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Introduction – The SU(N) Λ– parameter

𝛽-function of the pure-gauge SU(N) Yang-Mills theory in a renormalization scheme s :

Renormalization-group invariant, scheme dependent energy scale: 

Energy scale of nonperturbative dynamics, can be determined from lattice simulations

Main interest for the N = 3 theory (can be related to the scale of QCD) and large-N limit



2

Introduction – Determining the Λ– parameter

Twisted Gradient Flow (TGF) scheme: computationally convenient (smaller volumes),
matching with MS is known 
(‘t Hooft, 1980; González-Arroyo and Okawa, 1983)

Gradient-flow scale         as reference length: only dimensionless quantities can be computed,
  a conventional choice is               

https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1103/PhysRevD.27.2397
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Introduction – Determining the Λ– parameter

Second part
arXiv:2501.18449

this talk
(preliminary results)
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We want     in units of a low-energy scale                  and use perturbation theory only at                    

First terms of the perturbative 
expansion evaluated with known 
coefficients of 𝛽-function

Requires integration of RG-flow in 
non-perturbative region, only 
possible with lattice methods
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We want     in units of a low-energy scale                  and use perturbation theory only at                    

First terms of the perturbative 
expansion evaluated with known 
coefficients of 𝛽-function

Requires integration of RG-flow in 
non-perturbative region, only 
possible with lattice methods

Problem: lattice simulations have IR cutoff            and UV cut-off           ,
covering the range from         to       in a single simulation requires
too much computational power

Idea: find a recursive procedure to match simulations which cover different 
 smaller sub-ranges
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The TGF is a finite-volume renormalization scheme :
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Consider the continuum the step scaling function :

The TGF is a finite-volume renormalization scheme :

Step scaling procedure:

1. Choose target value 

2. Fine-tune bare coupling to measure     with several            

3. Repeat simulations with doubled      to measure
after continuum extrapolation

4. Iterate from 1. with                   , that is 
 

After     steps, reached scale 



Step scaling function measured for several values of    ,
parametrized and best-fitted to be evaluated at arbitrary points

From a chosen         and measured              : 

Matching with perturbation theory done for several 
and extrapolated for 

First part – Results
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(Dasilva Golán et al., 2023)

http://hdl.handle.net/10486/712639


Second part – Setting the scale t
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0

Gradient flow : evolution of the gauge field in an 
auxiliary time with a diffusion-like equation, driven by 
the gradient of the action
(Narayanan and Neuberger, 2006; Lüscher, 2010)

At           gauge observables are regularized

Fields smoothed in a radius
(notice                    )    

https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.48550/arXiv.0907.5491
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0

Gradient-flow scale     defined for SU(3) as Definition can be extended to SU(N) as

Gradient flow : evolution of the gauge field in an 
auxiliary time with a diffusion-like equation, driven by 
the gradient of the action
(Narayanan and Neuberger, 2006; Lüscher, 2010)

At           gauge observables are regularized

Flowed energy density:

Fields smoothed in a radius
(notice                    )    

https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.48550/arXiv.0907.5491
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Problem:          of a gauge configuration
correlated with its topological
charge 
Sampling      becomes harder
near continuum limit, standard 
algorithms stuck in 
(topological freezing)

Second part – Setting the scale t0
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Problem:          of a gauge configuration
correlated with its topological
charge 
Sampling      becomes harder
near continuum limit, standard 
algorithms stuck in 
(topological freezing)

Idea: Use Parallel Tempering on Boundary
Conditions (PTBC) algorithm,
designed to mitigate freezing
(Hasenbusch, 2017; Bonanno et al., 2021)

Evaluate systematics by comparing
with all     and projecting to 
Same infinite-volume limit expected
(Brower et al., 2003)

Second part – Setting the scale t0

https://doi.org/10.48550/arXiv.1706.04443
https://arxiv.org/abs/2012.14000
https://arxiv.org/abs/hep-lat/0302005


Second part – Preliminary results
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With same bare couplings (lattice spacings) used
for the step scaling, continuum extrapolation:

Final result                                                         :
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With same bare couplings (lattice spacings) used
for the step scaling, continuum extrapolation:

Final result                                                         :

SU(3) value agrees with literature, little tension 
in large-N extrapolation: 

(FLAG review, 2024)

(this work)

https://arxiv.org/pdf/2411.04268


Conclusions
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Take-home
messages

Step scaling method and scale setting of Yang–Mills theory in the TGF scheme in 
order to determine the Λ– parameter in units of the gradient-flow scale

Parallel tempering on boundary conditions to mitigate and evaluate the 
systematics of topological freezing

Agreement of SU(3) value with literature, little tension in large-N extrapolation. 
Systematics in the matching with perturbation theory?
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systematics of topological freezing
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Future
outlooks

Refine results, especially for SU(8), for more meaningful large-N extrapolation

Study the reduction of finite-volume effects in the scale setting achieved with
TGF, try other gradient-flow scales 



Twisted Boundary Conditions (‘t Hooft, 1980; González-Arroyo and Okawa, 1983):
periodic up to a gauge transformation (the twist) for links           
on plane (1,2). With appropriate choice of twist:

Consistency relation:

k, N coprime integers. To avoid instabilities in large-N limit, 
best choice of k scales with N (Chamizo and González-Arroyo, 2017):   

SU(N) theory discretized on lattice of size               
with               on directions 1,2

U  (L) ≡ 𝚪U  (0)𝚪†𝜇 𝜇

1

0 ≡ L

L

L~

Backup – TGF scheme

A

https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1103/PhysRevD.27.2397
https://doi.org/10.1088/1751-8121/aa7346


B

Backup – PTBC algorithm

D

×c(r)

Proposed for 2d CP(N-1) (Hasenbusch, 2017), later for 4d SU(N) Yang–Mills (Bonanno et al., 2021)
and full QCD (Bonanno et al., 2024)

      replicas of the lattice simulated in parallel

Replicas differ for boundary conditions on small 3d sub-lattice, the defect D:
links crossing D multiplied by                                                  
Periodic:                   Open:                            Others:  

Replicas are updated independently with standard methods for some steps,
then swaps among configurations are proposed via Metropolis test:
decorrelation of     transferred from open to periodic replica

Observables computed only on periodic replica:
easier to keep finite-size effects under control

To improve performance, the defect is translated randomly and updates are more frequent around it
Tuning of         and size of D to have 20% uniform acceptance of swaps

https://doi.org/10.48550/arXiv.1706.04443
https://doi.org/10.48550/arXiv.2012.14000
https://arxiv.org/pdf/2404.14151


Backup – Decorrelation of topological charge

C

Comparison of MC histories of      with PTBC and standard algorithm (heathbath + overrelaxation)
With PTBC, lattice sweeps counted on all replicas to account for extra computational effort   

Standard algorithm frozen even with 
coarsest lattice spacing in this work

Integrated autocorrelation time       of       
for quantitative comparison:

Gain of PTBC gets larger in the continuum 
limit


