Rescuing bileptons from Landau pole

Giovanna Paola Perdonà Sapienza Università di Roma,

INFN Sezione di Roma.

Based on arXiv:2505.15785 with Stefano Morisi (Unina), Giulia Ricciardi (Unina)

New Frontiers in Theoretical Physics – XXXVIII Convegno Nazionale di Fisica Teorica

The issue

A class of minimal 331 Extensions of the Standard Model predicts a new doublycharged gauge boson, the Bilepton.

These extensions

- suffer from a Landau pole at the TeV scale,
- impose stringent bounds on the bilepton's mass

What's the plan?

- Exploring extensions of minimal 331 aimed at shifting the pole at higher energies
- Classifying potentially viable models based on the associated energy ranges of the bilepton mass.

Overview

 $SU_{C}(3) \times SU_{L}(2) \times U_{Y}(1) \to SU_{C}(3) \times SU_{L}(3) \times U_{X}(1)$ $\mathcal{L}^{331} = \mathcal{L}_{\mathrm{strong}} + i \sum_{j} \bar{\psi}_{L,j} \gamma_{\mu} D_{\mathrm{ew}}^{331\mu} \psi_{L,j} + \sum_{j} (D_{\mu}\phi_{j})^{\dagger} D^{\mu}\phi_{j} - V(\phi) + \mathrm{Yukawa}$ $D_{\mathrm{ew}}^{331\mu} = \partial^{\mu} - i g_{L} W^{a,\mu} T^{a} - i g_{X} X B_{\mu} \mathbb{I}.$

Quarks	Leptons	
$\left(\begin{array}{c} u_L \end{array}\right)$	$\left(\nu_L \right)$	
$\left(\begin{array}{c} d_L \end{array} \right)$	$\left(\ell_L \right)$	

Requires one spontaneous symmetry breaking

 $SU_C(3) \times SU_L(2) \times U_Y(1) \rightarrow SU_C(3) \times U_{em}(1) \Rightarrow$ one scalar doublet

gauge bosons $= 3 + 1$		
massive	massless	
W^{\pm}_{μ}, Z_{μ}	A_{μ}	

Gell-Mann Nishijima relation: $Q = T_3 + \frac{Y}{2}$

Quarks	Leptons	
$ \left(\begin{array}{c} u_L\\ d_L\\ D_L \end{array}\right) $	$ \left(\begin{array}{c} \nu_L\\ \ell_L\\ E_L \end{array}\right) $	

Requires two spontaneous symmetry breakings

 $SU_C(3) \times SU_L(3) \times U_X(1) \rightarrow SU_C(3) \times SU_L(2) \times U_Y(1) \rightarrow SU_C(3) \times U_{em}(1)$

 \Rightarrow at least two scalar triplets

gauge bosons $= 8 + 1$		
massive	massless	
$W^{\pm}_{\mu}, Z_{\mu}, {W'}^{\pm}_{\mu}, {Z'}_{\mu}, Y^{\pm\pm}_{\mu}$	A_{μ}	

Gell-Mann–Nishijima relation:
$$Q = T_3 + \beta T_8 + X$$

 $\frac{Y}{2} = \beta T_8 + X$

Overview

 $SU_C(3) \times SU_L(2) \times U_Y(1) \to SU_C(3) \times SU_L(3) \times U_X(1)$ $\mathcal{L}^{331} = \mathcal{L}_{\text{strong}} + i \sum_j \bar{\psi}_{L,j} \gamma_\mu D_{\text{ew}}^{331\mu} \psi_{L,j} + \sum_j (D_\mu \phi_j)^{\dagger} D^\mu \phi_j - V(\phi) + \text{Yukawa}$ $D_{\text{ew}}^{331\mu} = \partial^\mu - i g_L W^{a,\mu} T^a - i g_X X B_\mu \mathbb{I}.$

Quarks	Leptons	
$\left(\begin{array}{c} u_L \end{array}\right)$	$\left(\nu_L \right)$	
$\left(\begin{array}{c} d_L \end{array} \right)$	$\left(\ell_L \right)$	

