

MPGD ENDCAP Trackers (ECT) – Project Update GEM-µRWELL technology

Annalisa D'Angelo – ePIC ECT project coordinator

On behalf of the **ECT project group**: C. Ammendola, R. Ammendola, M. Bondì, R. Di Salvo, A. Fantini, S. Gramigna, L. Lanza, G. Nobili, L. Torlai, E. Tusi

Giornate Nazionali ePIC Italia Padova, June 16-18, 2025

Electron-Ion Collide

GEM-µRWELL ECT Project Update: OUTLINE

Scope of the MPGD endcap trackers in the EPIC detector.

Detector Geometry: Envelope and Active Regions Pseudo-rapidity coverage: effective η ranges Technical performance requirements

Detector technology

2D – readout challenges and test beam results Hybrid GEM- μ Rwell technology - μ TPC readout

Detector Design and Engineering Test Article

Endcap design: 4 quadrants (X,Y) readout – 600 μ m pitch Integration of MPGD endcap trackers in the ePIC detector

INFN Involvement

Readout Electronics and FEB form factor Detector Simulation Fabrication and Assembly Plans Timeline & Workforce

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

-> Talk by Elena Sidoretti

Talk by Stefano Gramigna

MPGD-ECT: the scope of the endcaps in ePIC detector tracking

• Adding two MPGD Endcap Tracking (ECT) disks both in the hadronic and in the leptonic regions increases the number of hits in the $|\eta| > 2$ region to improve pattern recognition.

Source: ePIC Tracker Simulation by Shyam Kumar

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

µRWELL-BOT

CymBaL

The ePIC MPGD End Cap Tracker Envelope and Active Regions

Electron-Ion Collider

Pseudo-rapidity coverage: effective η ranges

Component	Z (cm)	Inner Active Reg. Radius (cm)	<i>θ</i> min (deg)	$ \eta $ max	Outer Active Reg. Radius (cm)	<i>θ</i> max	$ \eta $ min
HD MPGD 2	166	8.0/10.5	2.76/3.62	3.73/3.45	45	15.17	2.0
HD MPGD 1	150	8.0/10.5	3.05/4.00	3.62/ <mark>3.35</mark>	45	16.70	1.9
LD MPGD 1	-107	6.5	3.47	3.49	45	22.80	1.6
LD MPGD 2	-122	6.5	3.04	3.62	45	20.24	1.72

• The minimum $|\eta|$ value is not larger than 2 it is limited by the outer HD disk location/dimensions

• The maximum $|\eta|$ value is not less than 3.35 it is limited by the inner HD disk location/dimensions

The η range covered by the MPGD Endcap tracking disks is **compliant** with requirements.

Electron-Ion Collider

MPGD-ECT Technical Performance Requirements

Time resolution ~10 ns or less to provide tracking timing

- Time resolution~ 10 ÷ 20 ns
- Sampling faster than 50 MHz

Low material budget

- <1 % X₀ - it will be the minimum compatible with the chosen technology

Spatial resolution: 150 μ m or better

- <150 μ m intrinsic spatial resolution for perpendicular tracks
- Technological optimizations to retain 150 μ m resolution for inclined/curved tracks $\rightarrow \mu$ TPC mode

High Efficiency

− Single detector efficiency ~ 96 – 97 % \rightarrow 92 – 94 % combined efficiency for two disks

Electron-Ion Collider

MPGD Technology: µRWELL from 1D to 2 D

1D pitch 0.78 mm Reference performances:

- 96% efficiency
- 120 μm resolution

2D CS pitch 1.2mm

- Due to the charge spread the working point is shifted to high voltage/gain
- Spatial resolution improves at high gain reaching 150 μm with a strip pitch of 1.2 mm

2D Top-r/out pitch 0.78 mm

 low-voltage/gain operation but low efficiency level (80%) due to the geometrical dead zone on the segmented amplification stage

Electron-Ion Collider

New MPGD Technology: - GEM-µRWELL Hybrid Detector

All R&D Studies for EIC disks performed in synergic collaboration with INFN-LNF and JLAB

Electron-Ion Collider

New MPGD Technology: - GEM-µRWELL Hybrid Detector

GEM 10x10 cm² layer assembly

Electron-Ion Collider

GEM-µRWELL Hybrid Technology 2024 Test Beam

Tracker-In : μ Rwell – 3 mm drift gap **Tracker-Out** : GEM- μ Rwell 6 mm drift + 3 mm transfer gaps

Detectors Under Study (DUT)

 $2 \times \text{GEM}-\mu \text{Rwell prototypes}$ 2D COMPASS-like readout 400 μm pitch

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

2024 Test Beam assessments

Efficiency at the plateau > 96%

Refer to Elena's presentation for more details

- Position resolution for straight tracks at the efficiency plateau down to $60 \mu m$
- Projected efficiency for 600 μm pitch better than 150 μm

MPGD-ECT: PED Test Article Module

Refer to Stefano's presentation for more details

Electron-Ion Collider

MPGD-ECT: PED Test Article Module

Refer to Stefano's presentation for more details

Electron-Ion Collider

GEM-µRWELL-ECT: Front End Boards (FEB) & Services

Two FEBs in mezzanine

configuration separated by 10 mm

outlets

Space for service

- The service rim can accommodate 12 FX20-140P connectors
- 6 FEBs per quadrant reading 1524 channels

Readout electronics based on SALSA ASIC developed at Saclay

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

communicated to the Integration group

For each endcap disk (4 disks in total):

- 16 HV cables
- 4 gas inlets and 4 gas outlets
- 24 data cables
- 24 low voltage cables
- 2 temperature sensors cables
- 2 humidity sensors cables
- 2 inlet and 2 outlet cooling hoses
 (H₂O) 210 W cooling dissipation

GEM-µRWELL-ECT: Integration in ePIC Detector

The assigned envelope will include the detectors and the FEB electronics. The disks will be attached to the support frame under design.

