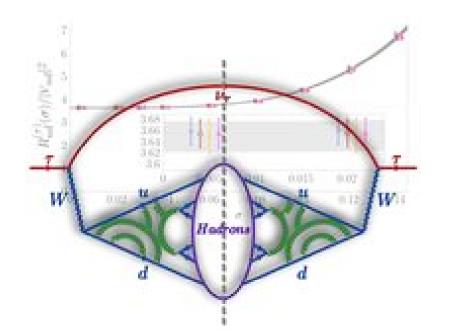


The Cabibbo Angle from Inclusive T Decays

Francesco Sanfilippo – INFN Roma Tre XXXVIII Convegno Nazionale di Fisica Teorica, 22/05/2025

Based on

[A. evangelista et al. Phys Rev. D 108, 074513 (2023)]



EDITORS' SUGGESTION

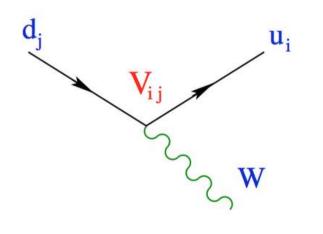
Inclusive hadronic decay rate of the τ lepton from lattice QCD

The authors express the inclusive hadronic decay rate of the tau lepton as an integral over the spectral density of the two-point correlator of the weak V - A hadronic current which they compute fully nonperturbatively in lattice QCD. In a lattice QCD computation with all systematic errors except for isospin breaking effects under control, they then obtain the CKM matrix element V_{ud} with subpercent errors showing that their nonperturbative method can become a viable alternative to superallowed nuclear beta decays for obtaining V_{ud} .

Flavor in the SM: the CKM matrix

In the SM, the charged change of flavors occur through the exchange of a W boson

$$\mathcal{L}_{w} = -\frac{g_{w}}{\sqrt{2}} \left(\bar{u} \ , \ \bar{c} \ , \ \bar{t}\right) \gamma^{\mu} P_{L} W_{\mu}^{+} V_{\text{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix} + \text{h.c.} , \quad V_{\text{CKM}} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix}$$



Unitary matrix connecting up-like and down-like quarks **Hierarchy** of amplitude between different generation

$$\underbrace{\begin{pmatrix} |V_{ud}| & & \\ & |V_{cs}| & \\ & & |V_{tb}| \end{pmatrix}}_{\mathcal{O}(1)} \gg \underbrace{\begin{pmatrix} |V_{us}| & & \\ |V_{cd}| & & \\ & & \end{pmatrix}}_{\mathcal{O}(10^{-1})} \gg \underbrace{\begin{pmatrix} |V_{ub}| & \\ |V_{td}| & |V_{ts}| & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ &$$

We focus on the first row of the CKM matrix

First row unitarity

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \ (?)$

 $|V_{ud}|$ from superallowed nuclear beta decays: 0.03% $|V_{ud}|$ from semileptonic $\pi \to \pi^0 e \nu_e$ beta decay: 0.3%

 $|V_{us}|$ from semiletponic decay $K \rightarrow \pi \ell \nu$: 0.2%

 $\frac{|V_{us}|}{|V_{ud}|}$ from the ratio of semiletponic decay $K/\pi \to \ell\nu(\gamma)$: 0.3%

Tension between the value of $|V_{us}|$ from leptonic and semileptonic decays vs. $|V_{us}^{uni}|$

FLAG2023 0.228 0.226 0.224 V_{us} 0.222 lattice results for $f_+(0)$, $N_f = 2 + 1 + 1$ lattice results for $f_{K^{\pm}}/f_{\pi^{\pm}}$, $N_f = 2 + 1 + 1$ lattice results for $f_+(0)$, $N_f = 2 + 1$ 0.220 lattice results for $f_{K^{\pm}}/f_{\pi^{\pm}}$, $N_f = 2 + 1$ lattice results for $N_f = 2 + 1 + 1$ combined lattice results for $N_f = 2 + 1$ combined nuclear β decay, PDG 20 0.218 nuclear β decay. Hardy 20 0.960 0.965 0.955 0.970 0.975 0.980 V_{ud}