Requires one spontaneous symmetry breaking

 $SU_C(3) \times SU_L(2) \times U_Y(1) \rightarrow SU_C(3) \times U_{\rm em}(1) \Rightarrow$ one scalar doublet

gauge bosons $= 3 + 1$		
massive	massless	
W^{\pm}_{μ}, Z_{μ}	A_{μ}	

Gell-Mann Nishijima relation: $Q = T_3 + \frac{Y}{2}$

Quarks	Leptons	
$\left(\begin{array}{c} u_L \\ d_L \\ D_L \end{array}\right)$	$ \left(\begin{array}{c} \nu_L\\ \ell_L\\ E_L \end{array}\right) $	

Requires two spontaneous symmetry breakings

 $SU_C(3) \times SU_L(3) \times U_X(1) \rightarrow SU_C(3) \times SU_L(2) \times U_Y(1) \rightarrow SU_C(3) \times U_{em}(1)$

 \Rightarrow at least two scalar triplets

gauge bosons $= 8 + 1$		
massive	massless	
$W^{\pm}_{\mu}, Z_{\mu}, {W'}^{\pm}_{\mu}, {Z'}_{\mu}, Y^{\pm\pm}_{\mu}$	A_{μ}	

Gell-Mann–Nishijima relation:
$$Q = T_3 + \beta T_8 + X$$

 $\beta = \pm \sqrt{3}, \pm \frac{1}{\sqrt{3}}$ $\frac{Y}{2} = \beta T_8 + X$

• Gauge anomaly cancellation:

$$N_F \equiv N_q = N_\ell,$$
$$N_q^3 = \frac{2N_F - N_\ell^3}{3}.$$

• Asymptotic freedom:

$$n_{\text{quark}} = 3N_F < \frac{33}{2}$$
 $N_F = 3, 4, \not$

• SSB:
$$SU_L(3) \times U_X(1) \xrightarrow{\mu_{331}} SU_L(2) \times U_Y(1)$$

• Bilepton:

$$\langle \chi \rangle = \begin{pmatrix} 0 \\ 0 \\ \frac{u}{\sqrt{2}} \end{pmatrix} \rightarrow m_Y \simeq u \frac{g_{2L}}{2} \gtrsim 1.3 \text{ TeV at } 90\% \text{ C.L}$$

$$\mu_{331} \sim u \gtrsim 3850 \text{ GeV}$$

$$N_q^3 = 2, \quad N_q^{\bar{3}} = 1, \quad N_\ell^3 = 0, \quad N_\ell^{\bar{3}} = 3.$$

		Q	$SU_L(3)$	$U_X(1)$
Quarks L	u_L	2/3		
	d_L	-1/3	3	-1/3
	D^1_L	-4/3		
	c_L	2/3		
	s_L	-1/3	3	-1/3
	D_L^2	-4/3		
	b_L	-1/3		
	$-t_L$	2/3	3	2/3
	T_L	5/3		
Leptons L	ℓ_L	-1		
	$-\nu_L^\ell$	0	$\overline{3}$	0
	ℓ_R^c	+1		

		Q	$SU_L(3)$	$U_X(1)$
Quarks R	u_R, c_R	2/3		2/3
	d_R, s_R	-1/3		-1/3
	D_R^1, D_R^2	-4/3	1	-4/3
	b_R	-1/3		-1/3
	t_R	2/3		2/3
	T_R	5/3		5/3

Scalar	$SU_L(3)$	$U_X(1)$
χ	3	+1
ρ	3	0
η	3	-1

Table 1: Matter content of minimal 331 model with $\beta = \sqrt{3}$

• Gauge anomaly cancellation:

$$N_F \equiv N_q = N_\ell,$$
$$N_q^3 = \frac{2N_F - N_\ell^3}{3}.$$

• Asymptotic freedom:

$$n_{\text{quark}} = 3N_F < \frac{33}{2}$$
 $N_F = 3, 4, \not$

• SSB:
$$SU_L(3) \times U_X(1) \xrightarrow{\mu_{331}} SU_L(2) \times U_Y(1)$$

• Bilepton:

$$\langle \chi \rangle = \begin{pmatrix} 0 \\ 0 \\ \frac{u}{\sqrt{2}} \end{pmatrix} \rightarrow m_Y \simeq u \frac{g_{2L}}{2} \gtrsim 1.3 \text{ TeV at } 90\% \text{ C.L}$$

$$\mu_{331} \sim u \gtrsim 3850 \text{ GeV}$$

$$N_q^3 = 2, \quad N_q^{\bar{3}} = 1, \quad N_\ell^3 = 0, \quad N_\ell^{\bar{3}} = 3.$$

