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Thermal History of the Universe

Phase transitions are important events in the evolution of the Universe

> the SM predicts two of them (crossover)

QCD no strong breaking of thermal equilibrium
no distinctive experimental signatures
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EWPhT and new physics

‘ New physics may provide first order phase transitions ‘

e hfield tunnels from false to true 150 -

minimum at Tn < Tc

100 -

e transition proceeds through

bubble nucleation 0

_ GW from sound waves
* 7 and turbulence in the plasma
’

The bubble wall in the plasma can produce
1. breaking of thermal equilibrium (BG)

2. experimental signatures (GW)
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Toy example: SSM tree-level potential

Higgs + singlet scalar potential (Z2 symmetric)
In the high-temperature limit
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"___ important to create

with thermal masses a barrier in the potential
cn = 52(99° + 39" + 1207 + 240, + A) o= (@A + A
+ Twointeresting patterns of symmetry " 1
breaking (as the Universe cools down) O (ZEHV?/;*%()%FJ
1-step PhT (0,0) — (v, 0) Lststep 1-step
2-step PhT (0,0) — (0, w) — (v, 0) O/\O . h

> 2-step naturally realised since singlet is destabilised before the Higgs



Dynamics of the bubble wall

Plasma conveniently described as a mixture of three components
1. Scalar fields participating in the transition
2. Background species: ~ LTE
3. Species directly coupled to the scalars: OOE contributions relevant

e Scalar field EOMs

) ; dm? d’p
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14 broken phase
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p; reduced after

E'JT] 49 EP‘ | crossing the wall
particles reflected '
from the wall :
® Boltzmann equation for OOE b, augmented after
crossing the wall
2y symmetric phase i
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e \We assume a planar wall and a steady state regime



Hydrodynamics of the plasma in LTE
Equations for the plasma are obtained from the conservation of the stress-energy tensor

TW =T, + T +Th; 0, T% = 08, T? = (

plasma out of

scalar field plasma at

equilibrium ~ €quilibrium

Hydrodynamic equations provide solutions to the temperature and velocity profiles
T = wﬂyzv = C1

0.9)°

The constants are determined from the hydrodynamic regimes




Hydrodynamic regimes

The boundary conditions T%,v,. depend on the speed of the wall

Detonation (v, > vy)
— the wall hits an unperturbed plasma in front of it
(T'y =Ty, vpr = vy)

— rarefaction wave behind the wall

Deflagration (v, < c,)

— plasma at rest behind the wall(v,— = v,,)

— shock wave preceds the wall(T°" = Ty,)

Hybrid (c, < v, < vy)

— shock wave precedes the wall (T = T,)
N

—rarefaction wave behind the wall (v,— = ¢, ) v

Espinosa, Konstandin, No, Servant, 2010



Determination of the wall speed

e we solve the EOM of the scalar fields

Z

o s
E, = -0’h + o + JS} =0 approx solutions hz) = 2 (1 * tanh ( Lh))
>

oV _ 2t Z
E,g:—afera:[] s(z) = > (1+t-anh(LS +ﬁs))

four parameters to be determined: v, L,, L, 9,

e the four parameters are determined by taking momenta of the EOMs
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Results

We consider three models: singlet extension of the SM (SSM), triplet extension of the SM

(RTSM), inert 2HDM (IDM).

ISSM, A\ = 1
1.2¢ | | ' ' | | 1 1.of
| SSM A, =1 |
- SSM A, =1
1.0¢
0.8
EW minimun not globalat T"= 0
0.8}
AN
E ,»"'”'éﬁgk ) | E
~ - | = 0.6

_ "..)_.-'&%QQ
0.6}

e L 0.4
0.4 ] -

One Step (0,0) — (h,0)

60 80 100 120 140 160 180 200 60 80 100 120 140 160 180

i [GeV] nmg [GCV]

200

0.65
0.63
-0.61
-0.59
-0.57

0.55
0.53
0.51



0.02f

0.01}

Ptr}t/T;f

-0.01

~0.02!

