Determination of the Λ–parameter of SU(N) Yang–Mills theories in the Twisted Gradient Flow scheme on the lattice

C. Bonanno - J.L. Dasilva Golán - M. D'Elia - M. García Pérez - A. Giorgieri

Andrea Giorgieri 22/05/25

Università di Pisa

Introduction – The SU(N) Λ –parameter

.

 β -function of the pure-gauge SU(N) Yang-Mills theory in a renormalization scheme s :

$$\beta_s(\lambda_s(\mu)) = \frac{d\lambda_s(\mu)}{d\log(\mu^2)} \underset{\lambda_s \to 0}{\sim} -\lambda_s^2 \left(b_0 + b_1\lambda_s + b_2^{(s)}\lambda_s^2 + \dots \right) \qquad (\lambda_s(\mu) = Ng_s^2(\mu))$$

Introduction – The SU(N) Λ –parameter

 β -function of the pure-gauge SU(N) Yang-Mills theory in a renormalization scheme s :

$$\beta_s(\lambda_s(\mu)) = \frac{d\lambda_s(\mu)}{d\log(\mu^2)} \underset{\lambda_s \to 0}{\sim} -\lambda_s^2 \left(b_0 + b_1\lambda_s + b_2^{(s)}\lambda_s^2 + \dots \right) \qquad (\lambda_s(\mu) = Ng_s^2(\mu))$$

Renormalization-group invariant, scheme dependent energy scale:

$$\Lambda_s = \mu [b_0 \lambda_s(\mu)]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \lambda_s(\mu)}} \exp \left\{ -\int_0^{\lambda_s(\mu)} dx \left(\frac{1}{2\beta_s(x)} + \frac{1}{2b_0^2 x^2} - \frac{b_1}{2b_0^2 x} \right) \right\}$$
$$\Lambda_{\overline{\mathrm{MS}}} = \Lambda_s e^{-\frac{c_s}{2b_0}}; \qquad \lambda_{\overline{\mathrm{MS}}}(\mu) \underset{\lambda_s \to 0}{\sim} \lambda_s(\mu) (1 + c_s \lambda_s(\mu) + \dots)$$

Introduction – The SU(N) Λ –parameter

 β -function of the pure-gauge SU(N) Yang-Mills theory in a renormalization scheme s :

$$\beta_s(\lambda_s(\mu)) = \frac{d\lambda_s(\mu)}{d\log(\mu^2)} \underset{\lambda_s \to 0}{\sim} -\lambda_s^2 \left(b_0 + b_1\lambda_s + b_2^{(s)}\lambda_s^2 + \dots \right) \qquad (\lambda_s(\mu) = Ng_s^2(\mu))$$

Renormalization-group invariant, scheme dependent energy scale:

$$\Lambda_s = \mu [b_0 \lambda_s(\mu)]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \lambda_s(\mu)}} \exp \left\{ -\int_0^{\lambda_s(\mu)} dx \left(\frac{1}{2\beta_s(x)} + \frac{1}{2b_0^2 x^2} - \frac{b_1}{2b_0^2 x} \right) \right\}$$
$$\Lambda_{\overline{\mathrm{MS}}} = \Lambda_s e^{-\frac{c_s}{2b_0}}; \qquad \lambda_{\overline{\mathrm{MS}}}(\mu) \underset{\lambda_s \to 0}{\sim} \lambda_s(\mu) (1 + c_s \lambda_s(\mu) + \dots)$$

Energy scale of **nonperturbative** dynamics, can be determined from **lattice simulations**

Main interest for the **N** = 3 theory (can be related to the scale of QCD) and large-N limit

Introduction – Determining the Λ -parameter

Twisted Gradient Flow (TGF) scheme: computationally convenient (smaller volumes), matching with MS is known ('t Hooft, 1980; González-Arroyo and Okawa, 1983)

Gradient-flow scale $\sqrt{t_0}$ as reference length: only dimensionless quantities can be computed, a conventional choice is $\Lambda_{\text{TGF}}\sqrt{8t_0}$

Introduction – Determining the Λ -parameter

Twisted Gradient Flow (TGF) scheme: computationally convenient (smaller volumes), matching with MS is known ('t Hooft, 1980; González-Arroyo and Okawa, 1983)

