

Coordination of SIDIS/TMDs studies

Susanna Costanza University of Pavia – INFN Pavia

> Padova, Sala della Carità June 16, 2025

INFN milestone

Internal INFN milestone due to the end of 2025

"Performance studies of PID detectors in the extraction of TMDs."

Generic deliverable:

Realisation of a **plot** to be included in chapter 2 of the TDR.

Why SIDIS?

- Sinergy with the dRICH project: SIDIS process of interest for evaluating dRICH design performances
 - Example: study of relevant kynematic distributions, acceptance studies, PID
- Close collaboration with theory groups working on TMDs in Pavia (unpolarized and polarized TMDs) and in Torino (polarized TMDs)
- Experience in spin physics and nucleon structure gained in other experiments

Who?

Several INFN groups expressed interest in the topic:

- Pavia: G. Boca, S. Costanza, N. Valle (exp); F. Delcarro, M. Radici, A. Bacchetta (th)
- Torino: M. Chiosso, D. Giordano (exp); M. Boglione, E. Nocera, A. Signori (th)
- Ferrara: L. Polizzi
- Salerno: A. Decaro, S. Pucillo, C. Ripoli
- Genova: M. Osipenko
- Laboratori Nazionali del Sud: D. Lattuada, Fatemeh Farrokhi
- Trieste: A. Bressan, A. Martin
- Bologna: F. Bellini
- Lecce: G. Chirilli (th)

What?

- First contacts with SIDIS-WG conveners at the end of January (M. Chiosso's slides 28/01/25)
 - Expressed interest in:
 - Unpolarized TMDs (e+p/D) with identified pions/kaons
 - Sivers (e+p/D) with identified pions/kaons
 - Studies of relevant kynematic distributions, reconstruction efficiency, PID, radiative corrections
- ...but there are other groups involved in these topics since the YR!
- Conveners' proposal:
 - concentrate on particle (pion/K/p) identification and subsequent correction
 - need of full likelihoods from all possible PID detectors and all particle hypotheses \rightarrow work with the PID detectors and the software/reconstruction group to improve the PID implementation

What?

• Need to find a **compromise** between the conveners' demands and the focus and timelines of our milestone

First steps:

- Become familiar with the **software**
- Become familiar with the **physics** (most of the involved people come from a different field of Physics)
- Address how to coordinate the INFN physics **milestone** with the needs of the ePIC-SIDIS group
- Identify the available **manpower** to actively work on the milestone and to **assign tasks** to the various groups/collaborators.

SIDIS-Italia kick-off meeting in Pavia (May 13-14, 2025)

Kick-off meeting

ePIC-Italia SIDIS WG meeting

13–14 mag 2025 Dipartimento di Fisica Europe/Rome fuso orario

Inserisci il termine di ricerca

λ

Overview

Scientific programme

How to reach us

Accomodation

Timetable

Videoconference link

Contacts

marco.radici0@gmail.com

Scientific programme

The purpose of the SIDIS-Italy group meeting is to offer a **theoretical introduction to SIDIS physics**, primarily intended for newcomers and those who have not yet engaged in an in-depth study of this field.

Additionally, dedicated discussions will focus on identifying and prioritizing the most relevant observables for SIDIS physics in the context of the **early science** phase.

The meeting will also address how to coordinate the ePIC-Italy physics **milestone** with the needs of the ePIC-SIDIS group.

Another objective of the meeting is to identify the available **manpower** to actively work on the milestone and to **assign tasks** to the various groups/collaborators.

Finally, during this meeting, we would like to organize a 'hands-on' session dedicated to the analysis of the ePIC software, aimed at helping novice analysts retrieve relevant information about the observables of interest within the code.

Kick-off meeting

SIDIS-Italia kick-off meeting in Pavia (May 13-14, 2025)

https://agenda.infn.it/event/46977/

Hybrid meeting, with participants both in person and online.

