dRICH Project Update

M. Contalbrigo – INFN Ferrara - DSCL

ePIC Italia, Padova, June 16th - 18th, 2025

ePIC dRICH

Goals:

Hadron 3σ–separation between 3 - 50 GeV/c Complement electron ID below 15 GeV/c Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe)

dRICH Features:

Extended 3-50 GeV/c momentum range --> Dual radiator Single-photon detection in high Bfield --> SiPM Limited space --> Compact optics with curved detector Dual-radiator Ring-imaging Cherenkov Detector (dRICH)

Essential to access flavor information

2025 Reviews

April 1-2 Incremental Preliminary Design and Safety Review of pfRICH, dRICH and hpDIRC "60% Preliminary Design Review"

PASSED

June 11-13 10th EIC Detector Advisory Committee Meeting

•(dRICH) The chromatic error is dominating the overall performance of the aerogel. It is recommended to study the optimization between (a) loss of photon yield and (b) reduction in chromatic error, using a possible optical filter installed after the aerogel tiles.

•(dRICH/DAQ) High level filtering of interactions through the GTU is being built into the DAQ design, with the specific example of the dRICH filtering provided. As this is developed the ePIC collaboration should work to understand the dependence between detectors this may introduce and prioritize the external inputs for this online filtering for different detectors.

•(dRICH) In order to optimise the ALCOR time gate, a simulated distribution of the time-of-arrival of the photon signal (and background) on the photon detector plane would be required, together with an evaluation of the main front-end electronics contributions (if any) before the application of the time gate.

•(dRICH) Preliminary results from studies of the SiPM array optical window after annealing were shown. A more detailed evaluation of the effect of high-temperature annealing on the shape integrity and optical properties of the resin layer is advised.

Global services (cables, cooling, etc.) through the endcaps have been identified, including their impact on the hpDIRC and dRICH positioning. These should continue to be monitored to allow reasonable overhead for packing and inevitable increases as additional services are identified.

Design Status								
	Technical requirements			Validated technical solutions		Before CD-2		
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 dn/d λ = 6 10 ⁻⁶ nm ⁻¹ scattering length > 50 mm		Dimensions		
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad	$\Box\!$	C_2F_6	with n = 1.00086 dn/d λ = 0.2 10 ⁻⁶ nm ⁻¹ absorption length > 100 m	\Box	Purging		
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length	\Box		Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad		Coating		
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Box	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	\Box	Layout Annealing		
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames	\Box	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch RDO		
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6	\Box		Composite materials Single open volume Detector in the barrel shadow	\Box	Real-scale prototype Cooling		
M. Contalbrigo	ePIC Italia, Padova, June 16 th – 1	.8 th , 2025						

Aerogel Pre-Production

Aerogel with n=1.026 validated with lab and prototype tests

First large aerogel tile demonstrators delivered

An effort should be pursued by the vendor to keep the aerogel quality parameters as close as possible or better than the following reference values.

General specifications:

- No cracks or bubbles inside the block. Single spallings which decrease its area no more than 0.25 % are
 acceptable on the top surface;
- Lateral dimension tolerance within 0.25 mm;
- No evident disuniformity inside the tile volume.

Technical specifications:

- Refractive index, to be chosen by the customer, in the range from 1.025 to 1.030, with a maximum tileto-tile variation of +/-0.002;
- Tolerance on thickness +/- 1 mm, being the error intended as the maximum tile-to-tile variation;
- Absorption coefficient, defined as the constant term of the Hunt parameterization of the aerogel transmission, bigger than 0.95;
- Scattering length wavelength bigger than 45 mm at 400 nm;
- Planarity of the transmission surface, defined as the maximum peak to valley variation, does not exceed 1.5 % of the lateral dimensions.

Engineering of the aerogel wall expected by 2026

Wasted Area = 9112 cm² (27%)

Act ive Area = 21368 cm^2 Dead Area = 3506 cm^2 (14%) Wasted Area = 1868 cm^2 (7%)

Gas Radiator Technical Performance

Baseline Hexsafluoroethane validated with lab and beam tests

C₂F₆ molecular weight: 138.01 g/mol boiling point: -78.1 °C melting point: -100.6 °C density: 5.734 kg/m³ at 24 °C density: 16.08 kg/m³ at -78 °C 1 covalent + 6 hydrogen bonds