 $|V_{ub}|$ is very small

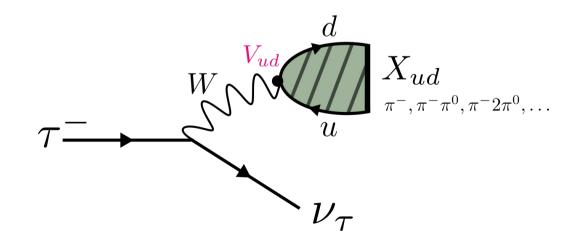
and we can drop it

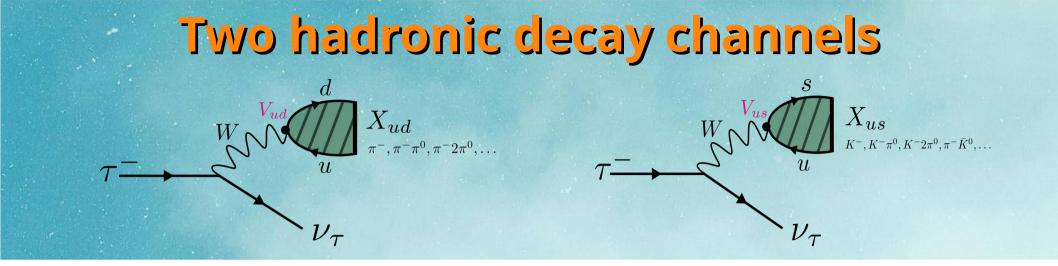
Usefuleness of τ decay

Three leptons are known experimentally, their measured masses is:

 $m_e = 0.5110 \text{ KeV}, \quad m_\mu = 105.66 \text{ MeV}, \quad m_\tau = 1.776 \text{ GeV}$ The lightest charged hadron is the **pion**, with mass: $m_\pi^{\pm} = 139.57 \text{ MeV}$

 $\rightarrow \tau$ is unique among leptons, as it can decay into hadrons



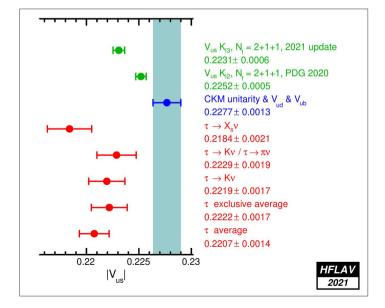


Studying the ud/us channels one one can determine $V_{ud/us}$

Comparison with $K_{\ell 2}$, $K_{\ell 3}$ determinations shows tension

 τ determinations also in tension with unitarity constraints

Tension is more pronounced for inclusive process $\tau \to X_{ux}$



Inclusive process, $\mathcal{B}_{X_{ud/us}} \equiv \Gamma[\tau \rightarrow X_{ud/us}\nu_{\tau}]/\Gamma_{tot}$

Sum of exclusive processes for a given channel

$\tau \rightarrow X_{us}$ channel:

Branching fraction	HFLAV 2021 fit (%)
$K^- u_{ au}$	0.6957 ± 0.0096
${\cal K}^-\pi^{\sf 0} u_ au$	0.4322 ± 0.0148
$\mathcal{K}^- 2\pi^0 u_ au$ (ex. \mathcal{K}^0)	0.0634 ± 0.0219
$K^- 3 \pi^0 u_ au$ (ex. K^0 , η)	0.0465 ± 0.0213
$\pi^-\overline{K}^{0} u_{ au}$	0.8375 ± 0.0139
$\pi^-\overline{K}^{0}\pi^{0} u_ au$	0.3810 ± 0.0129
$\pi^-\overline{K}^{0}2\pi^0 u_ au$ (ex. K^{0})	0.0234 ± 0.0231
$\overline{K}^{0}h^{-}h^{-}h^{+} u_{ au}$	0.0222 ± 0.0202
$K^-\eta u_ au$	0.0155 ± 0.0008
${\cal K}^-\pi^{\sf 0}\eta u_ au$	0.0048 ± 0.0012
$\pi^-\overline{K}^{0}\eta u_ au$	0.0094 ± 0.0015
$K^-\omega u_ au$	0.0410 ± 0.0092
${\cal K}^- \phi ({\cal K}^+ {\cal K}^-) u_ au$	0.0022 ± 0.0008
$\mathcal{K}^- \phi(\mathcal{K}^0_\mathcal{S}\mathcal{K}^0_\mathcal{L}) u_ au$	0.0015 ± 0.0006
${\cal K}^-\pi^-\pi^+ u_ au$ (ex. ${\cal K}^{\sf 0}$, ω)	0.2924 ± 0.0068
$\mathcal{K}^{-}\pi^{-}\pi^{+}\pi^{0} u_{ au}$ (ex. \mathcal{K}^{0} , ω , η)	0.0387 ± 0.0142
$K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$X_s^- u_ au$	2.9076 ± 0.0478