- Theoretical introduction to SIDIS physics
- Dedicated **discussions** focused on identifying and prioritizing the most relevant observables for SIDIS physics in the context of the **early science** phase
- Operative **discussion** on the milestone
- **Hands-on session** dedicated to the analysis of the ePIC software, aimed at helping novice analysts retrieve relevant information about the observables of interest within the code

How is the work proceeding?

Since the kick-off meeting:

- Discussions with **Umberto Tamponi** and **Chandra** to better understand the current status of the PID system:
 - No complete PID algorithms based on likelihoods are available yet only lookup tables exist.
 - This makes PID performance studies more complex, as we cannot manually modify the lookup tables.
- Familiarized ourselves with the code provided by Lorenzo
- Attempted to create some plots
- Weekly meeting (Thursday @ 10:00) https://agenda.infn.it/category/2234/
- Contacts:
 - Mailing list (epic-italia-physics-sidis@lists.infn.it)
 - Mattermost channel

In order to assess the impact of Particle Identification (PID) performance on the extraction of TMDs, we propose to perform **systematic studies of PID performance** by **manipulating contamination levels a posteriori** and repeating the analysis accordingly.

Instead of relying on existing lookup tables, we simulate varying levels of PID performance by modifying particle contamination levels (e.g. pion-to-kaon, kaon-to-proton misID rates). How?

- 1. Define baseline performance from current lookup tables.
- 2. Inject controlled variations in PID contamination rates.
- 3. Repeat the full SIDIS analysis chain to observe the effect on key observables (e.g. multiplicities, asymmetries).
- 4. Compare results to evaluate **sensitivity of TMD extraction** to PID performance.

Expected outcome:

a set of performance-driven plots showing the relationship between PID quality and the stability of TMD observables.

Moreover, Salvatore suggested checking the detector performance requirements defined during the Yellow Report phase

η	Nomenclature			Tracking					Electrons and Photons			$\pi/K/p$		HCAL		Muons	
				Resolution $\sigma_p/p[{\rm GeV/c}]$	\max_{X/X_0}	\minp_T	transverse pointing $dca(xy)$, $p_T[\text{GeV/c}]$	longitudinal pointing $dca(z)$, $p_T[\text{GeV/c}]$	Resolution $\sigma_E/E[\text{GeV}]$	PID	$E_{ m min}$	Momentum range	Separation	Resolution $\sigma_E/E[\text{GeV}]$	$E_{ m min}$		
<-4.6	↓ p/A	Far Backward Detectors	$low-Q^2$ tagger														
-4.6 to -4.0									1	Not Accessible	е						
-4.0 to -3.5									Red	uced Perform	ance						
-3.5 to -3.0							8	9								18	
-3.0 to -2.5				0.2% * p ⊕5%			8	9	1%/E $\oplus 2.5\%/\sqrt{E}$	π supp. up to 10^4	20 MeV					18	
-2.5 to			Backward	0.04% * p		70 MeV/c to 150 MeV/c			⊕1%	ap 10 10		<10 GeV/c		$\begin{array}{c} 50\%/\sqrt{E} \\ \oplus 10\% \end{array}$		18	
-2.0 -2.0 to			Detector				40 μm/p _T ⊕10 μm	$100 \mu m/p_T$	2%/E	π supp.	+					18	
-1.5 -1.5 to				⊕2%			Фторт	⊕20 µm	$\oplus (4 - 8)\%/\sqrt{E}$	up to $10^3 - 10^2$	50 MeV					18	
-1.0 -1.0 to									⊕2%								
-0.5 -0.5 to		Central			- 504				2%/E	π supp.			$> 3\sigma$	200% / TT		18	
0.0		Detector	Barrel	0.04% * p ⊕1%	< 5%	200 MeV/c	30 μm/ <i>p</i> _T ⊕5 μm	30 μm/ <i>p_T</i> ⊕5 μm	$\oplus (12 - 14)\%/\sqrt{E}$	up to 10^2	$100\mathrm{MeV}$	<6 GeV/c		$^{100\%/\sqrt{E}}_{\oplus 10\%}$	500 MeV	18	
0.0 to 0.5 0.5 to 1.0									⊕2 – 3%							18 18	
1.0 to 1.5				0.0484			40 μm/p _T ⊕10 μm									18	
1.5 to 2.0 2.0 to 2.5			Forward Detector	0.04% * p ⊕2%		70 MeV/c to	8	100 μm/p _T ⊕20 μm	2%/E ⊕(4 −	$3\sigma \ e/\pi$ up to	100 MeV	<50 GeV/c		$50\%/\sqrt{E}$ $\oplus 10\%$		18 18	
2.5 to 3.0			Detector	0.2% * p ⊕5%		150 MeV/c	8	9	12)%/√E ⊕2%	15 GeV/c				⊕10 /6		18	
3.0 to 3.5 3.5 to 4.0					8 9 ©276 18 Reduced Performance											18	
4.0 to 4.6					Not Accessible												
>4.6		Far	Proton Spec- trometer														
	† e	Forward Detectors	Zero Degree Neutral Detection														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		18	