Constraints: Ptot= Ph + Ps

0.00}

— BP1
—— BP2

e The region on the peak, in the assumption used, is not accurately described

e Second zero of Ptot NOT a detonation



Results in terms of PhT parameters
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e We extrapolated linear fits and verified that they are model-independent
e Particularly useful fits for calculating GW spectra



Conclusions and outlook

Conclusions:

e First order EWPT: theoretically and experimentally compelling

e Strategy put forward to provide full solution of the (steady-state) wall dynamics

e In LTE: complete solution in the parameter space of BSM models
- Only deflagration solutions

- Linear fit of Uy (TC, Tn/TC)

- Weak model dependence

Future perspectives: .
arXiv:2201.08220

e Inclusion of the out-of-equilibrium, already studied in  arXiv:2303.05846
arXiv:2401.13522


https://arxiv.org/abs/2201.08220
https://arxiv.org/abs/2303.05846

Back up slides



Key features of a first-order PhT

the nucleation temperature 7,

the strength

the (inverse) time duration of the transition f/H
the speed of the bubble wall Vy

the thickness of the bubble wall L,

equiltbrium

quantities

non-equiltbrium

quantities



GW from a first-order PhT

First-order PhTs produce stochastic background of gravitational waves

De Curtis, Delle Rose, Panico, 2019
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for the EWPhT the peak frequency is
within the range of future experiments
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Gowling, Hindmarsh, 2019
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The Boltzmann equation

p: (m?)’ _
(Eaz 2F apg)(fv+5f)_c[fv+5ﬂ

Assumptions on the plasma:
» High temperature, weakly coupled plasma

 Only 2—2 processes in the plasma are considered (assumption valid for the
computation of the collision integral)

 Plasma made of two different kind of species

= Top quark and W/Z bosons (main contributions)
« Allthe other SM particles (background, assumed to be in local equilibrium)



The Liouville operator

Liouville operator Is a derivative along flow paths
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E, p, and c= \/ p? +m?2 are conserved along the flow paths



Typical setup:

friction contributions from the top quark Process
and W/Z bosons

background is not perturbed

Infrared divergences regularised by thermal 3
masses

only leading-log terms are considered

The Collision term

s 52E,&;2E Ekf

The collision term Is the challenging part of the Boltzmann equation

d°k d*p’ d°K'
U +811= g 2 | Gryamiam, my M P+ 818 k=8 1)

for 2 & 2 processes

Boltzmann equation is an integro-differential equation

Examples of processes:
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Structure of the collision integral

The linearised collision integral

d3 d3pf dSkI ) - ) ,: f
o] = 5 g > | Goranam M P @+ k=2 k)

the population factor

Pl = £V FulR) (1 = £ (@) (1 £ £u(K) 7

I
the collision integral yields two classes of terms:
5 of : :
Clof| = - ((0f(k)) — (0 — (0f(k

0f Qf,;;(p) ((0f(k)) —(6f(p')) — (6f(K")))

- the perturbation does not appear inside the integral: easy to handle

- perturbation is integrated (bracket): very challenging



Full solution to the Boltzmann equation

We propose a new method to solve the Boltzmann equation
without imposing any ansatz for Jf

Key features
- No term in the Boltzmann equation is neglected
» New approach to deal with collision integrals

- [terative routine where convergence is achieved in few steps



Work tlow algorithm: iterative procedure

Initial guess

-l- Equilibrium part...
Compute v, ds, Lh, Ls
BOLTZMANN EQUATION: =
Compute Perturbations of

Compute Profiles
Corrections

|

Computev, ds, Lh, Ls

Compute brackets —



Spectral decomposition of the collision integral
Structure of the collision integral: the bracket

~ fo(p/B(2) ki/B(2),k-/B(2),2)

(0f) =

/ K[ d[K|d cos 6 fo(K[)K (||, cos 6, K, cos 8) L.

B(2)E fa (k)

the bracket can be seen as the an application of a hermitian operator on
the perturbations

= /Dﬁféﬁﬁg(\fd, cos 0;)
main idea: decompose the bracket operator into its eigenfunctions

Koi = D Aa(p, cos 6 (K], cos ;)
[

- kernels can be (humerically) evaluated only once
- huge improvement in time performance (~ 2 orders of magnitude)



Full solution to the Boltzmann equation

Structure of the Boltzmann equation

2
s Q3 _ (m)

dz . £ 2p. Op.fo + (3 (K)) — (6f(0)) — (SF(K")))

Iterative procedure
. Initial guess of the perturbation 610

. hext step of the iteration is found by solving

sy — 20 ) ot (801 (8) = (3 a0 — (1K)
< Dz fv sz