Gas	Npe(π/K)	θ_π	Ө_К	σ_π	σ_K	Ν_σ	ρ = Δθ/θ ($λ = 300$ nm)
C_2F_6	16.0/14.9	36.8	35.7	0.32	0.33	3.5	1.8 %
$C_{4}F_{10}$	24.8/23.8	48.6	47.8	0.29	0.30	2.8	2.4 %

Transmission in UV range > 98 %

Expected performance obtained with dRICH prototype

Measured 139.7 m/s speed of sound confirms negligible contaminants after few year in bottle

Development of gas separation protocols expected by 2026

Purging via liquefaction of stand-by gas

Updated vapor-liquid equilibrium C₂F₆-CO₂ model, test in preparation at CERN VLE data at 273 K Phase Diagram of Carbon Dioxide (CO,) 35 Super critical fluid re (bar) 72.79 atm point 30 Solid Liquid Ę 25 Triple 20 Gas point 5.11 atm -56.57 °C 30.98 °C 0.0 0.2 0.4 0.6 0.8 1.0 Temperature (°C) → x, y C2F6 (molar)

Purging via membranes

Design of online purity monitors expected by 2026

Sonar to measure speed of sound

10 bar chamber + specrophotometer to measure light transmission in the visible range

Jamin interferometer for precise n determination

Nominal sensitivity down to 10 ppm of refractive index

M. Contalbrigo

Mirror Technical Performance

CFRP substrate mid-size (~50 cm side) demonstrator validated with lab tests before coating

Annex C. Technical Requisite

Each spherical mirror is supplied with

- a spot-size measurement,
- a report on dimensions.
- no reflective coating.

The spherical mirrors are replicated from the same mandrel. The latter is realized with the novel cost-effective technology that reduces the mandrel total mass and cost. Each mirror fulfills the following optical quality specification:

- Radius within 1% of nominal RoC value (the nominal RoC values is defined by the customer before production in the range 2000 mm +/- 10%),
- Roughness < 2 nm, -
- Pointlike image spot size D0 < 2.5 mm, 1
- Compatibility with fluorocarbon gases (C2F6), -
- Compatibility with SiO2 reflecting coating.

√ R = 2200 +/- 1%

Photon Detector

Steadly progress of photodetector towards integrated design completion in 2026

M. Contalbrigo

dRICH Readout Electronic

Design of the readout electronics in the "final" ePIC layout version is ready for test production.

Proton irradiation campaigns for ALCOR-32 and key RDO components showed SEU rate is within the expected manageable levels

Silicon die layout

M. Contalbrigo

Compact ball-grid array (BGA) package with interposer

ALCOR v3 – 64 channels

dRICH Photo Sensor Engineering

Finalization of the engineering of the SiPM optimized layout and temperature treatments ongoing

D. De Gruttola

Spad size vs photon yield

40

Details of in-situ annealing protocol based on Joule-effect

coloured points are averaged over sensors coloured brackets is the RMS

8600

500

400F

300F

200-

100

dRICH Online Filtering

A working DAQ scheme has been identified to support ML online data filtering at sub-detector level against pure dark-count event

Promising preliminary tests

- Accuracy =
 (TP+TN) / (TP+TN+FP+FN) = 0.990

 Precision = TP/(TP+FP) = 0.989
 Recall = TP/(TP+FN) = 0.991
- Through quantization, we defined: quantized fixed point<16,6> inputs quantized fixed point<8,1> weights quantized fixed point<8,1> biases

Phys Signal+Phys Background+Noise

General Layout

Realistic Components

Engineering of all the mechanical details pursued with the real-scale prototype being realized in 2025

Test Beams

Previous validations:

Dual-radiator concept C₂F₆ radiator gas performance Aerogel rafractive index SiPM-ALCOR readout chain EIC-drive readout plane Temperature gradients

2025 main goals:

Real scale 1-sector prototype with demo components

ALCOR readout with RDO

Slot at SPS H8 in November

Detector Box

entrance window

Velocity Streamline 1

4.793e+00

3.595e+00

2.396e+00

1.198e+00

0.000e+00 [m s^-1] photodetector box

Quartz Window

Ongoing comparative simulation vs prototype thermal study expected to be completed by mid 2026

Recomm. (DAC): Investigate whether windows are necessary to separate regions at different temperatures (gas radiator and the photon detector), and if needed, whether they impact performance significantly.

x 0.1

Ongoing study with ANSYS workbench simulations

Benchmarked by dRICH prototype

- Gradients are largely mitigated by
 - double lucite window (with air gap) x 0.5
 - 8 mm thick quartz window
 - inner gas recirculation

dRICH Performance Study

Simulation within ePIC dd4hep framework accounts for tracking, material budget and magnetic bending.

