
- Each arc is ~480m long
 - Max pull ~240m (38 magnets)
- Start from warm sections
- Possible access at D8
 - Reduces max pull ~50m (29 magnets)

Marco Angelucci – Padova, 18/06/2025

Installation Approach

- Existing cold bore beam pipes will be cleaned
- Each cold bore will be measured prior to installation
 - Undersized bores will be removed from the line
- Transit through magnets
 - Leading guide (both ends of screen)
 - Temporary rolling elements (skates)
 - Removed before entering final magnet
- Last magnet
 - Final cleaning
 - Leading guide
 - Beam screen guides
- Evaluating if screens can be pushed

Marco Angelucci – Padova, 18/06/2025

Full Length Pull Test

- Full length screen test performed
 - 1mm thick profile with all features
 - Fabricated in segments
- ~20 pulls completed
 - Force required ~60#
- Future work
 - Add CQS equivalent tube inline
 - Particulate generation

Full length prototype beam screen

Coating System - Vertical

- Capabilities
 - Max length: 6.1m [20 ft]
 - Max field: 300G
 - Coil ID: 25cm [10"]
- Previously used for NEG coatings
- Bipolar plasma supply
- Currently producing samples using argon and neon

a-C

Sample Production

@BNL

Coating System - Horizontal

- External solenoids
 - Self supporting coils
 - OD x ID 7.2" [183mm] x 5.2" [132mm]
 - 250G @ 10.2A
- Frame 80-20
 - Purchase as a kit (pre-cut)
- Coating/transport pipe
 - 3" tubing with 4.63" CF
- Beam screen installed with removable skates
 - Also used for transit through cold bore
- Graphite rod support by intermediate support
 - Moved back and forth to minimize uncoated areas