Accuracy: 1.7%

 $\tau \rightarrow X_{ud}$ channel:

In the past, obtained by difference

$$\mathcal{B}_{X_{ud}} = 1 - \mathcal{B}_{X_{us}} - \mathcal{B}_e - \mathcal{B}_\mu$$

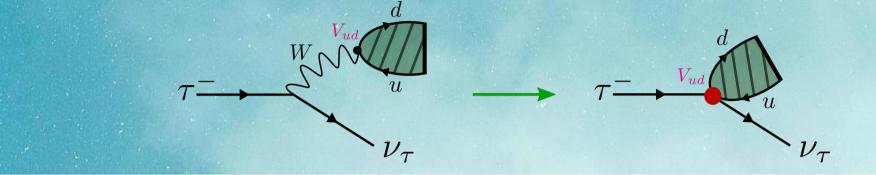
with $\mathcal{B}_{e/\mu}$ branching to electrons/muons

Nowadays directly measured

 $\mathcal{B}_{X_{ud}} = 0.6183 \pm 0.0010$

according to HFLAV average

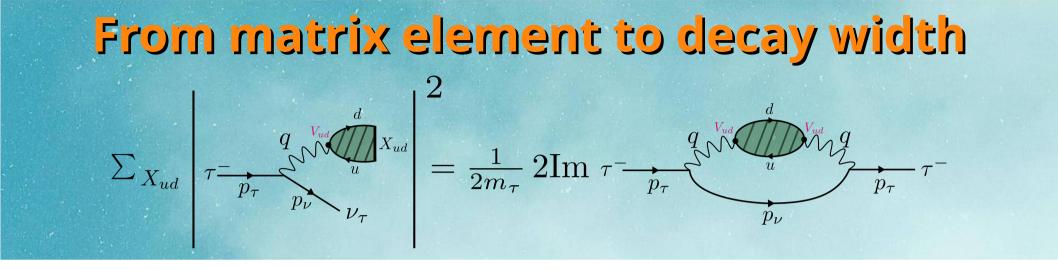
Weak Hamiltonian Effective theory



$$H_{ud}^{\text{eff}}(x) = \frac{G_F}{\sqrt{2}} V_{ud} \sqrt{S_{\text{EW}}} \underbrace{\bar{\nu}_{\tau}(x)\gamma^{\alpha}(1-\gamma^5)\tau(x)}_{J_{\nu_{\tau}\tau}^{\alpha}(x)} \times \underbrace{\bar{d}(x)\gamma^{\alpha}(1-\gamma^5)u(x)}_{(J_{ud}^{\alpha})^{\dagger}(x)} + \text{h.c.}$$

Factorization of the amplitude in leptonic and **nonperturbative** hadronic parts

$$\mathcal{A}(\tau \to X_{ud}\nu_{\tau}) = \frac{G_F}{\sqrt{2}} V_{ud} \sqrt{S_{\rm EW}} \langle \nu_{\tau} | J^{\alpha}_{\nu_{\tau}\tau}(0) | \tau \rangle \langle X_{ud} | J^{\alpha}_{ud}(0)^{\dagger} | 0 \rangle$$



All that has been done so far is an application of the optical theorem

$$\Gamma[\tau \to X_{ud}\nu_{\tau}] = \frac{1}{2m_{\tau}} 2\mathrm{Im}[\Gamma_{\tau\tau}]$$

where $\Gamma_{\tau\tau} = \langle \tau | T | \tau \rangle$ is the forward amplitude S = 1 + iT related to *ud* states

The hadronic tensor

Squaring $\mathcal{A}(\tau \to X_{ud}\nu_{\tau})$ and summing over all X_{ud} states: $|\mathcal{A}|^2 = \sum_{X_{ud}} |\mathcal{A}(\tau \to X_{ud}\nu_{\tau})|^2 = \left(\frac{G_F}{\sqrt{2}}\right)^2 |V_{ud}|^2 S_{\text{EW}} L^{\alpha\beta}(p_{\tau}, p_{\nu}) \rho_{ud}^{\alpha\beta}(q)$ with p_{τ} , p_{ν} being the τ, ν_{τ} four-momentum, and $q = p_{\tau} - p_{\nu}$.

