Indirect Detection probes

MDM 5plet

for

Giulio Marino

(Università di Pisa, INFN)

In collaboration with: Armando, Aghaie, Bottaro, Dondarini, Gaggero and Panci

hep-ph/2506.xxxx

New Frontiers in Theoretical Physics Cortona - 2025

Istituto Nazionale di Fisica Nucleare Sezione di Pisa

UNIVERSITÀ DI PISA

Dark Matter Motivations

New Frontiers in Theoretical Physics | 2025

[1] LSS Image: Galaxies in the local universe as seen by Sloan Digital Sky Survey

Dark Matter in a nutshell

- 1. Unknown microphysics?
- 2. Which DM interactions/ Mass?
- **3. Production Mechanism?**

.

New Frontiers in Theoretical Physics | 2025

[1] Image: TASI Lectures on Dark Matter models - 2019

Stable Non relativistic **Weakly Interacting**

The WIMP Miracle

,BATH DM as a Thermal Relic $\Gamma > H$: **DM** stays in thermal equilibrium $\Gamma < H$: DM freezes out leg P~<MDHJ) ~e H~ TZ/Mpl **Measured DM abundance** NR. Spec. Rel. Spec. *x* > 1 *x* < 1 X= MOM X=1 X_L≃30

New Frontiers in Theoretical Physics | 2025

• Thermal *freeze-out* relies only on one **IR parameter**

3

 \rightarrow The xsec $\langle \sigma v \rangle_{\text{cosmo}} \sim 1 \text{pb} \sim 10^{-26} \text{cm}^3 \text{s}^{-1}$

WIMP MIRACLE:

 Weak-scale coupling + TeV scale DM naturally matches the thermal xsec.
 For heavy DM this is a perfect MIRACLE

(Possible connection to the naturalness of the EW scale)

$$\frac{\Omega_{\rm DM}h^2}{0.110} = \frac{x_{\rm fo}}{25} \frac{2.18 \, 10^{-26} {\rm cm}^3 {\rm s}^{-1}}{\sigma_0 + 3\sigma_1 / x_{\rm fo}}$$

Minimal Dark Matter

The Prototypical WIMP

$\chi \equiv \mathbf{1}_{C}, \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \cdots \\ \chi_{n} \end{pmatrix} \} SU(2)_{\text{EW}} \text{ and } Y$

Requirement: Embedding the χ_0 component in a EW rep. $\rightarrow Q = T$

Real EW rep. with Y=0 and odd n

2

Complex EW rep. with arbitrary n and $Y = \pm \left(\frac{n+1}{2} - i\right)$

New Frontiers in Theoretical Physics | 2025

[1] Minimal Dark Matter: arXiv:hep-ph/0512090 [2] Cosmology and Astrophysics of Minimal Dark Matter: arXiv:hep-ph/0706.4071 [3] Minimal Dark Matter: Model and results: arXiv:hep-ph/0903.3381

$$T_3 + Y, \quad T_3 = \text{diag}\left(\frac{n+1}{2} - i\right)$$

WIMP Classification

Minimal Dark Matter

The Prototypical WIMP $\chi \equiv \mathbf{1}_{C}, \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \dots \\ \chi_{n} \end{pmatrix} \} SU(2)_{\text{EW}} \text{ and } Y$

Requirement: Embedding the χ_0 component in a W rep. $\rightarrow Q = T$

Real EW rep. with Y=0 and odd n

Complex EW rep. with arbitrary n and $Y = \pm \left(\frac{n+1}{2} - \frac{n+1}{2}\right)$ 2

New Frontiers in Theoretical Physics | 2025

[1] Minimal Dark Matter: arXiv:hep-ph/0512090 [2] Cosmology and Astrophysics of Minimal Dark Matter: arXiv:hep-ph/0706.4071 [3] Minimal Dark Matter: Model and results: arXiv:hep-ph/0903.3381

• No tree-level coupling with Z-boson \rightarrow Y=0 • For $n \ge 5$ multiplets DM stability comes from an accidental Z_2 symmetry.

$$T_3 + Y, \quad T_3 = \operatorname{diag}\left(\frac{n+1}{2} - i\right)$$

WIMP Classification

Real WIMPs

We focus on the smallest accidentally stable MDM multiplet: the Majorana 5-plet

Neutral under EM. DM candidate is χ_0

DM Stability. For such multiplets χ_0 is automatically the lightest

No coupling to Z-boson. Y=0 and odd n

DM physics is fully predicted !