Expected outcome:

a set of performance-driven plots showing the relationship between PID quality and the stability of TMD observables.

Moreover, Salvatore suggested checking the detector performance requirements defined during the Yellow Report phase

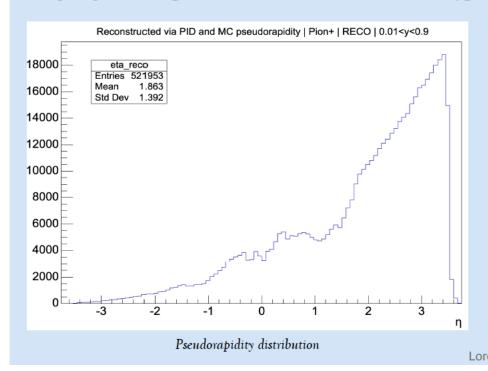
- Do we still meet these original performance criteria?
- How sensitive are the **physics observables** to variations in these criteria?
- Use the Yellow Report requirements as a **reference point**.
- Vary individual detector performance parameters and observe the impact on:
 - PID efficiencies and purities
 - Final SIDIS observables (e.g. asymmetries, cross sections)

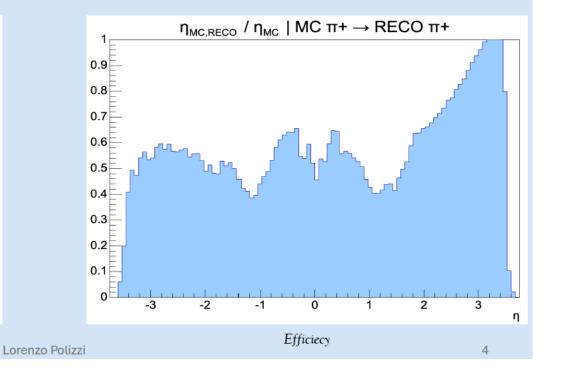
This study will run in parallel with the main TMD extraction analysis.

Status

Proposal submitted to the conveners:

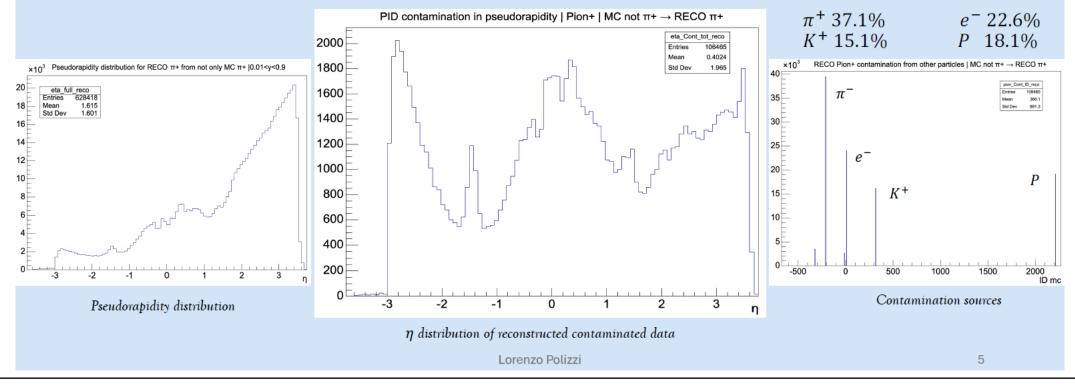
- they think it is reasonable
- it will be discussed at the next SIDIS-WG meeting (July 1, 2025)