Leptonic tensor $L^{\alpha\beta}(p_{\tau}, p_{\nu})$ obtained averaging/summing over τ/ν_{τ} polarizations: $L^{\alpha\beta}(p_{\tau}, p_{\nu}) = 4\left(p_{\tau}^{\alpha}p_{\nu}^{\beta} + p_{\tau}^{\beta}p_{\nu}^{\alpha} - g^{\alpha\beta}p_{\tau} \cdot p_{\nu} - i\varepsilon^{\alpha\beta\rho\sigma}p_{\tau\rho}p_{\nu\sigma}\right)$

> Missing ingredient: the <u>hadronic tensor</u> $\rho_{ud}^{\alpha\beta}(q) \equiv \sum_{X_{ud}} \langle 0 | J_{ud}^{\alpha}(0) | X_{ud}(q) \rangle \langle X_{ud}(q) | J_{ud}^{\beta}(0)^{\dagger} | 0 \rangle$

Determining the Hadronic Tensor

In Minkowsky spacetime, from the spectral representation (Fourier transform):

$$C^{\alpha\beta}(t,q) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-iEt} \rho_{ud}^{\alpha\beta}(E,q)$$

... of the current-current correlation function in time-momentum representation:

$$C^{\alpha\beta}(t,q) = \int d^3x \, e^{-iq \cdot x} \left\langle 0 \right| \, T\left(J^{\alpha}_{ud}(-it,x) \, J^{\beta}_{ud}(0)^{\dagger} \right) \, \left| 0 \right\rangle$$

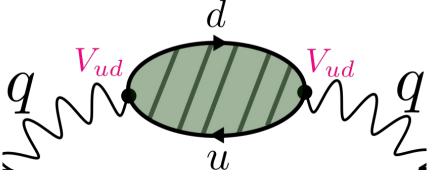
Determining the Hadronic Tensor

In Minkowsky spacetime, from the spectral representation (Fourier transform):

$$C^{\alpha\beta}(t,q) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-iEt} \rho_{ud}^{\alpha\beta}(E,q)$$

... of the current-current correlation function in time-momentum representation:

$$C^{\alpha\beta}(\mathbf{t},q) = \int d^3x \, e^{-iq \cdot x} \, \langle 0 | T \left(J^{\alpha}_{ud}(-i\mathbf{t},x) \, J^{\beta}_{ud}(0)^{\dagger} \right) \, |0\rangle$$



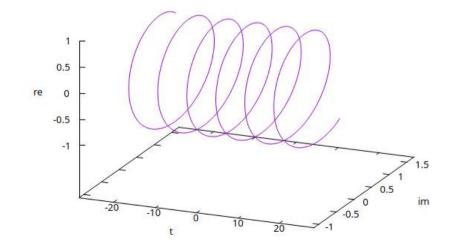
- Nonperturbative quantity
- Severe disease with a bad prognosis
- Call a latticist!

Hadronic amplitudes in Minkowskian

Correlation function, e.g. J_A , J_B currents on state $|P\rangle$

$$C(t) \equiv \langle 0 | T \{ J_A(t) J_B(0) \} | P \rangle \stackrel{t \ge 0}{=} \sum_{n=0}^{\infty} C_n e^{-iE_n t}$$
(Fourier transform

 ∞



Hadronic amplitudes in Minkowskian

Correlation function, e.g. J_A , J_B currents on state $|P\rangle$

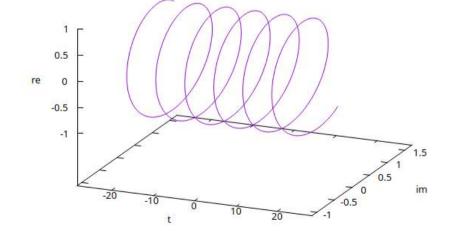
$$C(t) \equiv \langle 0 | T \{ J_A(t) J_B(0) \} | P \rangle \stackrel{t>0}{=} \sum_{n=0}^{t>0} C_n e^{-iE_n t}$$
(Fourier transform)

