

tbH⁺ (H⁺ \rightarrow W⁺H, H \rightarrow $\tau\tau$) Search Using CERN ATLAS Data

André Sopczak

6 December 2024

Motivation

- Standard Model (SM) of particle physics
 - One Higgs boson
- Beyond Standard Model (BSM)
 - Several Higgs bosons
 - Simplest extension:
 - Three neutral Higgs bosons
 - Two charged Higgs bosons (H[±])
 - Discovery of a charged Higgs boson would be evidence for physics beyond the SM

Standard Model of Elementary Particles

Outline of Analysis Process

- 1. Simulation of signal and background processes
- 2. Study of features describing the events
- 3. Preselection and normalization
- 4. Machine Learning development
- 5. Training & hyperparameter optimization
- 6. Testing

- 7. Calculation of significance and cross-section sensitivity

$$\overset{|0|0}{\longrightarrow} \rightarrowtail \overset{|0|0}{\longrightarrow} \rightarrowtail \overset{|0|0}{\Longrightarrow} \rightarrow \overset{|0|0}{\rightarrow} \rightarrow \overset{|0|0}{\rightarrow} \rightarrow \overset{|0|0}{\rightarrow} \rightarrow \overset{|0|0|0}{\rightarrow} \rightarrow \overset{|0|0}{\rightarrow} \rightarrow$$

tbH⁺ production and ttH production can have the same final state

Signal and Background

• H ⁺ mass (Ge\	/) Number events
300	1.2M
800	0.8M
1500	0.6 M
2000	0.4 M

 Main background reactions ttH ttW

> tt ttZ

VV

• Use event features to separate signal and background

Remarks

- tbH⁺ (H⁺ \rightarrow W⁺H, H \rightarrow $\tau\tau$) search using CERN ATLAS data
- Search for physics beyond the Standard Model of particle physics
- Theoretical framework: extended Higgs boson model
- Application of machine learning to separate tbH⁺ signal events from other reactions (background events)
- Simulated signal and background events provided
- Goal: using Machine Learning to increase the sensitivity for a tbH⁺ signal by increasing the ratio of the number of expected signal / sqrt(number of expected background events)

Related projects:

ttH measurement and WHH measurement