

The LHCb RICH detectors upgrade: from prototyping to operations

Giovanni Cavallero INFN Ferrara

Outline

The Ring Imaging Cherenkov (RICH) detectors provide charged hadron identification to the LHCb experiment at CERN

- Introduction to LHCb and impact of hadron identification on physics
- The LHCb RICH detectors and their upgrade
 - Photon detection chain prototyping and quality assurance
 - Optics and mechanics
- Commissioning and installation
- Operations and performance

Introduction to LHCb and hadron identification

The LHCb RICH detectors upgrade: from prototyping to operations

LHCb phase 1 (2010-2018) 2008 JINST 3 508005

Designed to perform indirect searches for new physics through precision studies of *b*- and *c*-hadron decays
Precise vertexing (σ_t ~ 45 fs)

- Run 2, \sqrt{s} = 13 TeV, $\mathcal{L} = 4 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- ~10¹²/ 10¹³ b-/c-hadrons in Run 1 + Run 2

Hadron identification with RICH detectors

- Hundreds of photons and charged pions are produced in a hard pp interaction at the LHC inside the LHCb acceptance
- Use the properties of Cherenkov radiation to assign a mass hypotheses to charged particles in a wide range of momenta up to 100 GeV
 - reject combinatorial background due to random charged pions
 - distinguish final states of otherwise identical topology: : suppress leading order decay modes and efficiently select Cabibbo suppressed decays to improve the precision of rare decay and CP violation studies

The LHCb RICH detectors upgrade: from prototyping to operations

Impact of hadron identification on LHCb physics

The LHCb RICH detectors upgrade: from prototyping to operations

Cherenkov radiation

- Photons radiated by a material of refractive index n when a charged particle travels with a velocity $v = \beta c$ larger than the phase speed of light c/n
 - Energy threshold
 - coherent and **polarised** wavefront with **direction** $\cos \theta_c = 1/\beta n$ (cone of light with axis given by the charged particle trajectory)
 - spectral dependence of the radiation for a path L of the charged track in the medium given by the Frank and Tamm equation $dN/dE \sim 370 L \ [cm] sin^2 \theta_c \ eV^{-1}$

The LHCb RICH detectors upgrade: from prototyping to operations

Cherenkov radiation for particle identification (PID)

- $m = p/\beta \gamma = p\sqrt{n^2 \cos^2 \theta_c 1}$
- PID can be done measuring the Cherenkov angle θ_c when the momentum p is determined by the tracking system
- *n* is known by the choice of the radiator, determined according to the range of momentum that needs to be covered
- Mass discrimination in a wide momentum range is best reached if $n \gtrsim 1$ (e.g. fluorocarbon gases)

Ring imaging

NIM 142 (1977) 377

- Magnify the Cherenkov angle through a spherical mirror and measure the radius on a photon detection plane
- In practice tilted spherical mirror + flat mirror to reflect the image outside of the acceptance to not interfere with tracking/calorimetry systems and to reduce backgrounds
- Cherenkov emission + focussing optics => simultaneous time of arrival of all photons (neglecting optical aberrations and chromatic dispersion)

The LHCb RICH detectors upgrade: from prototyping to operations

Requirements for RICH detectors

- Mass separation at $n_{\sigma} = |m_1^2 m_2^2|/2p^2 \Delta \theta_c \tan \theta_c$ for a single track, $\Delta \theta_c = \sigma_c / \sqrt{N_{ph}} \oplus C_{trk}$
- RICH detectors performance intrinsically driven by
 - Cherenkov angle resolution σ_c
 - Emission point error due to the unknown emission points of the ²⁰ detected photons
 - Pixel size error due to the finite granularity of the photon detectors
 - Chromatic error due to the radiator dispersion and unknown photon energies
 - Detected Cherenkov photons per track N_{ph}
- Contribution from tracking system
- ~ 100 tracks per hard pp event in LHCb => build a global loglikelihood between measured hits and expected hit patterns from tracks (no direct association of hits with track) April 3, 2025