New Frontiers in Theoretical Phy

2

3

identallyijorana Fermion **orana 5-plet** Real Scalar

netry; he lightest hetry. Identally licted for plet sics 2025

Thermal freeze-out

$$\frac{dn_{\rm DM}}{dt} + 3Hn_{\rm DM} = \langle \sigma v_{\rm rel} \rangle (n)$$

OM abundance is fully controlled by the annihilation cross section • The tree-level cross-section: $\sigma v_{rel} = \frac{g_2^4(2n^4 + 17n^2 - 19)}{256\pi g_{\chi}M_{\chi}^2}$

 \bigcirc However this is inaccurate \rightarrow Non perturbative and Non-relativistic effects modify the cross section

Sommerferld Enhancement Bound State Formation

New Frontiers in Theoretical Physics | 2025

[1] NLO electroweak potentials for minimal dark matter and beyond: arXiv:hep-ph/2108.07285 [2] The Sommerfeld enhancement at NLO and the dark matter unitarity bound: arXiv:hep-ph/2305.01680

 $n_{\rm eq}^2 - n_{\rm DM}^2$)

6

 $M_{\gamma} = 13.7^{+0.6}_{-0.3} \text{ TeV}$

se one ast

Sommerfeld $\chi^0 \chi^0 \to V^a V^a$

2

 $\sigma_{\rm NR}$ can receive large non-perturbative corrections (low vel. Enhanced) $\sigma \rightarrow S \sigma_{\text{pert}}$

• Long Range effects modify the DM wave function of the 2-body DM-DM initial state $\psi(\mathbf{r}) = u(r)/\sqrt{4\pi r}$

$$S = \left|\frac{u(\infty)}{u(0)}\right|^2 = \frac{2\pi\alpha/v_{\rm rel}}{1 - e^{-2\pi\alpha/v_{\rm rel}}}$$

BSF $\chi^0 \chi^0 \to V^a$ BS

The same long-range potential is also responsible for BSF. $^{\circ}$ $^{1}s_{3}: E_{R} \sim 80 \text{ GeV}$

S annihilation with a rate $\Gamma_{ann} \sim \alpha_2^5 M_{\gamma}$ into SM particles (*ff* and *HH**)

New Frontiers in Theoretical Physics | 2025

[1] Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements: arXiv:hep-ph/1411.6924 [2] Capture and Decay of Electroweak WIMPonium: arXiv:hep-ph/1610.07617

Not so easy...

broken phase, NLO corrections, ecc...

Detection Strategies

Direct Detection

EW multiplets within the reach of next generation experiments

Collider searches

2

3

Will probe small multiplets in the future. A final word from a future

Can already offer valuable information!

New Frontiers in Theoretical Physics | 2025

Continuum: Decay and hadronization of heavy EW gauge bosons $\bigtriangledown \gamma$ -ray line: SE boost the loop-induce annihilation into $\gamma\gamma$ and γZ Series of γ -ray lines: Due to BSF

Choice of the Targets

OM dominated targets More robust predictions for the DM density profile. **But...** Small velocity dispersion \rightarrow BSF is suppressed

New Frontiers in Theoretical Physics

[1] Indirect detection probes of Minimal Dark Matter 5-plet: arXiv:hep-ph/2506.xxxx

Our Galaxy

 \bigcirc Large velocity dispersion \rightarrow enhanced BSF Possibly large DM signals Large baryonic density (more) foreground, uncertain DM profile)

10

 10^{-1}

2025

Annihilation cross sections¹¹

New Frontiers in Theoretical Physics | 2025

Fermi-LAT

- \bigcirc We use the diffuse γ -ray data from MW halo as measured by FERMI
- We put constraints on κ parameter $\langle \sigma v \rangle \rightarrow \kappa \langle \sigma v \rangle$
- •We adopt two strategies:
 - **1. Line-like searches:** when BSF dominates (at the left-edges of the thermal mass window)
 - **2. Continuum-like searches:** when SE dominates (moving to the right edge)
- We focus on the Rol 16 and Rol 41 in order to reduce uncertainties in the DM profile

Changes of the DM profile can still mitigate the exclusion

New Frontiers in Theoretical Physics | 2025

R

Cerenkov Telescope Array

		10 ⁵			
\bigcirc CTA is maximally sensitive to γ -rays at the multi-TeV energy scale					
We compute the CTA sensitivity towards the clean environments		10 ⁴			
Sensitivity to high energy spectral features	<u> </u>	Ē			
Two Dwarf selections:	obs [h	10^{3}			
\bigcirc 1)Classical-Dwarf: DRACO very clean and characterized by a	$T_{\rm c}$				
relative large J-factor		F			
\bigcirc 2) URSA-MajorII large J-factor but fewer stellar tracers					
 We compute the CTA sensitivity towards the clean environments Sensitivity to high energy spectral features Two Dwarf selections: 1)Classical-Dwarf: DRACO very clean and characterized by a relative large J-factor 2) URSA-MajorII large J-factor but fewer stellar tracers <i>T</i>_{obs} ≃ 350 hours 					
$T_{\rm obs} \simeq 350 \ \rm hours$		10^{10}			
New Frontiers in Theoretica	1 P	hys			