		Q	$SU_L(3)$	$U_X(1)$
Quarks L	u_L	2/3		
	d_L	-1/3	3	-1/3
	D^1_L	-4/3		
	c_L	2/3		
	s_L	-1/3	3	-1/3
	D_L^2	-4/3		
	b_L	-1/3		
	$-t_L$	2/3	$\overline{3}$	2/3
	T_L	5/3		
Leptons L	ℓ_L	-1		
	$-\nu_L^\ell$	0	$\overline{3}$	0
	ℓ^c_R	+1		

		Q	$SU_L(3)$	$U_X(1)$
Quarks R	u_R, c_R	2/3		2/3
	d_R, s_R	-1/3		-1/3
	D_R^1, D_R^2	-4/3	1	-4/3
	b_R	-1/3		-1/3
	t_R	2/3		2/3
	T_R	5/3		5/3

Scalar	$SU_L(3)$	$U_X(1)$
χ	3	+1
ρ	3	0
η	3	-1

Table 1: Matter content of minimal 331 model with $\beta = \sqrt{3}$

• Gauge anomaly cancellation:

$$N_F \equiv N_q = N_\ell,$$
$$N_q^3 = \frac{2N_F - N_\ell^3}{3}.$$

• Asymptotic freedom:

$$n_{\text{quark}} = 3N_F < \frac{33}{2}$$
 $N_F = 3, 4, \not$

• SSB:
$$SU_L(3) \times U_X(1) \xrightarrow{\mu_{331}} SU_L(2) \times U_Y(1)$$

• Bilepton:

$$\langle \chi \rangle = \begin{pmatrix} 0 \\ 0 \\ \frac{u}{\sqrt{2}} \end{pmatrix} \rightarrow m_Y \simeq u \frac{g_{2L}}{2} \gtrsim 1.3 \text{ TeV at } 90\% \text{ C.L}$$
$$\mu_{331} \sim u \gtrsim 3850 \text{ GeV}$$

$$N_q^3 = 2, \quad N_q^{ar{3}} = 1, \quad N_\ell^3 = 0, \quad N_\ell^{ar{3}} = 3.$$

		Q	$SU_L(3)$	$U_X(1)$
Quarks L	u_L	2/3		
	d_L	-1/3	3	-1/3
	D^1_L	-4/3		
	c_L	2/3		
	s_L	-1/3	3	-1/3
	D_L^2	-4/3		
	b_L	-1/3		
	$-t_L$	2/3	$\overline{3}$	2/3
	T_L	5/3		
Leptons L	ℓ_L	-1		
	$- u_L^\ell$	0	$\overline{3}$	0
	ℓ^c_R	+1		

		Q	$SU_L(3)$	$U_X(1)$
Quarks R	u_R, c_R	2/3		2/3
	d_R, s_R	-1/3		-1/3
	D_R^1, D_R^2	-4/3	1	-4/3
	b_R	-1/3		-1/3
	t_R	2/3		2/3
	T_R	5/3		5/3

Scalar	$SU_L(3)$	$U_X(1)$
χ	3	+1
ρ	3	0
η	3	-1

Table 1: Matter content of minimal 331 model with $\beta = \sqrt{3}$

• One-loop renormalization:

$$\alpha_i(\mu) = \frac{\alpha_i(\mu_0)}{1 - \frac{b_i}{2\pi}\alpha_i(\mu_0)\log\left(\frac{\mu}{\mu_0}\right)} + \mathcal{O}(\alpha_i^2)$$

$$b_i = \frac{2}{3} \sum_{fermions} \operatorname{Tr}(T_a T_a) + \frac{1}{3} \sum_{scalars} \operatorname{Tr}(T_a T_a) - \frac{11}{3} C_2$$

- Below μ_{331} : SM or 2HDM?
 - -SM $\mu_{331} \lesssim \mu_{331}^{\text{max}} = 3620 \text{ GeV}$

-2HDM $\mu_{331} \lesssim \mu_{331}^{\text{max}} = 3908 \text{ GeV} \rightarrow 3850 \text{ GeV} \lesssim \mu_{331} \lesssim 3908 \text{ GeV}$