RICH1

How to get there

Minimise σ_c :

- Chromatic error: radiator dispersion $\otimes R_{mirrors} \otimes$ $T_{quartz} \otimes$ photon detectors Quantum Efficiency (QE)
- Emission point error: optical aberrations, tilt of spherical mirrors
- Pixel size error: granularity of photon detectors, radius of curvature of spherical mirrors $(\sigma_{px} = d_{px}/\sqrt{3R})$

Minimise C_{trk}

Experiment optimisation: hit resolution, B-field knowledge, material budget

Maximise *N*_{ph}:

- photon detection: active area, gain, low electronics and sensors noise, large QE
- photon production: large gas volumes

The LHCb RICH detectors upgrade: from prototyping to operations

The LHCb RICH detectors and their upgrade

The LHCb RICH detectors upgrade: from prototyping to operations

The LHCb RICH detectors

RICH1,~ 4 m³, upstream, 8% X0 3-40 GeV over 25-300 mrad

RICH2, ~ 100 m³, downstream, 15% X0 15-100 GeV over 15-120 mrad

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

13

Phase-1 LHCb RICH detectors performance

- The first generation of the LHCb RICH detectors operated in Run 1 and 2 with an excellent performance
- RICH1: $\sigma_c = 1.662 \pm 0.023$ mrad, $N_{ph} = 30 \pm 2$
- <u>JINST 17 (2022) 07, P07013</u>
- RICH2: $\sigma_c = 0.621 \pm 0.012$ mrad, $N_{ph} = 18.5 \pm 1.2$

LHCb upgrade: a new experiment

300 kHz $b\overline{b}$ and 5 MHz $c\overline{c}$ produced in the LHCb acceptance

- 5x instantaneous luminosity
- $\mathcal{L} = 2 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- Removal of hardware level trigger
- 2.5 TB/s input bandwidth to a full software writing fully reconstructed objects at 10 GB/s to storage

LHCb RICH detectors upgrade concepts

- Boundary conditions for Run 3 LHCb: run with higher occupancy, using a continuous 40 MHz readout rate, and keeping the same subdetector envelopes
- New RICH1 optics and mechanics

- Replace Hybrid Photon Detectors with embedded 1 MHz readout electronics with **new photon sensors and frontend electronics in both RICH1 and RICH2**
 - New mechanical supports

• New digital electronics for data transmission at 40 MHz using the GigaBit Transceiver (GBT) protocol

The LHCb RICH detectors upgrade: from prototyping to operations

Photon detection chain prototyping and quality assurance

The LHCb RICH detectors upgrade: from prototyping to operations

Timeline

2015-2016: Elementary Cell validated
as basic unit of optoelectronics chainPhoton Detector Quality Assurance
2016-20182018: production of electronics componets
started, Quality AssuranceClaro chip validate, Production Readiness Reviewto qualify ~3500 unitsof ASIC and electronics

2018: installation of a Photon Detector Module inside RICH2 and operation with LHCb collisions during 2018 data taking

2019:Elementary Cells QUality Assurance programme started

2019: column assembly and commissioning started --> road towards installation

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

INFŃ

Multi-anode Photo-Multiplier Tubes (MaPMTs)

- Hamamatsu MaPMTs with 8 x 8 pixels to cope with **illumination rates up to 1 MHz/mm**²
 - Pixel size: 3x3 mm² for RICH1 and central region of RICH2, 6x6 mm² in peripheral region of RICH2
 - Maximise N_{ph}: O(80%) active area, gain > 10⁶ and ≤ 10 Hz/mm² dark counts rate at 1 kV, quantum efficiency > 30% at 300 nm

- Signal/Noise separation more critical than in HPDs: characterisation and study of performance key to correct operations
- Improve *σ_c*: green-shifted quantum efficiency with respect to HPDs