Extracting Hadronic Amplitude H(E)

in Minkowskian continuum spacetime:

 ∞

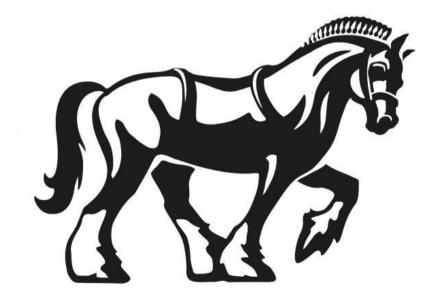
$$\rho(E) = i \lim_{T \to \infty} \int_0^T dt \, e^{iEt} \, C(t)$$



Hadronic amplitudes in Minkowskian

Correlation function, e.g. J_A , J_B currents on state $|P\rangle$

$$C(t) \equiv \langle 0 | T \{ J_A(t) J_B(0) \} | P \rangle \stackrel{t>0}{=} \sum_{n=0}^{t>0} C_n e^{-iE_n t}$$
(Fourier transform)



Extracting Hadronic Amplitude H(E)

in Minkowskian continuum spacetime:

 ∞

$$\rho(E) = i \lim_{T \to \infty} \int_0^T dt \, e^{iEt} \, C(t)$$

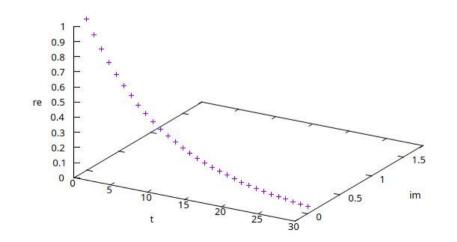
Inverse Fourier transform: a reliable horse

Hadronic amplitudes in Euclidean lattice

Analytic continuation to discrete Euclidean spacetime: au=it

$$C_e(\tau) \equiv C(-i\tau) = \sum_{n=0}^{\infty} C_n e^{-E_n \tau}$$
 Laplace transform

 \propto

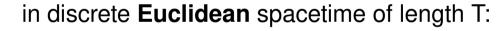


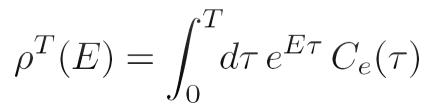
Hadronic amplitudes in Euclidean lattice

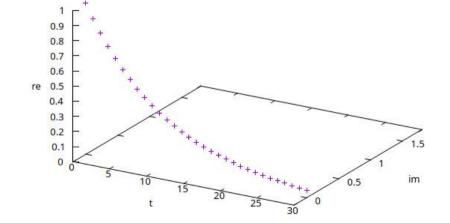
Analytic continuation to discrete Euclidean spacetime: au=it

$$C_e(\tau) \equiv C(-i\tau) = \sum_{n=0}^{\infty} C_n e^{-E_n \tau}$$
 Laplace transform

Extracting Hadronic Amplitude







Hadronic amplitudes in Euclidean lattice

Analytic continuation to discrete Euclidean spacetime: au=it

$$C_e(\tau) \equiv C(-i\tau) = \sum_{n=0}^{\infty} C_n e^{-E_n \tau}$$
 Laplace transform

Extracting Hadronic Amplitude

in discrete Euclidean spacetime of length T:

$$\rho^T(E) = \int_0^T d\tau \, e^{E\tau} \, C_e(\tau)$$

Inverse Laplace transform!?? A wild and unreliable horse!

Analytic continuation issues

In Euclidean spacetime, it holds true that

$$C^{\alpha\beta}(\mathbf{t},q) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-E\mathbf{t}} \rho_{ud}^{\alpha\beta}(E,q)$$

i.e the current-current correlator is the Laplace transform of the needed Hadronic tensor

But

One cannot naively invert this relation if the energy E lies above the minimal threshold E_0

This requires an inverse Laplace transform, **ill-posed problem on finite noisy dataset**

CFR Nazario's talk

Spectral representation

$$\rho^{T}(E) = \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = \int_{0}^{T} dt \, e^{Et} \, \sum_{n=0}^{\infty} C_{n} e^{-E_{n}t} = \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

Let us break down two energy regimes

$$\rho^T(E) \xrightarrow[T \to \infty]{} \sum_{n=0}^{\infty} \frac{C_n}{E_n - E}$$

GOOD!

$$\rho^{T}(E) \xrightarrow[T \to \infty]{} \sum_{n=0}^{\infty} \frac{C_n}{E_n - E} + \sum_{n=0}^{E_n < E} C_n \frac{e^{(E - E_n)T}}{E - E_n}$$

BAD!!!