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

Annalisa D'Angelo – ECT Project Update

ECT Integration - Global Support Tube (GST) Assembly

• Global Support Tube (GST) is the Carbon fiber support structure for inner detectors.

Electron-Ion Collider

GEM-µRWELL-ECT: DAQ Scheme and Figures

- Readout based on SALSA ASIC developed at Saclay (CEA Irfu)
- Front End boards will host 4 64 channel SALSA chips
- FE Boards modular development in common with other MPGD detectors
- Each detector will work in a specific FEB form factor
- Actual DAQ scheme foresees IpGBT and VTRX+ on FEB and no RDO stage

uRWell Strips FEB III	VTRX+	Patch Panel		4 die	sks
Number of urwell strips per quadrant per dimension	768		per quadrant	per disk	ECT total
Number of channels per SALSAASIC		Number of SALSA	24	96	384
Number of SALSAASICs per FEB		ASICs			
Number of quadrants per disk		Number of FEBs	6	24	96
		Number of DAMs		0.5	2
Number of channels per DAM					

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

By Roberto Ammendola

GEM-µRWELL-ECT: Front End and Readout Chain Emulation

- SALSA chip could be available in 2027 for first integration in Front-End boards
- In the meanwhile we are preparing a testbed to exercise the complete readout chain interfacing with real detector
- Using development board with multi-channel, high sampling rate integrated ADCs FPGAs (AMD Xilinx ZCU216)
- Developing custom charge amplifier (CSA) mimicking SALSA analog stage
- Adding more SALSA features in firmware and coupling with VLDB+ board to implement lpGBT + VTRX+ layer

Electron-Ion Collider

GEM-µRWELL-ECT: Detector Simulation

Electron-Ion Collider

Fabrication / Assembly Plans & Timeline / Workforce

MPGD ECT Timeline						
YEAR	INFN R&D K Euro	INFN IN-KIND K Euro	DESCRIPTION			
2025	27	15	Pre-Production			
2026	30	40	Pre-Production			
2027	-	100	Production			
2028	-	100	Production			
2029	-	100	Production			
2030	-	55	Electronics, QA, Commissioning			
2031		50	Electronics, QA, Commissioning			
2032		40	Installation			
тот	57	500				

Workforce

- INFN Groups:
 - Roma Tor Vergata
 - Catania
 - o LNF
 - o Genova
- JLab
 - Temple University
- Seul University

Electron-Ion Collider

Workforce: Setting up the Test Beam @LNF

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

Components setup

GEM-µRWELL ECT: Summary

- Geometrical Acceptance and Technical Performances of hybrid GEM-μRwell endcap trackers have been assessed.
- A detector layout compliant with position resolution and tracking efficiency requirements has been identified.
- The disks are segmented into four quadrants, connected and attached to the inner tracker support, maximizing the azimuthal and polar acceptances.
- Readout Electronics is based on SALSA ASIC, being developed at Saclay. A SALSA ASIC emulator is being designed at INFN Roma Tor Vergata to test the PED.
- Workforce is available to meet the timeline of the production and assembly plans.
- Production timeline is consistent with the overall ePIC detector schedule.
- INFN In kind financial support has been re-modulated accordingly.

Electron-Ion Collider

Thank you

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

Annalisa D'Angelo – ECT Project Update

FY25 Status & Progress – Cont.

MPGD - SALSA (CEA-Saclay, U. Sao Paulo)

- Exists in prototype
- Development in progress

- 64 Ch
- 65 nm CMOS
- Peaking time: 50 500 ns;
- Inputs: Cdin<200 pF; Dual polarity; Q: 3 250 fC
- ADC: 12 bits, 5 50 MSPS.
- Extensive data processing capabilities
- I2C configuration.
- Triggerless and triggered operation;
- Several 1 Gbps links.
- Power: 15 mW/Ch
- Radiation tolerant.

Electron-Ion Collider

- Progress Summary:
 - SALSA0_analog and SALSA0_digital blocks fully characterized.
 - PLL block + services prototyped under PRISME. PRISMEv1 April 2025.
 - SALSA1 (full frontend and ADC chain) under tests.
 - SALSA2 (32 ch fully featured with DSP) design in progress for submission in October 2025.
 - Tests in 2026, available to users.
 - SALSAO (IP blocks): FY23
 - SALSA1: FY23 FY24
 - SALSA2: FY23 FY25
 - SALSA3: FY25 FY26
 - SALSA: FY27 FY28 Production

Possible position resolution improvement - µTPC

The spatial resolution is strongly dependent on the impinging angle of the track =>

A not uniform resolution in the solid angle covered by the apparatus => Large systematical errors.

Electron-Ion Collider

Giornate Italiane ePIC Italia, Padova June 17th 2025

Annalisa D'Angelo – ECT Project Update

Possible position resolution improvement - μTPC

A possible solution :

- The electrons created by the ionizing particle drift towards the amplification region
- In the µTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the track segment in the gas gap is reconstructed
- The fit of the analog signal gives the arrival time of drifting electrons.
- By the knowledge of the drift velocity, the 3D trajectory of the ionizing particle in the drift gap is reconstructed.

Electron-Ion Collider