The LHCb RICH detectors upgrade: from prototyping to operations

CLARO ASIC

- 8-channel amplifier+discriminator ASIC (Ferrara, Kracow, Milano Bicocca)
- Designed and optimised for single-photon counting coupled to MaPMTs
- 0.35 μm CMOS technology from AMS
- 40 MHz operations (recovery time < 25 ns)
- Low-power consumption (~ 1 mW/channel)
- Adjustable threshold and gain (6+2 bits) to compensate for MaPMT gain variation
- Binary readout
- Radiation-hard by design cells and triple-module-redundancy (TMR) protecting 128 bits configuration register

20

The LHCb RICH detectors upgrade: from prototyping to operations

Testbeam campaigns

[JINST 12 (2017) 01, P01012]

- First tests on a particle beam (mainly 180 GeV pions) in 2014 in the North Area of the Prevessin site at CERN
- Plano-convex lens used as radiator and focussing object: operability and photon-yield determination one of the main objectives of testbeams

	-				
	Data		Simulation		Analytical estimate
	mean	RMS	mean	RMS	mean
Total	13.4	3.8	13.1	2.9	-
PMT A	3.6	1.7	3.1	1.5	3.8
PMT B	3.3	1.6	3.1	1.5	4.1
PMT C	4.4	1.9	3.3	1.5	3.9
PMT D	4.2	1.8	3.3	1.5	4.1

- Validation of opto-electronics chain prototypes prior to production, inputs for modifications and design of modular unit: the elementary cell
- Continue testbeam campaigns up to 2018

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

21

The Elementary Cell

- Magnetic shield used in RICH1 (magnetic field of < 30 G): maintain photon counting efficiency in edge pixels
- MaPMTs
- Baseboard: host voltage divider, routing of analog output (Genova)
- Frontend board (FEB): host CLARO ASIC, routing of digitised signal (Ferrara)
- Backboard: routing of digitised output to the readout (Ferrara)
- Two types of Elementary Cells: EC-R (4 R11265 MaPMTs) in RICH1 and central part of RICH2, and EC-H (1 R12699 MaPMT) in peripheral region of RICH2

Photon Detector Module

- Flexible FPGA-based digital board (PDMDB): pack CLARO outputs, synchronise to LHC clock, transmit data to the LHCb common readout boards (Cambridge)
- Two flavours: one PDMDB-R serving 4 half EC-R, one PDMDB-H serving 4 EC-H

 ECs + PDMDB form an independent unit called
Photon Detector Module (PDM) sharing common LV and HV distribution

Irradiation campaigns

- Radiation levels: 200 krad Total Ionising Dose, $3\,\cdot\,10^{12}$ 1 MeV n_{eq}/cm^2 fluence
- Irradiation campaigns on MaPMTs and frontend electronics (Ferrara)
 - Selection of MaPMT window (UV glass vs borosilicate), inputs to modifications of existing prototypes (e.g. TMR protection added in CLARO configuration register)
- Irradiation campaigns on PDMDBs (Bucharest)
 - Assess impact of radiation on Kintex-7 FPGAs, incorporate protections in firmwares and auto-reconfigurations in control software

The LHCb RICH detectors upgrade: from prototyping to operations

Quality assurance programmes

 Distributed programme of production of components, quality assurance (QA) campaigns across Europe, first calibrations, to converge for final assembling and commissioning at CERN

The LHCb RICH detectors upgrade: from prototyping to operations

Photon detectors quality assurance

- Verify minimal contractual specifications for 3500 units (Edinburgh, Padova)
- Gain per pixel determined at 1000 V -> 800 V in 50 V steps
- 1.5 M spectra fitted and data stored in a dedicated database
- Low rejection rate: 2.1% R13742 and 8.2% R13743