Gradient-flow scale $\sqrt{t_0}$ as reference length: only dimensionless quantities can be computed, a conventional choice is $\Lambda_{TGF}\sqrt{8t_0}$

First part

http://hdl.handle.net/10486/712639 arXiv:2107.03747 arXiv:2403.13607 Determination of Λ_{TGF}/μ_{had} with low-energy scale μ_{had} through step scaling method for N = 3, 5, 8

Introduction – Determining the Λ -parameter

Twisted Gradient Flow (TGF) scheme: computationally convenient (smaller volumes), matching with \overline{MS} is known ('t Hooft, 1980; González-Arroyo and Okawa, 1983) Gradient-flow scale $\sqrt{t_0}$ as reference length: only dimensionless quantities can be computed, a conventional choice is $\Lambda_{TGF}\sqrt{8t_0}$ **First part** Determination of Λ_{TGF}/μ_{had} with low-energy scale μ_{had} http://hdl.handle.net/10486/712639 through step scaling method for N = 3, 5, 8arXiv:2107.03747 arXiv:2403.13607 Second part Determination of $\mu_{had}\sqrt{8t_0}$ for N = 3, 5, 8 and computation of arXiv:2501.18449 $\Lambda_{\text{TGF}}\sqrt{8t_0} = \Lambda_{\text{TGF}}/\mu_{\text{had}}\cdot\mu_{\text{had}}\sqrt{8t_0}$ this talk (preliminary results)

We want Λ in units of a low-energy scale $\mu_{
m had}\sim\Lambda$ and use perturbation theory only at $\mu_{
m pt}\gg\Lambda$

We want Λ in units of a low-energy scale $\mu_{
m had}\sim\Lambda$ and use perturbation theory only at $\mu_{
m pt}\gg\Lambda$

Problem: lattice simulations have IR cutoff $\sim 1/l$ and UV cut-off $\sim 1/a$, covering the range from μ_{had} to μ_{pt} in a single simulation requires too much computational power Idea: find a recursive procedure to match simulations which cover different smaller sub-ranges

The TGF is a finite-volume renormalization scheme : $\mu \equiv (0.3l)^{-1} \quad (l=aL)$

Consider the continuum the *step scaling function* :

 $\sigma(u) = \lambda(\mu/2) \Big|_{\lambda(\mu) = u}$

The TGF is a finite-volume renormalization scheme : $\mu \equiv (0.3l)^{-1} \quad (l=aL)$

Consider the continuum the *step scaling function* :

 $\sigma(u) = \lambda(\mu/2) \Big|_{\lambda(\mu) = u}$

Step scaling procedure:

- I. Choose target value $u = \lambda(\mu)$
- 2. Fine-tune bare coupling to measure u with several L
- 3. Repeat simulations with doubled L to measure $\sigma(u) = \lambda(\mu/2)$ after continuum extrapolation
- 4. Iterate from I. with $u \longrightarrow \sigma(u)$, that is $\mu \longrightarrow \mu/2$

After n steps, reached scale $2^{-n}\mu \ll \mu$

First part – Results

Step scaling function measured for several values of u, parametrized and best-fitted to be evaluated at arbitrary points

From a chosen μ_{had} and measured $\lambda(\mu_{had})$:

$$\lambda(\mu_{\rm pt}) = \sigma^{-n}(\lambda(\mu_{\rm had})), \ \mu_{\rm pt} = 2^n \mu_{\rm had}$$

1

$$\frac{\Lambda}{\mu_{\rm had}} = \frac{\mu_{\rm pt}}{\mu_{\rm had}} \frac{\Lambda}{\mu_{\rm pt}} \bigg|_{\lambda(\mu_{\rm pt})} = 2^n \frac{\Lambda}{\mu_{\rm pt}} \bigg|_{\lambda(\mu_{\rm pt})}$$
$$\frac{\Lambda}{\mu_{\rm pt}} \bigg|_{\lambda(\mu_{\rm pt})} = \left[b_0 \lambda(\mu_{\rm pt}) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \lambda(\mu_{\rm pt})}} \left(1 + O\left(\lambda(\mu_{\rm pt})\right) \right)$$