 $E > E_0$

- How to subtract the divergent part?
- Needs all C_n to recover the imaginary part!

Bypassing the determination of $\rho(E)$

Setting the external spatial momentum to zero we can simplify the needed correlators

$$\rho_{ud}^{00}(q) = q^2 \rho_L(q^2) \; ,$$

$$\frac{1}{3}\sum_{i=1}^{3}\rho_{ud}^{ii}(q) = q^2\rho_T(q^2)$$

and rewrite the decay rate in terms of a convolution integral over energy

$$R_{ud}^{(\tau)} \propto \int_0^\infty \mathrm{d}E \left[K_\mathrm{T} \left(\frac{E}{m_\tau} \right) E^2 \rho_\mathrm{T}(E^2) + K_\mathrm{L} \left(\frac{E}{m_\tau} \right) E^2 \rho_L(E^2) \right]$$

having incorporated back the leptonic term into the kernels:

$$K_{\rm L}(x) \equiv \frac{1}{x} \left(1 - x^2\right)^2 \theta(1 - x) , \qquad K_{\rm T}(x) \equiv \left(1 + 2x^2\right) K_L(x)$$

The explicit determination of the spectral density is avoided: only its **convolution** with *K* is needed

Inverse Laplace transform for K(E)

We don't need to determine the spectral densities, just its convolution with K(E)

$$R_{ud}^{(\tau)} = 12\pi S_{\rm EW} \frac{|V_{ud}|^2}{m_\tau^3} \int_0^\infty \mathrm{d}E \left[K_{\rm T} \left(\frac{E}{m_\tau}\right) E^2 \rho_{\rm T}(E^2) + K_{\rm L} \left(\frac{E}{m_\tau}\right) E^2 \rho_L(E^2) \right]$$

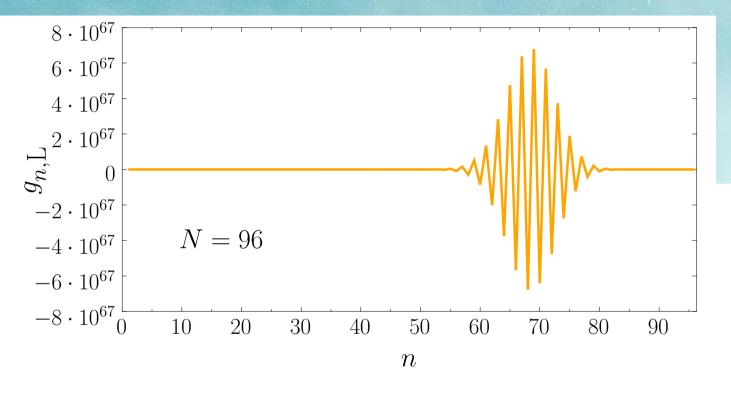
Both kernels can be expressed in terms of an approximated inverse Laplace transform

$$R_{ud}^{(\tau)} \propto \sum_{I \in \{L,T\}} \int_0^\infty dE K_I \left(\frac{E}{m_\tau}\right) E^2 \rho_I(E^2) = \sum_{I \in \{L,T\}} \int_0^\infty dE \sum_{n=1}^N g_{n,I} e^{-nE} E^2 \rho_I(E^2)$$

with coefficients $g_{n,I}$ determined imposing minimal L² distance

...will this be numerically stable...?

....ot quite...