Model bases on lab characterization and test-beam data of components

Aerogel tiling and chromatic aberration

L. Occhiuto

Photons impinging angles and transmission probability

dRICH technological choices are supported by a structured performance and simulations activity

Essential to guide technological choices Effective entry-point for new collaborators

New performance study group being initiated

Focussed on SIDIS physics

Experience in Spin Physics and Nucelon Structure gained at HERMES (DESY), CLAS12 (JLab) and COMPASS (CERN)

INFN FE-BO-GE-LNS-PV-SA-TO-TS (7 staff, 5 student/postdoc)

Close collaboration with Theory groups already active in inpact studies on (un-)polarized TMDs

INFN LE-PV-TO (4 staff, 1 student/postdoc)

Significant reinforcement of the simulation group

- New group also provided resources to perform many new simulation 12h/ day allocation for ePIC
 - Substantial use of GPUs
- Simulations and Reconstruction in ElCrecon

CPU	Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz	Availability						
CPU Max	3.7 GHz	12h per day						
CPUs	64	for ePIC activities						
Phys. Mem	186 GB							
Storage	1.8T8x2	Parallel processing of DRICH simulations						
apu	Tesia V100 with 32 GB memory	1						

INFN TS-CS-GE-LNS U. Salerno, U. Calabria Duke U. Central U. of Karnataka Central U. of Haryana Ramaiah U. of Applied Science

(5 staff, 11 student/postdoc)

dRICH Workforce

Preliminary commitments for the construction phase are defined

Institution	Nation	Activity		
INFN-FE	Italy	Mechanics, detecor box and control panels	Ē	
INFN-BO	Italy	Photosensors, photodetection unit PDU and readout board RDO		24 - + - 55
INFN-TO	Italy	ALCOR and front-end board FEB		24 staff
INFN-BA	Italy	Aerogel radiator		18 postdocs/
INFN-CS-SA-CT	Italy	SiPM quality assurance	4	students
INFN-GE	Italy	dRICH tagger		18 technicians/
INFN-LNS	Italy	Mechanical design		engineers
INFN-RM1-RM-TV	Italy	Online data reduction		
INFN-TS	Italy	Radiator gas, gas system and software, SiPM quality assurance	L	0 staff
Duke-U.	USA	Mirror	Γ	8 stan
JLab	USA	Mechanical design and mirror characterization		2 postdocs/
BNL	USA	Mechanical design, integration, infrasctructure		students
Temple U.	USA	Aeorgel quality assurance	L	2 technicians/
M.S. Ramaiah U.	India	Simualtions and performance study	Г	engineers
NISER	India	Performance study		8 staff
Central U. of Haryana	India	Performance study	1	2 postdocs/
Central U. of Karnataka	India	Performance study	L	students

Many groups have committed to the construction phase of the above items

QA stations are of common interest: best performance with co-funded equipment & shared workforce

open to collaborators: opportunity for secondments and students traning

Construction Plan

60% Preliminary Design Review passed. A construction and QA plan is outlined accounting for lead, assembling and commissioning time

Recomm. (DAC): Present at least a vague timeline for the project at the next DAC review.

Details on Backup 31-32

Vear			20.27	- 1		20	0.28		1		20.29					2030		· · · · ·			2031		- 1 -		20	32		
Month			2027								2025					2030		L.L.			2031				20			
Milesteres		4 5 6	7 8 9 10	11 12 1	1 2 3	4 5 6	7 8 9	10 11 12	1 2	3 4 5	6 7	8 9 10	11 12 1	1 2 3	4 5	6 7	8 9 10	11 12	1 2 3	3 4 5	6 7 8	3 9 10 1	1 12 1	2 3 4	5 6	789	10 11	1 12
willestones																				ASS				RR			INS	+
Construction																												
	FDR - Final Design Complete (dRICH)																											
SiPM	Tender, Production, QA tests																											
ALCOR chip	Tender, Production, QA tests																											
FEE board & DAQ	Tender, Production, QA tests																											
Slow Control	Tender, Production, QA tests																											
Power supply	Tender, Production, QA tests																											
Vessel	Tender, Production, QA tests																											
Detector box	Tender, Production, QA tests																											
Cooling System	Tender, Production, QA tests																											
Gas system	Tender, Production, QA tests																											
Gas	Tender, Production, QA tests																											
Aerogel	Tender, Production, QA tests																											
Mirror	Tender, Production, QA tests																											
Alignment	Tender, Production, QA tests																											
Assembling	Assembling																											
Photo-detector	Assembling of Photo Sensors & Electroncis, DAQ Readout System																											
Mechanics & Optics	Mechanical Assembly																											
Detector box	Detector box disassembling & shipping																											
Detector box	Detector box final assembling & test																											
Services	Slow Control, Interlock and DAQ Installation																											
Gas and Cooling	Gas and Cooling System Installation & Test																											
Validation	Functionality tests		TDR																									