Conclusions

- Minimal Dark Matter is the prototype model of WIMP:
 - \rightarrow huge predictivity, few parameters
- Dark Matter as a WIMP remains one of the main motivation for NP at the multi-TeV scale

Take Home Message:

New Frontiers in Theoretical Physics | 2025

- 5-plet shows smoking-gun signatures for the ID
- · Present data on the galactic diffuse can already place stringent constraints on the MDM 5-plet, particularly on the continuum from BSF
- CTA will be able to probe the model in the next decades by pointing the detectors towards dSphs (Few hour needed!)

backup slides

State of the Art

DM spin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{ m Landau}/M_{ m DM}$	$\Lambda_{\rm UV}/M_{\rm DM}$
Real scalar	3	2.53 ± 0.01	—	$2.4 imes 10^{37}$	4×10^{24} *
	5	15.4 ± 0.7	0.002	$7 imes 10^{36}$	3×10^{24}
	7	54.2 ± 3.1	0.022	$7.8 imes10^{16}$	2×10^{24}
	9	117.8 ± 15.4	0.088	$3 imes 10^4$	2×10^{24}
	11	199 ± 42	0.25	62	1×10^{24}
	13	338 ± 102	0.6	7.2	2×10^{24}
Majorana fermion	3	2.86 ± 0.01	_	2.4×10^{37}	$2 \times 10^{12*}$
	5	13.6 ± 0.8	0.003	5.5×10^{17}	3×10^{12}
	7	48.8 ± 3.3	0.019	1.2×10^4	1×10^8
	9	113 ± 15	0.07	41	1×10^8
	11	202 ± 43	0.2	6	1×10^8
	13	324.6 ± 94	0.5	2.6	1×10^8

New Frontiers in Theoretical Physics | 2025

Real WIMPs

Odd n and Y = 0

$$\mathscr{L}_{f} = \frac{1}{2} \bar{\chi} (i\bar{\sigma}^{\mu}D_{\mu} - M_{\chi})\chi$$
$$\mathscr{L}_{s} = \frac{1}{2} (D_{\mu}\chi)^{2} - \frac{1}{2} M_{\chi}^{2}\chi^{2} - \frac{\lambda_{H}}{2}\chi^{2} |H|^{2} - \frac{\lambda_{\chi}}{4}\chi^{4}$$

 \sim For n = 3 multiplets DM stability is achieved by enforcing a \mathbb{Z}_2 symmetry;

 \sim For $n \geq 5$ multiplets DM stability comes from an accidental \mathbb{Z}_2 symmetry.

$$\begin{aligned} \mathscr{L}_{s} &\supset \frac{C_{1}^{(s)}}{\Lambda_{UV}^{n-4}} \chi(H^{\dagger}H)^{\frac{n-1}{2}} + \frac{C_{2}^{(s)}}{\Lambda_{UV}^{n-4}} \chi W_{\mu\nu} W^{\mu\nu} (H^{\dagger}H)^{\frac{n-5}{2}} + \dots + \frac{C_{w}^{(s)}}{\Lambda_{UV}^{n-4}} \chi(W_{\mu\nu} W^{\mu\nu})^{\frac{n-1}{4}} + \frac{C_{3\chi}^{(s)}}{\Lambda_{UV}} \chi^{3} H^{\dagger}H, \\ \mathscr{L}_{f} &\supset \frac{C_{1}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi HL) (H^{\dagger}H)^{\frac{n-3}{2}} + \frac{C_{2}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi \sigma^{\mu\nu} HL) W_{\mu\nu} (H^{\dagger}H)^{\frac{n-5}{2}} + \dots + \frac{C_{w}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi HL) (W_{\mu\nu} W^{\mu\nu})^{\frac{n-3}{4}} + \frac{C_{3\chi}^{(f)}}{\Lambda_{UV}^{3}} \chi^{3} HL \\ & \qquad \text{New Frontiers in Theoretical Physical 2025} \end{aligned}$$