- This is due to the heta function, needed to cut out energy larger than $m_{ au}$
- Using this coefficients introduces uncontrolled error in the rate
- We need to smooth out the sharp θ function

Smoothing out the kernels

HLT framework to solve the inverse Laplace transform in the context of Lattice simulations [M.Hansen, A.Lupo, N.Tantalo, PRD 96 (2017)]

Smoothing the kernel defining the rate has been tested in the inclusive semilptonic decays [P.Gambino et al., PRL 125 (2020)]

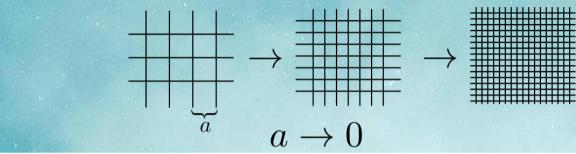
We introduce a smeared kernel in terms of a smoothed θ , and compute the rate

$$\theta(x) \to \Theta_{\sigma}(x) \equiv \frac{1}{1 + e^{-x/\sigma}}, \qquad \qquad \lim_{\sigma \mapsto 0} \Theta_{\sigma}(x) = \theta(x)$$

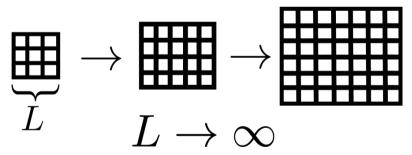
$$R_{ud}^{(\tau,\mathrm{I})}(\sigma) = 12\pi S_{\mathrm{EW}} \frac{|V_{ud}|^2}{m_\tau^3} \int_0^\infty \mathrm{d}E \, K_{\mathrm{I}}^\sigma \left(\frac{E}{m_\tau}\right) E^2 \rho_{\mathrm{I}}(E^2)$$

Infinite volume/continuum extrapolations

It is convenient to carry out the extrapolations to the continuum at fixed σ



The infinite volume limit involves no power-law correction: $R_{ud}^{(\tau,I)}(\sigma,\infty) - R_{ud}^{(\tau,I)}(\sigma,L) \sim \mathcal{O}(L^{-\infty})$



The extrapolation to zero smoothing is done at the end, exploiting the asymptotic relation

$$R_{ud}^{(\tau,\mathrm{I})}(\sigma) = R_{ud}^{(\tau,\mathrm{I})} + C\sigma^4 + \mathcal{O}(\sigma^6)$$

Numerical setup

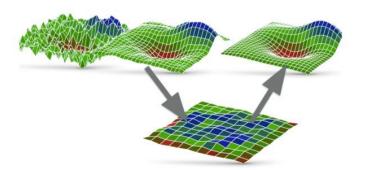
Four physical-point Nf=2+1+1 Wilson-clover-twisted mass ensembles Lattice spacing: $a \in [0.057 \text{ fm} - 0.080 \text{ fm}]$ lwasaki action $L \sim 5.1 \text{ fm}$ and $L \sim 7.6 \text{ fm}$ to control Finite Size Effects Automatic improved O(a) improvement of observables

ID	V/a^4	$a \mathrm{fm}$	$L \mathrm{fm}$	$m_{\pi} \text{ GeV}$
B64	$64^3 \cdot 128$	0.07957(13)	5.09	0.1352(2)
B96	$96^{3} \cdot 192$	0.07957(13)	7.64	0.1352(2)
C80	$80^{3} \cdot 160$	0.06821(13)	5.46	0.1349(3)
D96	$96^3 \cdot 192$	0.05692(12)	5.46	0.1351(3)

Numerical aspects

- Multi GPU simulations on Leonardo
- ISCRA & EuroHPC competitive grants
- INFN contingent of computing time