CD-2: Validate ALCOR-64 & RDO design

Validate real-scale prototype mechanics Study detector box engineering Define baseline integration and maintenance plan Work out a baseline cooling & gas sytem

CD-3: Optimize component performance Complete component integration Finalize cooling & gas system Detail detector integration and maintenance

- Stage 1: Procurement for the PDU components (asics, SiPM, carrier, FEB, RDO...) Anticipate mirror and gas procurement to reduce risk
- Stage 2 : Central 2-3 year for the detector box assembling before delivery to BNL Aerogel production after engineering optimization Gas system realization after BNL authority approval
- Stage 3: Mechanical structures Assembling and completion of services 6 months of contingency and functionality tests

Quality Assurance

QA is organized to allow essential acceptance tests on 100% of components plus in-depth sample characterization

- QA stations organized in order to
 - Be close to the assembling site
 - Ensure adequate personnel training
 - Provide redundancy & investment synergy
 - Support specific in-deep characterization studies

- Aerogel: Integrity, defects, transmittance, refractive index, dimensions, planarity
- Mirror: Dimensions, shape accuracy, radius, reflectivity
- Sensors: Electrical connections, quench resistor, I-V characteristics, DCR, relative PDE
- Readout: Electrical connections, bias levels, threshold and gain scans, time jitter, DAQ rate
- Gas: Refractive index, transparency, sound speed, leakage rate

Component	QA station 1	QA station 2	QA detail and backup	QA Acceptance	In-depth
Aerogel	Temple U.	BNL	INFN-BA	100 %	5%
Gas	BNL		INFN-TS	2 %	2%
Mirror	JLab	Duke U.		100 %	10%
Sensor (SiPM)	INFN CS-SA-CT	INFN-TS	INFN-BO	100 %	1%
Readout	INFN-BO	INFN-FE	INFN-TO	100 %	1%

60% Preliminary Design Review passed. A construction and QA plan is outlined accounting for lead, assembling and commissioning time

- Assumptions: Installation in 2032
 - possibility to split the major procurements in batches/years
- Potential risk: sub-optimal spreading of vendor effort for SiPM
 - late investment on aerogel

dRICH Design Status is documented in the pre-TDR

dRICH passed 60% Preliminary Design Review on April 1-2, 2025

Essential technical performance has been validated for each dRICH component

Engineering is ongoing with pre-productions for performance vs cost optimization

Workforce is increasing, with focus in simulations and engineering

Ultimate R&D achievements expected in 2025 (real-scale prototype, RDO, ALCOR64)

Moving from R&D phase to PED

On track for CD-2 in 2026 and Final Design completion (TDR) in 2027

Readout Irradiation Tests

Singe-event upset (SEU) rate of dRICH electronics is manageable with standard firmware redundancy and resets features

Regular irradiation campaign ongoing:

Neutron irradiation campaign at LNL-CN (9-11 October 24) Gamma irradiation campaign at CERN-GIF (14-16 October 24) Proton irradiation campaign at TIFPA (12-14 December 24)

 $TID_5 \cong 2.3 \text{ krad}$ (for 1000 fb⁻¹)

ALCOR radiation tolerance

ECCR	$\sigma = 9.8 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
BCR	$\sigma = 6.1 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
PCR	no SEU detected

periphery register \rightarrow no TMR in ALCOR v2.1 periphery register \rightarrow no TMR in ALCOR v2.1 re-written every 10 seconds to mimick TMR

 $(2.30 \pm 0.28) \cdot 10^{-16}$

CRAM

Gas System & Monitoring

Adaptation from realizations at CERN with focus on separation/monitor expected by 2026 Realization at BNL in compliance with DOE safety standards

