3D Parton Imaging with TMDs and Gluon Saturation at ePIC

Giovanni Antonio Chirilli

University of Salento & INFN - Lecce

ePIC Italia - Padova 16 - 18 June, 2025

Machine Snapshot

- Polarised beams $e^-~(\sim$ 80%), $p^{\uparrow}~(\sim$ 70%)
- Energy range $\sqrt{s} = 20-140 \,\text{GeV}$
- Design luminosity $10^{33}-10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Three Main Questions

• Mass Emergence

How do gluon fields and confinement generate the proton's 1 GeV mass?

Spin Decomposition

Resolve $\Delta \Sigma$, ΔG , and orbital L_{q+g} with polarised DIS.

3-D Imaging

Map partons in momentum (TMD), position (GPD), and phase space; explore saturation at small *x*.

incoherent interaction in DIS: Bjorken limit

Bjorken limit:
$$-q^2 = Q^2 \rightarrow \infty$$
, $(P+q)^2 = s \rightarrow \infty$ $x_{\rm B} = \frac{Q^2}{s+Q^2}$ fixed

DIS cross section at Leading Log Approximation

BFKL: Leading Logarithmic Approximation $\alpha_s << 1$ $(\alpha_s \ln s)^n \sim 1$

 $x_B = \frac{Q^2}{s} \to 0$

Formation time of the $q\bar{q}$ pair: $t_f \sim \frac{1}{\Delta E} \sim \frac{1}{Mx_B}$

Compare with typical partons' interaction time: $t_{int} \sim R_P$

High-energy scattering in quantum mechanics and QCD

High-energy: E >> V(x) WKB approximation.

High-energy scattering in quantum mechanics and QCD

In QCD
$$U(x_{\perp}) = \operatorname{Pe}^{\frac{-tg}{c\hbar} \int_{-\infty}^{+\infty} dt \, \dot{x}_{\mu} A^{\mu}(x(t))}$$

rotation in color space $U_{ij}(x_{\perp})q_j^{free}(x)$ with i, j = r, g, b

$$Pe^{\int_{-\infty}^{+\infty} dt A(t)} = 1 + \int_{-\infty}^{+\infty} dt A(t) + \int_{-\infty}^{+\infty} dt A(t) \int_{-\infty}^{t} dt' A(t') + \dots$$

DIS in the Shock-wave/Wilson lines formalism

Factorization in terms of Unintegrated Gluon Distribution: $G(k_{\perp}, \eta)$

BK non-linear evolution equation

 At high-energy recombination process tames the emission process and unitarity is restored.

$$\frac{dN(x_B,k_{\perp})}{\ln x_B} = \alpha_s K_{BFKL} \Big[N(x_B,k_{\perp}) - [N(x_B,k_{\perp})]^2 \Big]$$

NLO BK Balitsky and G.A.C. (2007)

NNLO BK exploiting conformal invariance

Balitsky and G.A.C. work in progress

Physics@EIC-ePIC

- Do DGLAP equations describe high parton-density dynamics?
- DGLAP is evolution equation towards dilute regime.

Coherent Interactions

Bjorken Limit

$$-q^{2} = Q^{2} \to \infty, \ (P+q)^{2} = s \to \infty$$
$$x_{\rm B} = \frac{Q^{2}}{s+Q^{2}} \text{ fixed}$$
$$\text{resum } \alpha_{s} \ln \frac{Q^{2}}{\Lambda_{\rm OCD}^{2}}$$

Regge Limit

$$Q^2$$
 fixed, $s \to \infty$
 $x_{\rm B} = \frac{Q^2}{s} \to 0$
resum $\alpha_s \ln \frac{1}{x_{\rm B}}$

DGLAP vs. BFKL

 $Q_s^2 \sim \left(\frac{A}{x_B}\right)^{1/3}$ uGD: $F(x, k_{\perp})$ depends independently on x and k_{\perp} . Geometric scaling: $F(x, k_{\perp}) \sim \frac{1}{Q_s^2} f\left(\frac{k_{\perp}}{Q_s(x)}\right)$

proton's F_2 and F_L as a function of x at $Q^2 = 10Q_s^2(x)$

percent-level tension already visible; ePIC data \times 20 stats

Relative difference $(F_{2,L}^{BK} - F_{2,L}^{Rew})/F_{2,L}^{BK}$

Armesto et al. (2022)