New Frontiers III Theoretical Physics | 2020

Majorana Fermion

Real Scalar

se and Bsf

Sommerfeld $\chi^0 \chi^0 \to V^a V^a$

 σ_{NR} can receive large non-perturbative corrections (low vel. Enhanced) $\sigma \rightarrow S \sigma_{\text{pert}}$ Relevant for cosmology and indirect detection where DM is non-relativistic \bigcirc DM couples to a mediator particle with $M_V \ll M_{\gamma} \rightarrow$ The interaction is long range Cong Range effects modify the DM wave function of the 2-body DM-DM initial state $\psi(\mathbf{r}) = u(r)/\sqrt{4\pi r}$ \Box In the unbroken regime and for a Coulomb like potential $V = -\alpha/r$ $S = \left| \frac{u(\infty)}{u(0)} \right|^2 = \frac{2\pi\alpha/v_{\text{rel}}}{1 - e^{-2\pi\alpha/v_{\text{rel}}}}$ $-u''/M_{\chi} - \alpha u/4\pi r = Eu$ $u'(\infty)/u(\infty) \simeq iMv_{\rm rel}/2$

New Frontiers in Theoretical Physics | 2025

[1] Minimal Dark Matter: arXiv:hep-ph/0512090

Not so easy...

broken phase

NLO corrections

se and 4545

$\gamma^0 \gamma^0 \to V^a BS$ 2 **BSF** The same long-range potential is also responsible for BSF.

• At leading order the capture occurs via $\chi_i \chi_i \rightarrow V^a + BSF$ In the electric dipole approx $\Delta L = 1$ and $\Delta S = 0$, $E_B \sim \alpha_2^2 M_{\gamma}$ The dominant SBF channel consists in $p \rightarrow s$ transitions with S = 1 and principal quantum number $(n_B s)_3$ Once formed they annihilate with a rate $\Gamma_{ann} \sim \alpha_2^5 M_{\gamma}$ into SM particles ($f\bar{f}$ and HH^*)

New Frontiers in Theoretical Physics | 2025

[1] Minimal Dark Matter: arXiv:hep-ph/0512090

From DM to Cosmic Rays

[1] Indirect detection probes of Minimal Dark Matter 5-plet: arXiv:hep-ph/2506.xxxx

New Frontiers in Theoretical Physics | 2025

Current Constraints

Fermi-LAT: $E_{\gamma} \sim \mathcal{O}(100 \text{ GeV})$

- Measurements of the Galactic
 Diffuse can set stringent constraints
 on the 5-plet
- We focus on the Rol 16 and Rol 41
- Exploiting the interplay of BSF continuum and SE

New Frontiers in Theoretical Physics | 2025

Current Constraints

Fermi-LAT: $E_{\gamma} \sim \mathcal{O}(100 \text{ GeV})$ 3.0 $\mathcal{L}(\kappa, A_{\text{diff}}) = \prod_{k=1}^{N} \frac{(N_{tk}^{i})}{(100 \text{ GeV})}$

 $\overline{i=1}$

Changes of the DM profile can still mitigate the exclusion

New Frontiers in Theoretical Physics | 2025

[1] Indirect detection probes of Minimal Dark Matter 5-plet: arXiv:hep-ph/2506.xxxx

$$\frac{h(\kappa, A_{diff}))^{N_{obs}^{i}}}{N^{i}}e^{-N_{th}^{i}(\kappa, A_{diff})}$$

N_{obs}! Extract the upper limit on the rescaling parameter

 $\langle \sigma v \rangle \rightarrow \kappa \langle \sigma v \rangle$

Future Constraints

Cerenkov Telescope Array (CTA): $E_{\gamma} \sim O(10 \text{ TeV})$

· The forthcoming CTA will explore the multi-TeV range with unprecedented resolution

 $\beta = 10^{-3}$

Sensitivity to high $M_{\rm DM}$ energy spectral features w

Te 10 10 E_{γ} [TeV] New Frontiers in Theoretical Physics | 2025

-

[1] Indirect detection probes of Minimal Dark Matter 5-plet: arXiv:hep-ph/2506.xxxx

w/ NLL

w/o NLI

 10^{3}

 10^{2}

 $E_{\gamma}^2 \frac{\mathrm{dN}}{\mathrm{dE}_{\gamma}} [\mathrm{TeV}^{-1}]$

Future Constraints

Cerenkov Telescope Array (CTA): $E_{\gamma} \sim O(10 \text{ TeV})$

 $\mathscr{L}_{\text{sys}}(\kappa) = \prod_{i=1}^{\mathcal{N}} \max_{J} [\mathscr{L}_{i}(\kappa) \times \mathscr{L}^{J}]$ $\mathscr{L}^{J} = \frac{1}{\ln(10)J_{\text{obs}}} \mathscr{G}(\log_{10} J | \log_{10} J_{obs}, \sigma_{\log_{10} J_{j}})$ $\begin{bmatrix} \text{Extract the upper limit} & T_{\text{obs}} \simeq 350 \text{ hours} \\ \text{on the observation time} \\ (\text{Including systematic error on the J-factor !}) \end{bmatrix}$

New Frontiers in Theoretical Physics | 2025