	R11265 (R13742)	R12699 (R13743)	
size [mm ²]	26.2 imes 26.2	52×52	
pixel size [mm ²]	2.88 imes2.88	6 imes 6	
number of devices	2656	384	
active area	77%	87%	
average gain @ 1 kV	> 1 Me		
gain uniformity	1:4	1:3	
peak/valley (P/V) ratio @ 1 kV	no more than 3 pixels with $P/V{<}$ 1.3		
dark-count rate @ 1 kV	$< 2.5 \text{ kHz/cm}^2$		
quantum efficiency	> 30% @ 300 nm		

CLARO, FEB and Backboard quality assurance

• Quality assurance for 4100 FEBs, 35k CLARO, 1250 Backboards + spares (Ferrara)

The LHCb RICH detectors upgrade: from prototyping to operations

Elementary Cell quality assurance

- 1-inch MaPMTs grouped by gain and assembled in **800 EC-R**
- 2-inch MaPMTs assembled on 450 EC-H
- One EC unit completed by Baseboard, FEBs and Backboard
- Verify basic functionality, calibration of CLARO channels, characterisation of MaPMTs at different HV values (Edinburgh, Ferrara)
- QA programme tuned to fully characterise an unexpected source of noise inside MaPMTs observed while operating a module in the LHCb experiment in 2018

The LHCb RICH detectors upgrade: from prototyping to operations

Operations of a module inside LHCb in 2018

31%

0%

Aim: test a photon detection module in a realistic environment

The LHCb RICH detectors upgrade: from prototyping to operations

- Detection of out-of-time hits lasting up to few μ s, confirmed with laboratory tests
- Located in specific border pixels with absolute values varying unit by unit

Signal-Induced Noise (SIN)

- Signal correlated => sizeable pile-up expected in high occupancy channels
- Strong dependence on the applied HV
- Fully characterised thanks to the ECQA programme: mechanism consistent with internal light emission and fluorescence decay [JINST 16 (2021) P11030]
- Mechanical fix introduced by Hamamatsu in a new subset of units

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

30

Implementation of timing

- An additional way to mitigate SIN (and in general non-Cherenkov signals) is the introduction of timing capabilities in the frontend electronics
- Implemented in last testbeam in 2018
- Simulations confirmed the recovery of the PID performance after the application of mitigation strategies (HV tuning, selection of new SIN-suppressed MaPMTs for the high occupancy regions, timing)

Optics and mechanics

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 optics and mechanics

 Re-design and re-build full RICH1 optics and mechanics to keep peak occupancy under control (below 30% at 40 MHz) for optimal pattern recognition (based on Run 1 and 2 experience)

Increase radius of curvature R of spherical mirrors by a factor ~ $\sqrt{2}$, reduce tilt and move the focal plane further outside the acceptance

 \Rightarrow peak occupancy halved

 \Rightarrow reduced $\sigma_{px} = d_{px}/\sqrt{3R}$

 \Rightarrow reduced σ_{ep}

Extend radiator volume in z by ~ 100 mm => +14% Cherenkov photons per track

R = 3650 mm in RICH1 => "ring radii" (~ $\theta_c R/2$) for p=30 GeV would be

~ 9.6, 9.2 and 7.8 cm for pions, kaons and protons, respectively (but not exactly rings!)

The LHCb RICH detectors upgrade: from prototyping to operations

A brand new RICH1

- New and larger gas enclosure (Oxford)
- New quartz windows separating the gas enclosure from the MaPMT enclosure above and below the beam-pipe (Oxford, CERN)
- RICH1 seal to VELO on the upstream side
- New carbon fibre exit window sealing the gas enclosure downstream (RAL)
- New 16 glass flat mirrors (Bristol, CERN)
- New 4 sherical carbon-fibre mirrors (Bristol, CERN)
- New MaPMT enclosure equipped to host optoelectronics chain mounted on columns (Imperial, Oxford)
- New tooling for installation and maintenance
- Material budget ~ halved: 4.8% X0
- RICH1 mechanics installed between 2020 and 2021