• Matching condition:

$$g_{2L}(\mu_{331}) = g_{3L}(\mu_{331}), \qquad \frac{1}{g_X^2(\mu_{331})} = \frac{1}{6} \left(\frac{1}{g_Y^2} - \beta^2 \frac{1}{g_L^2} \right) \Big|_{\mu = \mu_{331}}$$

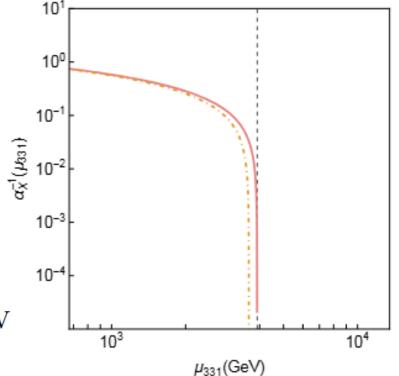


Fig.1: Running of α_X^{-1} on the energy scale μ 331. The dot-dashed and continuous lines correspond respectively to the cases where one and two Higgs doublets. The vertical dashed line represents the Landau pole at 3908 GeV.

• One-loop renormalization:

$$\alpha_i(\mu) = \frac{\alpha_i(\mu_0)}{1 - \frac{b_i}{2\pi}\alpha_i(\mu_0)\log\left(\frac{\mu}{\mu_0}\right)} + \mathcal{O}(\alpha_i^2)$$

$$b_i = \frac{2}{3} \sum_{fermions} \operatorname{Tr}(T_a T_a) + \frac{1}{3} \sum_{scalars} \operatorname{Tr}(T_a T_a) - \frac{11}{3} C_2$$

- Below μ_{331} : SM or 2HDM?
 - -SM $\mu_{331} \lesssim \mu_{331}^{\text{max}} = 3620 \text{ GeV}$

-2HDM $\mu_{331} \lesssim \mu_{331}^{\text{max}} = 3908 \text{ GeV} \rightarrow 3850 \text{ GeV} \lesssim \mu_{331} \lesssim 3908 \text{ GeV}$

• Matching condition:

$$g_{2L}(\mu_{331}) = g_{3L}(\mu_{331}), \qquad \frac{1}{g_X^2(\mu_{331})} = \frac{1}{6} \left(\frac{1}{g_Y^2} - \beta^2 \frac{1}{g_L^2} \right) \Big|_{\mu = \mu_{331}}$$

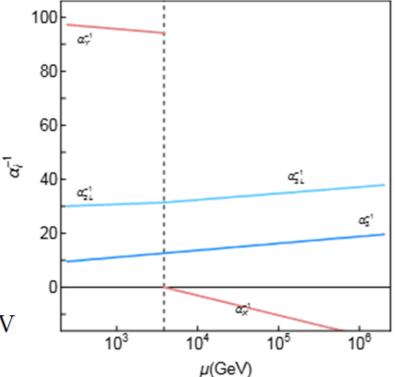


Fig.2: Running of α_i^{-1} with the energy scale μ . The vertical dashed line is the arbitrary 331 breaking scale μ_{331} .

Extension of scalar sector: Multi-Higgs

• Neutral X-charge bosons help!

$$b_Y = 7 + \frac{N_{\rho}}{6}$$
, $b_{2L} = -3 + \frac{N_{\rho}}{6}$, $b_X = 22$, $b_{3L} = -\frac{13}{2} + \frac{N_{\rho}}{6}$

• Many Higgs picture:

Critical value for $N_{\rho} < 18 \rightarrow N_{H} = 1 + N_{\rho} < 19$

N_H	3	3 6		9 12		18
$\mu_{331}^{ m max}(m GeV)$	$4.2 \cdot 10^{3}$	$5.5\cdot 10^3$	$7.4\cdot 10^3$	$1.1 \cdot 10^{4}$	$1.6 \cdot 10^4$	$2.6 \cdot 10^4$

• Case of interest: $N_H = 6$

$$E_6 \to SU(2) \times SU(6) \to SU_c(3) \times SU_L(3) \times U(1)$$

Colourless representations: $SU(6) \supset SU_C(3) \times SU(3) \times U(1)$

 $6, 84 \supset (1, 3)(Z)$

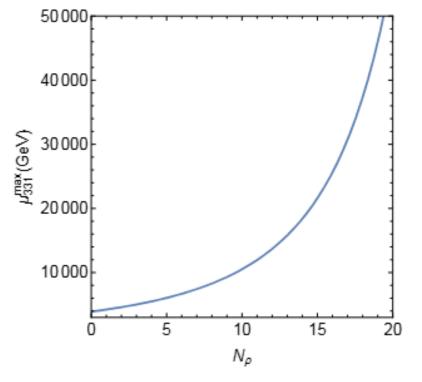


Fig.3: Maximal value of the 331 breaking scale as a function of the number of Higgs doublets.