11/26

¹⁹⁷Au F_2 and F_L as a function of x at $Q^2 = 10Q_s^2(x)$

re-weighting is simply a way to make the initial conditions "fair"

G. A. Chirilli (University of Salento & INFN)

Physics@EIC-ePIC

Armesto et al. (2022) 16 June, 2025

Semi-inclusive DIS (SIDIS)

$$-q^2 = Q^2 \gg p_\perp^2 \sim \Lambda_{\rm QCD}^2 \Rightarrow \text{TMD factorization}$$

 $Q^2 \gg p_{\perp}^2 \gg \Lambda_{
m QCD}^2 \quad \Rightarrow \quad {
m Sudakov resummation}$

 $Q^2 \sim p_{\perp}^2 \gg \Lambda_{\rm QCD}^2 \Rightarrow$ Collinear factorization

Semi-inclusive DIS (SIDIS): incoherent interactions

Cross-section is factorized in terms of Transverse Momentum Distributions

$$E'E_h\frac{d\sigma_{ep\to e'hX}}{d^3P_hd^3\ell'} = \hat{\sigma} \otimes f(x_B, k_\perp) \otimes D(z, q_\perp)$$

3D imaging of partons in momentum space

Different formalisms are available

- Collin-Soper-Sterman formalism
 - 2 couple evolution equations in rapidity and UV regulator
 - difficult to extend at small-x
- Soft-Collinear-Effective Theory
 - difficult to extend at small-x
- Rapidity-only evolution equation (à la small-x)
 - suitable to bridge small and moderate x_B regimes
 - ▶ Not a renrm. group equation ⇒ needs running coup. corrections
 - running coup. corrections in Sudakov approximation I. Balitsky and G. A. C. (2022)

how to bridge the TMD and the uGD formalism? Would sub-eikonal corrections help? Need dictionary between higher-twist and sub-eikonal corrections

Physics@EIC-ePIC

Di-hadron production: Weiszäcker Williams distribution

$$C(\Delta\phi) = \frac{1}{N^{\text{trig}}} \frac{N^{\text{pair}}}{d\Delta\phi} = \frac{1}{\frac{d\sigma_{\text{SIDIS}}^{\gamma^* + A \to h_1 + X}}{dz_{h1}}} \frac{d\sigma_{\text{tot}}^{\gamma^* + A \to h_1 + h_2 + X}}{dz_{h1} dz_{h2} d\Delta\phi}$$

Back-to-back di-hadron suppression in SIDIS

Di-hadron production: Weiszäcker Williams distribution

Lower peak $\Rightarrow k_{\perp}$ broadening \Rightarrow Saturation

 $\frac{dN^{\text{pair}}}{d\Delta\phi}$: distribution of particle pairs N^{trig} : the number of trigger particles

Zheng, Aschenauer, Lee, Xiao (2014)

G. A. Chirilli (University of Salento & INFN)

16 June, 2025

17/26

from EIC white paper 1212.170

10% of HERA (0.5 fb⁻¹) events ePIC (10 fb⁻¹): $\times 20$

Diffractive DIS

$$\beta = Q^2/(Q^2 + M_X^2)$$

0.02 0.018 $1/\sigma_{tot}$) $d\sigma_{diff}/dM_X^2$ (GeV⁻²) 0.016 e 0.014 0.012 е 0.01 0.008 M 0.006 0.004 0.002 Xc rapidity gap 1.8 1.6 1.4 1.2 Ρ' 0.8 Exchange vacuum quantum number