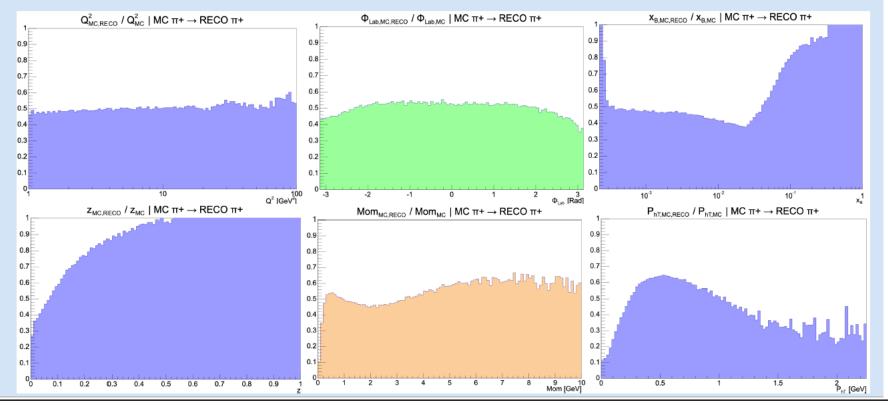



Let's say ... 30% is done

- **First plot** on kinematic variables (π^+ distributions, reconstruction efficiencies and contaminations for SIDIS analyses) produced by Lorenzo
- Preliminary results will be presented at the next SIDIS-WG meeting

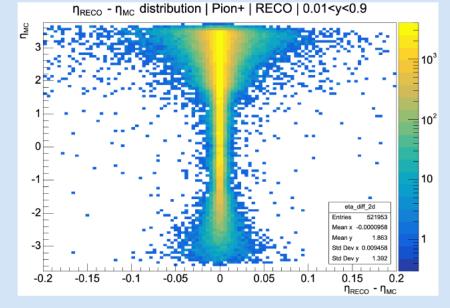
PSEUDOR APIDITY EFFICIENCY


Pseudorapidity (η) provides important information about the spatial distribution of the process and highlights the performance of the different types of ePIC detectors.


PSEUDOR APIDITY CONTAMINATION

Observing the π^+ reconstruction, almost 17% of the identifications are source of data contaminations.

KINEMATIC EFFICIENCY


From MC and RECO production we observe that the total efficiecy of MC π^+ correctly reconstructed as π^+ is about to **49.1**%.

RECONSTRUCTION PRECISION

The reconstruction performance shows slight underestimation behavior of the main variables such as: x_B , Q^2 , z, P_h while it shows an overestimation only for P_{hT} . The tracking system provides a nearly perfect reconstruction of η .

	$\Delta_{mean}(RECO-MC)$	σ_{STD}
η	-9.6×10^{-5}	9.5×10^{-3}
x_B	-0.0136	0.0348
Q^2	-0.1024	0.3406
Z	-0.0203	0.0535
P_h	-0.0315	0.2281
P_{hT}	+0.0264	0.1411

Lorenzo Polizzi

Next steps

Work in progress:

- Produce similar plots for other particle species
- Become more confident with the software
- Divide the tasks among the group
- Extract meaningful parameters for the cross section and TMDs studies
- Repeat the studies with different contamination levels