Extension of scalar sector: Multi-Higgs

• Neutral X-charge bosons help!

$$b_Y = 7 + \frac{N_{\rho}}{6}$$
, $b_{2L} = -3 + \frac{N_{\rho}}{6}$, $b_X = 22$, $b_{3L} = -\frac{13}{2} + \frac{N_{\rho}}{6}$

• Many Higgs picture:

Critical value for $N_{
ho} < 18 \rightarrow N_{H} = 1 + N_{
ho} < 19$

N _H	3	6	9	12	15	18
$\mu_{331}^{ m max}(m GeV)$	$4.2 \cdot 10^{3}$	$5.5\cdot 10^3$	$7.4\cdot 10^3$	$1.1 \cdot 10^{4}$	$1.6 \cdot 10^4$	$2.6 \cdot 10^4$

• Case of interest: $N_H = 6$

$$E_6 \to SU(2) \times SU(6) \to SU_c(3) \times SU_L(3) \times U(1)$$

Colourless representations:

 $SU(6) \supset SU_C(3) \times SU(3) \times U(1)$ $\mathbf{6}, \mathbf{84} \supset (\mathbf{1}, \mathbf{3})(\mathbf{Z})$

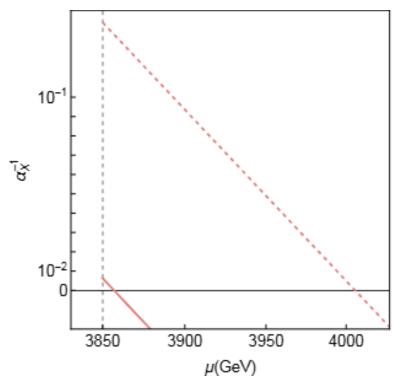


Fig.4: Comparison of minimal (continuous) with the multi-Higgs case with $N\rho = 4$ (dashed line).

Extension of scalar sector: Sextet

• Mass term for neutrinos through type II seesaw -in SM we need $SU_L(2)$ triplet:

$$\mathcal{L}_Y = Y^{ij} \bar{L^c}_i S L_j$$

• 6 rep. of $SU_L(3) \rightarrow 3 \oplus 2 \oplus 1$

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\,\Delta^0 & \Delta^- & \Phi^0 \\ \\ \Delta^- & \sqrt{2}\,\Delta^{--} & \Phi^- \\ \\ \\ \Phi^0 & \Phi^- & \sqrt{2}\,\sigma^0 \end{pmatrix},$$

• Assumptions on masses: heavy singlet

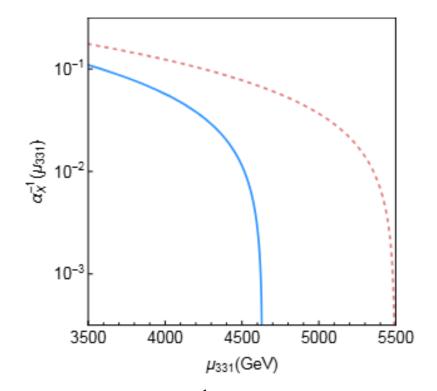


Fig.5: : Running of α_X^{-1} with the energy scale μ_{331} in the sextet extension for different values of the mass of the doubletand triplet: electroweak scale (dashed line), 600 GeV (continuous line).