Sensitive to saturation phenomena

Discriminate between saturation models and Leading-twist shadowing

Physics@EIC-ePIC

Probing the spatial distribution: $|t| = \Delta_{\perp}^2 \quad \Delta_{\perp} \stackrel{F.T.}{\leftrightarrow} b_{\perp}$

from Toll, Ullrich arXiv-1211-3048

pseudo data on the gluon helicity and quark singlet helicity

Yellow Report 2103.05419 [hep-ph]

gluon helicity (left panel) and quark singlet helicity (right panel) distributions as a function of x for $Q^2 = 10 \ GeV^2$. Large uncertainty at small- x_B

pseudo data on the gluon helicity and quark singlet helicity

small- x_B : Eikonal + sub-eikonal interactions

Physics@EIC-ePIC

Quark (and gluon) propagator with sub-eikonal corrections

Quark propagator for g_1 structure function

- Eikonal interaction
- Sub-eikonal interaction G.A.C (2019-2021)
- work done in this direction: Kovchegov et al (2017-2025); Altinoluk, Beuf; Armesto et al (2014-2024)

Physics@EIC-ePIC

- Gluon saturation forward dijets in ep(eA); measure $C(\Delta \phi)$ (~ 10^7 events)
- Small-*x* BK/JIMWLK coherent J/ψ in *e*+Au; *t*-slope \Rightarrow (\sim 10⁶)
- TMD Sivers/Collins polarised SIDIS $ep^{\uparrow} \rightarrow ehX$; asymmetry $A_{UT}^{\sin(\phi_h \phi_S)}$ (~ 10⁸)
- 3-D imaging (GPD)– DVCS $ep \rightarrow ep\gamma$; $d\sigma/dt \Rightarrow$ transverse density (~ 10⁶)
- Proton spin at small *x* inclusive $g_1(x, Q^2)$ in polarised *ep*; extract $\Delta g + \Delta \Sigma ~(\sim 10^7)$

3D parton imaging

- EIC represents an opportunity to understand the origin of the main properties of the proton: its mass and its spin;
- Evolution equations at higher perturbative order are important to make reliable prediction for the experiment;
 - BK/JIMWLK non-linear evolution equation are relevant at small-x_B/high-parton density.
- At EIC we have a chance to observe parton saturation;
- The challenge is to develop a bridging formalism which can smoothly interpolate the Bjorken region and the Regge region;
 - To this end the sub-eikonal corrections represent a good starting point;
- Spin of the proton at small-*x_B* can be explored for the first time at the EIC;
 - Sub-eikonal corrections play a central role.

Back-up Slides

non-local Operator Product Expansion

$$T\{j_{\mu}(x)j_{\nu}(y)\} = C_{\xi}(x,y) \ \bar{\psi}(x)\gamma_{\mu}\gamma^{\xi}\gamma_{\nu}[x,y]\psi(y) + O((x-y)^2)$$

- $C_{\xi}(x, y)$ is the coefficient function calculable in pQCD
- $\bar{\psi}(x)\gamma_{\mu}\gamma^{\xi}\gamma_{\nu}[x,y]\psi(y)$ is the non local operator

DGLAP evolution equation

Renorm-group equation for light-ray operators: DGLAP evolution equation

$$\mu^2 \frac{d}{d\mu^2} \bar{\psi}(x)[x,y]\psi(y) = K_{\rm LO} \bar{\psi}(x)[x,y]\psi(y) + \dots$$

Dipole unintegrated gluon distribution: inclusive and single-inclusive DIS

Weizsäcker Williams gluon distribution: di-hadron production in SIDIS

WW-distribution has a partonic interpretation in the light-cone gauge

Exclusive DIS and GPDs

Information on the spacial distribution of partons inside hadrons

 $(p - p')^2 = t = -\Delta_{\perp}^2$ q-GPD defined through off-forward matrix elements of

non-local operators

$$F^{q} = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-z/2)\gamma^{+}q(z/2) | P \rangle \Big|_{z^{+},\mathbf{z}=0}$$

= $\frac{1}{2P^{+}} \left[H^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right]$

 $P = \frac{1}{2}(p + p'), \qquad \xi = \frac{p^+ - p'^+}{p^+ + p'^+}$

D. Müller (1994), A. Radyushkin (1996), X. Ji (1997)