RICH1 mechanics installation

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 mechanics installation

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 mechanics installation

The LHCb RICH detectors upgrade: from prototyping to operations

RICH mechanics: columns

- Mechanical support to host sensors and services
- T-shaped aluminium bar: 1.6 m support structure and active cooling element (Padova)
 - 6 mm ducts deep-drilled along T-bars for cooling with Novec (CERN) to keep MaPMT temperature < 25 °C
- PDMDB equipped with thermal pads and levelling plates to maximise coupling with the T-bar (CERN)
- T-bar design common to RICH1 and RICH2, with tailored designed of harnesses and services (Imperial, Padova)

cooling return block

Commissioning and installation

Columns assembling, commissioning and installation

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

40

RICH2 columns assembling

 Cabling started in October 2019, assembly completed in December 2019

Covid times: RICH2 as pilot project at CERN

RICH2 columns commissioning

The LHCb RICH detectors upgrade: from prototyping to operations

Columns commissioning protocol

- Conceived to fully validate hardware and to gather operational parameters for the 200k channels composing the RICH detectors
 - Initial functionality checks (LV, HV, channels connectivity, temperature sensors)
 - 15 test-pulse injection scans
 - re-calibrate CLARO thresholds and gains in the final assembly
 - Determination of working points to be used on-experiment
 - HV training (8 hours) for dark counts assessment
 - 20 threshold scans to measure gain of each MaPMT pixel at different HV values
 - 15 runs at different HV values and offsets in time to re-characterise SIN at different HV values

The LHCb RICH detectors upgrade: from prototyping to operations

• Fully automated thanks to robust firmware and controls following the concept of reproducibility, redundancy and anticipation

RICH2 columns ready for installation

• RICH2 columns commissioning completed in July 2020

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

INFN

RICH2 ready for installation

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

ÍNFŃ

46

RICH2 installation

RICH2 installation

The LHCb RICH detectors upgrade: from prototyping to operations

RICH2 installed

 Installation, including services, completed between February and April 2021 (first new detector installed in LHCb)

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 columns assembling and commissioning

The LHCb RICH detectors upgrade: from prototyping to operations

- Different modularity requiring different tooling and adaptations to the columns commissioning protocol
- Particular care on MaPMT SIN aspects
- Parallel to RICH2 works on-experiment
- Commissioning started in November 2020 and completed in November
 - 2021

RICH1 sensors grouping

- SIN critical in high-occupancy regions of RICH1 (pile-up)
- Dedicated EC re-shuffling procedure of MaPMTs across ECs to match units with similar gain and low SIN
 - HV shared by 16 MaPMTs => 2D grouping combining PDQA and ECQA results
 - Plan possible thanks to a dedicated database storing all the QA information

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 columns installation

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

52

INFN

RICH1 columns installation

• Installation completed in January 2022

The LHCb RICH detectors upgrade: from prototyping to operations

INFN

Services and cabling

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

54

IG versus reality

Mi sono iscritta all'università

INFN

55

The LHCb RICH detectors upgrade: from prototyping to operations

RICH1 installed

The LHCb RICH detectors upgrade: from prototyping to operations

ÍNFŃ

Operations and performance

The LHCb RICH detectors upgrade: from prototyping to operations

LHC pilot beam

 First test with beam performed on RICH2 during pilot beam provided by the LHC at 450 GeV in October 2021 (restart after Long Shutdown 2): collisions quickly detected

 Not shown in this picture: LHCb spokesperson orbiting around the control room in a desperate search for good news

LHC pilot beam

- Successful test of working points determined during commissioning
- First synchronisation with LHC clock and inter-channel time alignment
- First tuning of the HV
- Number of photons per ring (and rings size) consistent with expectations

[CERN EP-news]