4th Family Extension

• Exclusion of SM4 : <u>arXiv:1005.3505</u>

• With Two Higgs Doublets things change! (e.g. arXiv:1205.5580, arXiv:1208.3195)

• Experimental bounds (VLQ)

 $-m_{\tau'} > 700 \ GeV$, $m_{h'} > 1390 \div 1570 \ GeV$ (CMS)

 $-m_{t'} > 715 \div 950 \ GeV, m_{b'} > 1000 \div 2000 \ GeV$ (ATLAS)

$$N_q^3 = 2, N_q^{\bar{3}} = 2, N_l^3 = 2, N_l^{\bar{3}} = 2$$

		Q	$SU_L(3)$	$U_X(1)$	$U_Y(1)$	
Quarks L	u_L	2/3			1/6	1
	d_L	-1/3	3	-1/3	1/6	
	D_L^1	-4/3			-4/3	
	c_L	2/3			1/6]
	s_L	-1/3	3	-1/3	1/6	
	D_L^2	-4/3			-4/3	$Q = SU_L(3) = U_X(1)$
	b_L	-1/3			1/6	Quarks R u_R, c_R $2/3$ $2/3$
	$-t_L$	2/3	$\bar{3}$	2/3	1/6	$D_R^1, D_R^2 = -4/3$ 1 $-4/3$
	T_L^1	5/3			5/3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	b'_L	-1/3			1/6	T_R^1, T_R^2 5/3 5/3
	$-t'_L$	2/3	3	2/3	1/6	Leptons R $\nu_{eR}, \nu_{\mu R} = 0$ 0 $e_R, \mu_R = -1$ -1
	T_L^2	5/3			5/3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Leptons L	ν_{eL}	0			-1/2	τ_R, τ_R' -1 -1
	e_L	-1	3	-1	-1/2	E_R^3, E_R^4 1 1
	E_L^1	-2			-2	
	$\nu_{\mu L}$	0			-1/2	$\begin{array}{ c c c c c c c c }\hline Scalar & SU_L(3) & U_X(1) \\ \hline \chi & 3 & +1 \\ \hline \end{array}$
	μ_L	-1	3	-1	-1/2	ρ 3 0
	E_L^2	-2			-2	η 3 -1
	τ_L	-1			-1/2	
	$-\nu_{\tau L}$	0	3	0	-1/2	
	E_L^3	+1			+1	_
	τ'_L	-1			-1/2	
	$-\nu'_{\tau L}$	0	$\bar{3}$	0	-1/2	
	E_L^4	+1			+1	

4th Family Extension

Exclusion of SM4 : <u>arXiv:1005.3505</u>

• With Two Higgs Doublets things change! (e.g. arXiv:1205.5580, arXiv:1208.3195)

Experimental bounds (VLQ)

 $-m_{ au'} > 700 \; GeV$, $m_{b'} > 1390 \div 1570 \; GeV$ (CMS)

 $-m_{t'} > 715 \div 950 \, GeV, m_{h'} > 1000 \div 2000 \, GeV$ (ATLAS)

$$N_q^3 = 2, N_q^{\bar{3}} = 2, N_l^3 = 2, N_l^{\bar{3}} = 2$$

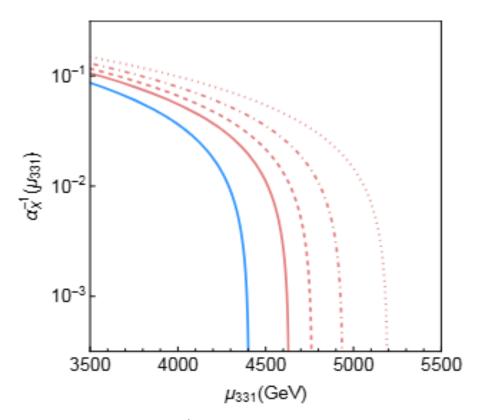


Fig.6: Running of α_X^{-1} with the energy scale μ_{331} , 4th family model for different values of the mass scale m_{NP} : 1500GeV (blue continuous), 1000GeV (red continuous), 800GeV (dashed), 600GeV (dot-dashed) and 400GeV (dotted).

