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Introduction — The SU(N) A—parameter

p-function of the pure-gauge SU(N) Yang-Mills theory in a renormalization scheme s:
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! Energy scale of nonperturbative dynamics, can be determined from lattice simulations

|
1
i |
| Main interest for the N = 3 theory (can be related to the scale of QCD) and large-N limit !




Introduction — Determining the A—parameter

Twisted Gradient Flow (TGF) scheme: computationally convenient (smaller volumes),

matching with MS is known
(‘t Hooft, 1980; Gonzalez-Arroyo and Okawa, 1983)

Gradient-flow scale \/t( as reference length: only dimensionless quantities can be computed,
a conventional choice is Arqpv/8t)
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ArXiv:2501 18449 Determination of 1,4/ 8%ty for N = 3,5, 8 and computation of

this talk ATGF\/ 8t0 = ATGF/,LLhad : ,uhad V 8t0
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First part — Step scaling method

We want A in units of a low-energy scale ji,4 ~ A and use perturbation theory only at fi,, > A

As As [ipt As /)\s (Khaa) dx
= = expy —
Hhad Hpt HUhad Hpt s (ipt) 20s (5’7 )

First terms of the perturbative Requires integration of RG-flow in
expansion evaluated with known non-perturbative region, only
coefficients of s-function possible with lattice methods
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= = expsy —
Hhad  Mpt Mhad Hpt As (pipt) 26s(x)
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First terms of the perturbative Requires integration of RG-flow in
expansion evaluated with known non-perturbative region, only
coefficients of s-function possible with lattice methods

Problem: lattice simulations have IR cutoff ~ 1/l and UV cut-off ~ 1/a,
covering the range from [i},,q to [y in a single simulation requires a¢
too much computational power
Idea: find a recursive procedure to match simulations which cover different
smaller sub-ranges
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The TGF is a finite-volume renormalization scheme :

p= (030" (I=al)
Consider the continuum the step scaling function :

o(u) = Ap/2)

Alp) =u

Step scaling procedure:
|.  Choose target value u = A(u)
2. Fine-tune bare coupling to measure u with several [

3. Repeat simulations with doubled [ to measure o(u) = A(u/2)
after continuum extrapolation

4. Iterate from |.with w — o(u),thatis p — p/2

After n steps, reached scale 27"y <

4




First part — Results

Step scaling function measured for several values of u,
parametrized and best-fitted to be evaluated at arbitrary points

From a chosen ji,,4 and measured A(fipaq):

)\(:upt) — O-_n<)‘(/~bhad))7 Hpt = 2n/vthad N AM—S/Nhad
3 0.416(17)
A A A
= Lo =2"— 5 0.478(17)
HMhad Mhad HMpt Atnn) Hpt Aioe)
’ ’ 8 0.494(54)
_ by
NA = [boA(fept)] 265 e_%o;(ftpt) (1+ O (AMppt))) (Dasilva Golan et al., 2023)
pt
A(Npt)

Matching with perturbation theory done for several \(1s,)
and extrapolated for A(fs,) — 0
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Second part — Setting the scale ¢,

Gradient flow : evolution of the gauge field in an
auxiliary time with a diffusion-like equation, driven by

the gradient of the action
(Narayanan and Neuberger, 2006; Liischer, 2010)

dA,(t,x) _5S[A] D, F,,(t2) Fields smoothed in a radius /8t
= Prvph (notice [t] = [length]?)

a A,

At ¢t > ( gauge observables are regularized
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auxiliary time with a diffusion-like equation, driven by

the gradient of the action
(Narayanan and Neuberger, 2006; Liischer, 2010)

dA,(t,x)  8S[A]
a A,

At ¢t > ( gauge observables are regularized

= D,F,,(t,x) > Field.s smoothed in a radius /8¢
(notice [t] = [length]?)

Flowed energy density:
1
E(t) = §Tr [Flu(t, ) F(t, x)]

Gradient-flow scale 7 defined for SU(3) as Definition can be extended to SU(N) as
N

(t*E(t))|,_, =0.1125

t=to

(PE(t)|,_, =03 = V8 ~0.5fm

N2 -1
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Second part — Setting the scale ¢,

Problem: F/(t) of a gauge configuration / i 9
— a9 Cuv aT F v F o
correlated with its topological Q d'z 3972 €pwpo 1Y [ Fpuy () oo ()]
charge ) € N

Sampling () becomes harder
near continuum limit, standard
algorithms stuck in () = 0
(topological freezing)
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Problem: F/(t) of a gauge configuration
correlated with its topological

charge ) € N

Sampling () becomes harder
near continuum limit, standard
algorithms stuck in () = 0
(topological freezing)

Idea: Use Parallel Tempering on Boundary
Conditions (PTBC) algorithm,
designed to mitigate freezing
(Hasenbusch, 2017; Bonanno et al., 2021)