Matching with perturbation theory done for several $\lambda(\mu_{
m pt})$ and extrapolated for $\lambda(\mu_{\rm Dt}) \rightarrow 0$

N	$\Lambda_{\overline{MS}}/\mu_{ m had}$
3	0.416(17)
5	0.478(17)
8	0.494(54)

(Dasilva Golán et al., 2023)

Second part – Setting the scale t_0

Gradient flow : evolution of the gauge field in an auxiliary time with a diffusion-like equation, driven by the gradient of the action (Narayanan and Neuberger, 2006; Lüscher, 2010)

$$\frac{dA_{\mu}(t,x)}{dt} = -\frac{\delta S[A]}{\delta A_{\mu}} = D_{\nu}F_{\nu\mu}(t,x)$$

At t > 0 gauge observables are regularized

Fields smoothed in a radius $\sqrt{8t}$ (notice $[t] = [length]^2$)

Second part – Setting the scale t_o

Gradient flow : evolution of the gauge field in an auxiliary time with a diffusion-like equation, driven by the gradient of the action (Narayanan and Neuberger, 2006; Lüscher, 2010)

$$\frac{dA_{\mu}(t,x)}{dt} = -\frac{\delta S[A]}{\delta A_{\mu}} = D_{\nu}F_{\nu\mu}(t,x)$$

At t > 0 gauge observables are regularized

Flowed energy density:

$$E(t) = \frac{1}{2} \operatorname{Tr} \left[F_{\mu\nu}(t, x) F_{\mu\nu}(t, x) \right]$$

Gradient-flow scale t_0 defined for SU(3) as

$$\langle t^2 E(t) \rangle \big|_{t=t_0} = 0.3 \implies \sqrt{8t_0} \simeq 0.5 \text{ fm}$$

Fields smoothed in a radius $\sqrt{8t}$ (notice $[t] = [length]^2$)

Definition can be extended to SU(N) as

$$\frac{N}{N^2 - 1} \langle t^2 E(t) \rangle \Big|_{t=t_0} = 0.1125$$

Second part – Setting the scale t_0

Problem: E(t) of a gauge configuration correlated with its topological charge $Q \in \mathbb{N}$

Sampling Q becomes harder near continuum limit, standard algorithms stuck in Q = 0(topological freezing)

$$Q = \int d^4x \, \frac{g^2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}(x)F_{\rho\sigma}(x)]$$

Second part – Setting the scale t_o

Problem: E(t) of a gauge configuration correlated with its topological charge $Q \in \mathbb{N}$

Sampling Q becomes harder near continuum limit, standard algorithms stuck in Q = 0(topological freezing)

Idea: Use Parallel Tempering on Boundary Conditions (PTBC) algorithm, designed to mitigate freezing (Hasenbusch, 2017; Bonanno et al., 2021)

> Evaluate systematics by comparing t_0 with all Q and projecting to Q = 0Same infinite-volume limit expected (Brower et al., 2003)

$$Q = \int d^4x \, \frac{g^2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{Tr}[F_{\mu\nu}(x)F_{\rho\sigma}(x)]$$

$$N = 5, L = 30, l \simeq 1.4 \, \text{fm} \ (a \simeq 0.047 \, \text{fm})$$

Second part – Preliminary results

With same bare couplings (lattice spacings) used for the step scaling, continuum extrapolation:

$$\mu_{\rm had}\sqrt{8t_0} = \lim_{a \to 0} a\mu_{\rm had} \times \sqrt{8t_0(a)}/a$$

Final result $\Lambda_{\overline{\mathrm{MS}}}\sqrt{8t_0} = \Lambda_{\overline{\mathrm{MS}}}/\mu_{\mathrm{had}}\cdot\mu_{\mathrm{had}}\sqrt{8t_0}$:

Second part – Preliminary results

With same bare couplings (lattice spacings) used for the step scaling, continuum extrapolation:

$$\mu_{\rm had}\sqrt{8t_0} = \lim_{a \to 0} a\mu_{\rm had} \times \sqrt{8t_0(a)}/a$$

Final result $\Lambda_{\overline{\mathrm{MS}}}\sqrt{8t_0} = \Lambda_{\overline{\mathrm{MS}}}/\mu_{\mathrm{had}}\cdot\mu_{\mathrm{had}}\sqrt{8t_0}$:

SU(3) value agrees with literature, little tension in large-N extrapolation:

$$\Lambda^{(3)}_{\overline{
m MS}}\sqrt{8t_0}=0.591(18)$$
 (this work)

$$\Lambda_{\overline{
m MS}}^{(3)} \sqrt{8t_0} = 0.610(12)$$
 (FLAG review, 2024)

Conclusions

Step scaling method and scale setting of Yang–Mills theory in the TGF scheme in order to determine the Λ –parameter in units of the gradient-flow scale

Take-home messages Parallel tempering on boundary conditions to mitigate and evaluate the systematics of topological freezing

Agreement of SU(3) value with literature, little tension in large-N extrapolation. Systematics in the matching with perturbation theory?

Conclusions

Step scaling method and scale setting of Yang–Mills theory in the TGF scheme in order to determine the Λ –parameter in units of the gradient-flow scale

Take-home messages Parallel tempering on boundary conditions to mitigate and evaluate the systematics of topological freezing

Agreement of SU(3) value with literature, little tension in large-N extrapolation. Systematics in the matching with perturbation theory?

Future outlooks Refine results, especially for SU(8), for more meaningful large-N extrapolation Study the reduction of finite-volume effects in the scale setting achieved with TGF, try other gradient-flow scales

SU(N) theory discretized on lattice of size $L^2 \times \tilde{L}^2$ with $\tilde{L} = L/N$ on directions 1,2

Twisted Boundary Conditions ('t Hooft, 1980; González-Arroyo and Okawa, 1983): periodic up to a gauge transformation (the twist) for links $U_{\mu}(n)$ on plane (1,2). With appropriate choice of twist:

$$U_{\mu}(n+\tilde{L}\hat{\nu}) \equiv \Gamma_{\nu}U_{\mu}\Gamma_{\nu}^{\dagger} \quad (\mu,\nu=1,2)$$

Consistency relation:

 $\Gamma_1 \Gamma_2 = Z_{12} \Gamma_2 \Gamma_1 \,, \quad Z_{12} = e^{i\frac{2\pi}{N}k}$

k, N coprime integers. To avoid instabilities in large-N limit, best choice of k scales with N (Chamizo and González-Arroyo, 2017):

$$N=3 \implies k=1$$
 $N=5 \implies k=2,\ldots$

Backup – PTBC algorithm

Proposed for 2d CP^(N-1) (Hasenbusch, 2017), later for 4d SU(N) Yang–Mills (Bonanno et al., 2021) and full QCD (Bonanno et al., 2024)

 N_r replicas of the lattice simulated in parallel $% \mathcal{N}_r$

Replicas differ for boundary conditions on small 3d sub-lattice, the *defect* D: links crossing D multiplied by c(r) $(r = 0, 1, ..., N_r - 1)$ Periodic: c(0) = 1 Open: $c(N_r - 1) = 0$ Others: 0 < c(r) < 1

Replicas are updated independently with standard methods for some steps, then swaps among configurations are proposed via Metropolis test: decorrelation of Q transferred from open to periodic replica

Observables computed only on periodic replica: easier to keep finite-size effects under control ×c(r)

To improve performance, the defect is translated randomly and updates are more frequent around it Tuning of c(r) and size of D to have 20% uniform acceptance of swaps

Backup – Decorrelation of topological charge

Comparison of MC histories of Q with PTBC and standard algorithm (heathbath + overrelaxation) With PTBC, lattice sweeps counted on all replicas to account for extra computational effort

Standard algorithm frozen even with coarsest lattice spacing in this work

Integrated autocorrelation time τ_{Q^2} of Q^2 for quantitative comparison:

	PTBC	Standard
Q^2	0.084(2)	0.08(2)
$ au_{Q^2}$	$2.5(3) \cdot 10^2$	$> 10^5$

Gain of PTBC gets larger in the continuum limit

N = 5, $l \simeq 1.4$ fm, L = 20 ($a \simeq 0.07$ fm) 2.01.51.00.50 -0.5-1.0 $\beta = 17.98526 \ (a \simeq 0.070 \ \text{fm})$ -1.5PTBC Standard -2.02 3 5 $\times 10^{6}$ Lattice sweeps