4th Family Extension

• Exclusion of SM4 : <u>arXiv:1005.3505</u>

• With Two Higgs Doublets things change! (e.g. arXiv:1205.5580, arXiv:1208.3195)

• Experimental bounds (VLQ)

 $-m_{ au'} > 700 \ GeV$, $m_{h'} > 1390 \div 1570 \ GeV$ (CMS)

 $-m_{t'} > 715 \div 950~GeV, m_{b'} > 1000 \div 2000~GeV$ (ATLAS)

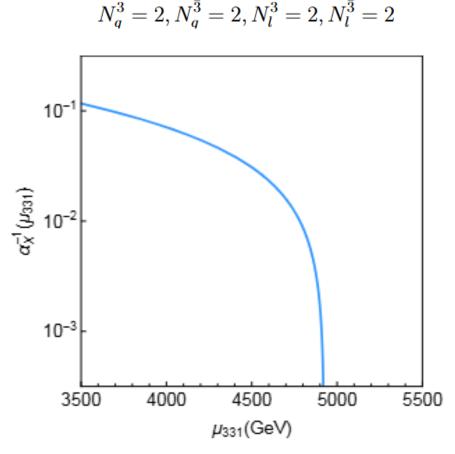


Fig.7: Running of α_X^{-1} with the energy scale μ_{331} , 4th family model + sextet with $m_{NP} \sim 1500$ GeV.

• Addition of scalar sextet

Results and summary

- Minimal 331 extension predicts Bileptons
- Bilepton's mass has an experimental lower bound of $\sim 1.3 \ TeV$
 - ▶ Below SSB scale: 2HDM \rightarrow exihits a Landau Pole at $\sim 4 TeV$
 - > Stringent bounds on bilepton's mass 3850 GeV $\leq \mu_{331} \leq$ 3908 GeV (through $m_Y \sim g_L \frac{u}{2}$)
- To overcome these limitations we consider extensions of the scalar and fermionic sectors of minimal 331.
 - > By adding a scalar sextet of $SU_L(3)$ we obtain a Majorana mass term for neutrinos
 - > In the Multi-Higgs case we study a case which could stem from a GUT (E_6)
 - Addition of a sequential fourth family at $\sim 1.5 TeV$ is compatible with available experimental bounds

	b_Y	$-b_{2L}$	$\mu_{\rm max}~({\rm GeV})$	$m_Y \; ({\rm GeV})$
331 minimal	7	3	3908	1270
Sextet	49/6	13/6	4531	1472
$N_H = 6$	47/6	13/6	5500	1788
4th fam. ($m_{\rm NP} \sim 1500 {\rm ~GeV}$)	83/9	5/3	4400	1430
4th fam. + sextet ($m_{NP} \sim 1500 \text{ GeV}$)	187/18	5/6	4919	1599

Results and summary

- Minimal 331 extension predicts Bileptons
- Bilepton's mass has an experimental lower bound of $\sim 1.3 \ TeV$
 - ▶ Below SSB scale: 2HDM \rightarrow exibits a Landau Pole at $\sim 4 TeV$
 - > Stringent bounds on bilepton's mass 3850 GeV $\leq \mu_{331} \leq$ 3908 GeV (through $m_Y \sim g_L \frac{u}{2}$)
- To overcome these limitations we consider extensions of the scalar and fermionic sectors of minimal 331.
 - > By adding a scalar sextet of $SU_L(3)$ we obtain a Majorana mass term for neutrinos
 - > In the Multi-Higgs case we study a case which could stem from a GUT (E_6)
 - Addition of a sequential fourth family at $\sim 1.5 TeV$ is compatible with available experimental bounds

	b_Y	$-b_{2L}$	$\mu_{\rm max}~({ m GeV})$	$m_Y (\text{GeV})$
331 minimal	7	3	3908	1270
Sextet	49/6	13/6	4531	1472
$N_H = 6$	47/6	13/6	5500	1788
4th fam. $(m_{\rm NP} \sim 1500 {\rm ~GeV})$	83/9	5/3	4400	1430
4th fam. + sextet ($m_{NP} \sim 1500 \text{ GeV}$)	187/18	5/6	4919	1599

Thank you :)

Back Up

Scalar potential

Yukawa

$$V = m_1^2 \rho^* \rho + m_2^2 \eta^* \eta + m_3^2 \chi^* \chi + \sqrt{2} f_{\rho \eta \chi} \rho \eta \chi + \lambda_1 (\rho^* \rho)^2 + \lambda_2 (\eta^* \eta)^2 + \lambda_3 (\chi^* \chi)^2 + \lambda_{12} \rho^* \rho \eta^* \eta + \lambda_{13} \rho^* \rho \chi^* \chi + \lambda_{23} \eta^* \eta \chi^* \chi + \zeta_{12} \rho^* \eta \eta^* \rho + \zeta_{13} \rho^* \chi \chi^* \rho + \zeta_{23} \eta^* \chi \chi^* \eta,$$