VIP citations

Beam-test collision data in the experiments

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

INFŃ

Detectors validation before collisions

advanced monitoring facility for detector safety and operations

61

The LHCb RICH detectors upgrade: from prototyping to operations

First high energy beams of Run 3

5th July 2022, CERN media event

62

The LHCb RICH detectors upgrade: from prototyping to operations

Photon detection chain calibration and operations

- Tuning of operational and calibration tools to achieve the best performance
- Average gain of the 200k MaPMT channels measured and equalised to 1.2 Me by tuning the operating high-voltages (frontend thresholds set to 200 ke)
 - automated threshold scan procedures with beam
 - excellent agreement between quality assurance and on experiment results
 - same procedure used to monitor and correct for ageing
- Last dynode of the MaPMTs supplied independently to preserve gain linearity at high rates up to 100 MHz/cm^2 [arXiv:2503.05273]
 - Provide online luminosity through the calibrated measurement of the power supply currents

April 3, 2025

63

The LHCb RICH detectors upgrade: from prototyping to operations

Time alignment

 Prompt emission of Cherenkov radiation and focussing optics suggestive of a fine time gating to reduce out of time backgrounds

Best trade-off between photon detection efficiency and background rejection found for a 6.25 ns time gating window: deployed since end of 2022

- B: background due to particles travelling directly to the photon detection plane
- S: Cherenkov signal
- R: background due to multiple reflections of Cherenkov photons in the optical system
- + incoherent background due to instrumental internal noise/scintillation
- photons in the radiators

64

The LHCb RICH detectors upgrade: from prototyping to operations

Hitmaps and occupancy

Physics-biased beam-beam occupancy relevant for performance

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

65

Online refractive index calibration

- Refractive index calibration required to correct for environmental (temperature and pressure) and purity (small sub-percent/month air contamination) changes of the radiators
 - Starting point determined from several temperature and pressure sensors placed into the gas enclosure
- Reconstructed Cherenkov angle from high momentum tracks ($\cos \theta_c \sim 1/n$) to determine the refractive index scale factors per run directly from data with an online data monitoring task

Alignment and Cherenkov angle resolution

- Single photon resolution also has a contribution from the spatial alignment of the optical system and from the relative alignment with the trackers
- Hardware alignment done during the installation, software alignment correcting for residual imperfections
 - photon detectors panel alignment done a few times per year to find the absolute minimum
 - Fine tuning corrections with mirrors alignment per run

LHCb-FIGURE-2023-007

Hadron identification performance: Run 2 vs Run 3

- Preliminary performance evaluated with data collected at the end of 2022, showing that already with preliminary calibrations the upgraded RICH detectors outperformed the previous generation at the average pile-up of Run 3 <u>LHCb-FIGURE-2023-019</u>
- Confirmed in 2024 <u>LHCb-FIGURE-2024-031</u> at nominal running conditions

The LHCb RICH detectors upgrade: from prototyping to operations

April 3, 2025

68

Conclusions

- The LHCb RICH upgrade has been a successful programme
 - R&D on detector components that have been installed and are operating at the LHC are an extremely rewarding experience
 - Some unexpected events along the path but effectively tackled and many lessons learned for the future
- Now a new phase is starting with the recent approval by CERN of the second upgrade of LHCb experiment foreseen to be installed in 10 years from now
 - unique opportunity to participate to the construction of a High Energy Physics experiment
 - new design and advanced R&D required by the RICH detectors in which the Ferrara group is involved in several aspects

Acknowledgments

- Some materials for this talk have been took from:
 - <u>The LHCb RICH upgrade: from design to early performance</u>, S. Gambetta, CERN-EP Detector Seminar
 - <u>PID lectures</u>, O. Ullaland, Italo-Hellenic School of Physics in Lecce, Italy
 - <u>Particle Identification: Detectors</u>, R. Forty, ICFA Instrumentation School, Bariloche, Argentine
 - <u>Fotografare l'invisibile: rivelatori di particelle elementari</u>, M. Fiorini, I venerdì dell'Universo
 - The LHCb RICH Upgrade: from design to early performance