Evaluate systematics by comparing ¢,
with all @) and projecting to () = 0
Same infinite-volume limit expected
(Brower et al., 2003)

2
g
/d4513 WeuypaTr[Ful/(x)Fpa(x)]J

N=5, L=30, [ ~1.4fm (a ~ 0.047 fm)

0.2000 1

0.0500 1

Any Q —
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Second part — Preliminary results

With same bare couplings (lattice spacings) used
for the step scaling, continuum extrapolation:

Hhad V8o = 6111_13(1) Afthad X \/Sto(a)/a

Final result Aggv/8to = Ajg/ ihad * haaV Sto :

2 0.60 - +
= +

0 1/8 1/5% 1/3?
1/N?




Second part — Preliminary results

With same bare couplings (lattice spacings) used
for the step scaling, continuum extrapolation:

Hhad V8o = 61L1_>H(1) Afthad X \/Sto(a)/a

Final result Aggv/8to = Mg/ thad * Hhad V8o

SU(3) value agrees with literature, little tension
in large-N extrapolation:

A%\/Sto = 0.591(18) (this work)

AZ) /Bly = 0.610(12) (FLAG review, 2024)

This work -

Butti, Gonzalez- Arroyo,
Athenodorou, Teper ’
Gonzalez-Arroyo, Okawa ’
Lohmayer, Neuberger ’

Allton, Teper, Trivini ’

23
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Conclusions

Step scaling method and scale setting of Yang—Mills theory in the TGF scheme in
order to determine the A—parameter in units of the gradient-flow scale

Take-home Parallel tempering on boundary conditions to mitigate and evaluate the
messages systematics of topological freezing

Agreement of SU(3) value with literature, little tension in large-N extrapolation.
Systematics in the matching with perturbation theory?

— o o o e o o e -




Conclusions

Step scaling method and scale setting of Yang—Mills theory in the TGF scheme in
order to determine the A—parameter in units of the gradient-flow scale

Take-home Parallel tempering on boundary conditions to mitigate and evaluate the
messages systematics of topological freezing

Agreement of SU(3) value with literature, little tension in large-N extrapolation.
Systematics in the matching with perturbation theory?

— o o o e o o e -

. Refine results, especially for SU(8), for more meaningful large-N extrapolation
uture

outlooks

I
I
|
1
Study the reduction of finite-volume effects in the scale setting achieved with !
TGEF try other gradient-flow scales !

I



Backup — TGF scheme

SU(N) theory discretized on lattice of size .2 x .2
with L = /N on directions 1,2

Twisted Boundary Conditions (‘t Hooft, 980; Gonzalez-Arroyo and Okawa, |983):
periodic up to a gauge transformation (the twist) for links U, (n)
on plane (1,2).With appropriate choice of twist:

Uun+ L) =T,U,TT (v =1,2)
Consistency relation:
[y = Zyololy,  Zip = 6i2ﬁﬂk

k, N coprime integers.To avoid instabilities in large-N limit,
best choice of k scales with N (Chamizo and Gonzilez-Arroyo, 2017):

N=3 = k=1 N=5 = k=2,...
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Backup — PTBC algorithm

Proposed for 2d CPMN) (Hasenbusch, 2017), later for 4d SU(N) Yang—Mills (Bonanno et al., 2021)
and full QCD (Bonanno et al., 2024)

N
N, replicas of the lattice simulated in parallel

Replicas differ for boundary conditions on small 3d sub-lattice, the defect D:
links crossing D multiplied by ¢(r) (r=20,1,.... N, — 1)
Periodic: ¢(0) =1 Open: ¢(N, —1) =0 Others: 0 <c(r) <1

Replicas are updated independently with standard methods for some steps,
then swaps among configurations are proposed via Metropolis test:
decorrelation of () transferred from open to periodic replica

Observables computed only on periodic replica:

easier to keep finite-size effects under control
- J

To improve performance, the defect is translated randomly and updates are more frequent around it
Tuning of ¢(r) and size of D to have 20% uniform acceptance of swaps
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Backup — Decorrelation of topological charge

{Comparison of MC histories of () with PTBC and standard algorithm (heathbath + overrelaxation)J

With PTBC, lattice sweeps counted on all replicas to account for extra computational effort

Standard algorithm frozen even with . N=5,1=14fm, L=20 (a=0.07fm)
coarsest lattice spacing in this work

Integrated autocorrelation time 742 of Q?
for quantitative comparison:

PTBC Standard
Q? 0.084(2) | 0.08(2)
Q2 2.5(3)-10%| > 10°

—1.51 B =17.98526 (a ~ 0.070 fm)
Gain of PTBC gets larger in the continuum | ¢} - PTBC == Standard
limit A i 2 i : -

Lattice sweeps %106

_ %m