$$L_{Yuk} = \lambda_{i,a}^d \bar{Q}_i \rho d_{a,R} + \lambda_{3,a}^d \bar{Q}_3 \eta^* d_{a,R}$$
$$+ \lambda_{i,a}^u \bar{Q}_i \eta u_{a,R} + \lambda_{3,a}^u \bar{Q}_3 \rho^* u_{a,R}$$
$$+ \lambda_{i,j}^J \bar{Q}_i \chi J_{j,R} + \lambda_{3,3}^J \bar{Q}_3 \chi^* T_R + h.c.$$

FCNC at tree level

$$\mathcal{L}^{Z'} = J_{\mu} Z'^{\mu} ,$$

$$J_{\mu} = \bar{u}_L \gamma_{\mu} U_L^{\dagger} \begin{pmatrix} a \\ a \\ b \end{pmatrix} U_L u_L + \bar{d}_L \gamma_{\mu} V_L^{\dagger} \begin{pmatrix} a \\ a \\ b \end{pmatrix} V_L d_L ,$$

Why
$$\beta = \sqrt{3}$$
 ?

 $Q_{\text{gauge bosons}} \in \mathbb{Z}$

$$W_{\mu} = W_{\mu}^{a} T^{a} = \frac{1}{2} \begin{pmatrix} W_{\mu}^{3} + \frac{1}{\sqrt{3}} W_{\mu}^{8} & \sqrt{2} W_{\mu}^{+} & \sqrt{2} Y_{\mu}^{Q_{Y}} \\ \sqrt{2} W_{\mu}^{-} & -W_{\mu}^{3} + \frac{1}{\sqrt{3}} W_{\mu}^{8} & \sqrt{2} V_{\mu}^{Q_{V}} \\ \sqrt{2} Y_{\mu}^{-Q_{Y}} & \sqrt{2} V_{\mu}^{-Q_{V}} & -\frac{2}{\sqrt{3}} W_{\mu}^{8} \end{pmatrix}$$
$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp i W_{\mu}^{2}), \quad (SM)$$
$$Y^{\pm Q_{Y}} = \frac{1}{-1} (W^{4} \mp i W^{5}).$$

$$Y^{\pm Q_Y}_{\mu} = \frac{1}{\sqrt{2}} (W^4_{\mu} \mp i W^5_{\mu}),$$
$$V^{\pm Q_V}_{\mu} = \frac{1}{\sqrt{2}} (W^6_{\mu} \mp i W^7_{\mu})$$

 $\hat{Q} W_{\mu} = [Q, W_{\mu}] = [T^{3} + \beta T^{8} + X, W_{\mu}] = Q_{W} W_{\mu}.$ $Q_{W} = \begin{pmatrix} 0 & 1 & \frac{1}{2} + \beta \frac{\sqrt{3}}{2} \\ -1 & 0 & -\frac{1}{2} + \beta \frac{\sqrt{3}}{2} \\ -\frac{1}{2} - \beta \frac{\sqrt{3}}{2} & \frac{1}{2} - \beta \frac{\sqrt{3}}{2} & 0 \end{pmatrix}$ $22/Q_{W^{25}} \in \mathbb{Z} \Rightarrow \beta = (2n+1)/\sqrt{3} \quad n \in \mathbb{Z}.$

$$g_i = g_i^*$$

From spontaneous symmetry breaking

 $SU_C(3) \times SU_L(3) \times U_X(1) \to SU_C(3) \times SU_L(2) \times U_Y(1)$

$$\frac{g_X}{g_L} = \frac{6\sin^2\theta_W}{\sqrt{1 - (1 + \beta^2)\sin^2\theta_W}}, \text{ with } \sin^2\theta_W = \frac{g_Y}{\sqrt{g_Y^2 + g_L^2}}$$

$$\frac{g_X}{g_{3L}} \in \mathbb{R} \iff |\beta| < \frac{\cos \theta_W}{\sin \theta_W}$$

At tree level

$$|\beta| < \cos \theta_W = \frac{m_W}{m_Z} \simeq 1.83$$

$$\rightarrow \qquad \beta = \pm \sqrt{3}, \pm \frac{1}{\sqrt{3}}$$

20