Multigrid algorithms to accelerate solution of the Dirac Equation

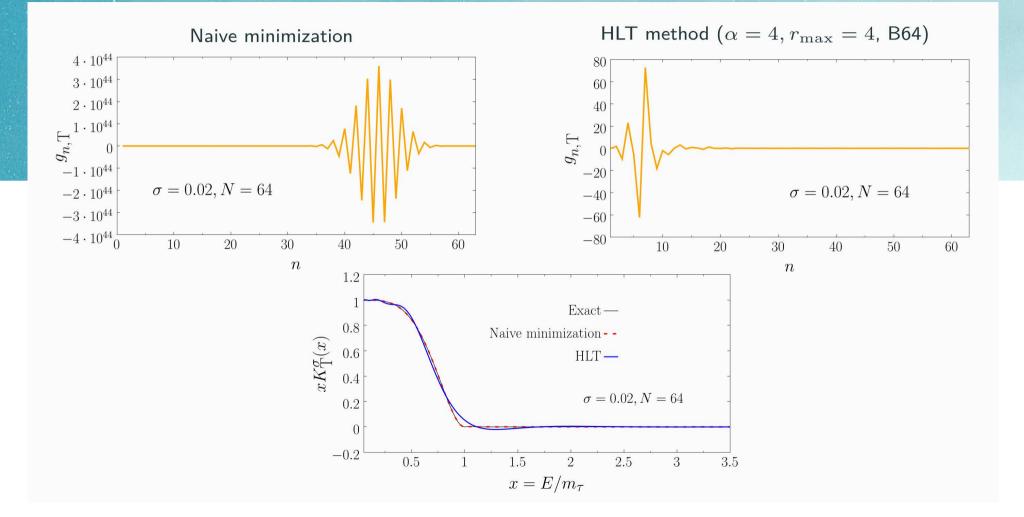


Optimally implemented in QUDA library by community + hardware vendor effort

...in a fully GPU-ported suite of ~100k lines of C++17 code

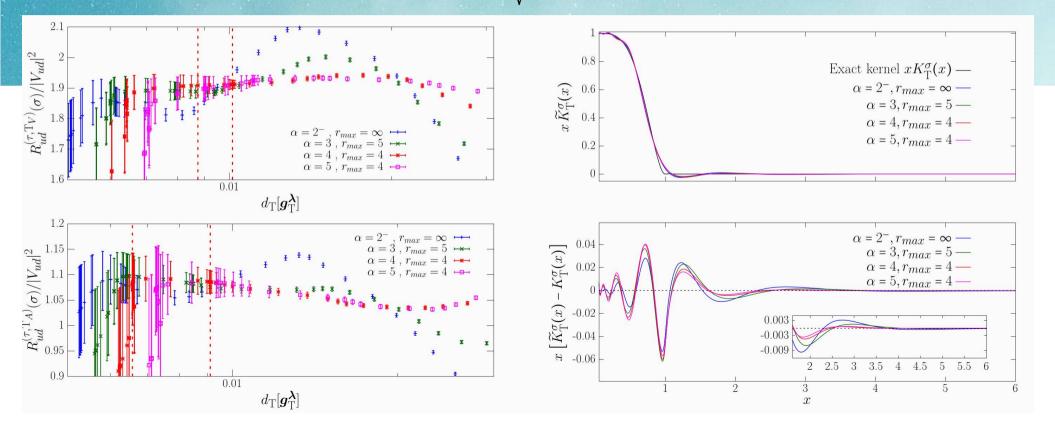
Scaling up to hundreds of GPUs

HLT method stabilization



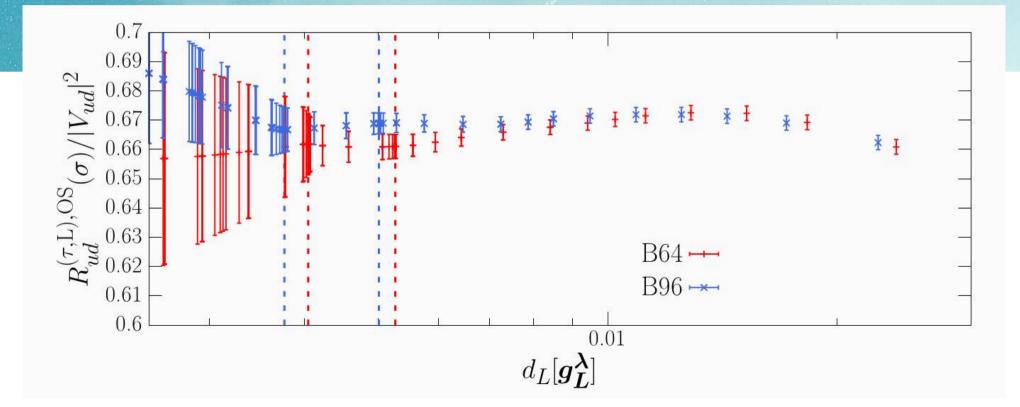
Stability analysis

Tuning of λ and tweaking the parameters $\{\alpha, E_{\min}, r_{\max}\}$ probes the stability of the reconstruction $d_{\mathrm{I}}[g_{\mathrm{I}}^{\lambda}] \equiv \sqrt{A_{\mathrm{I}}^{0}[g_{\mathrm{I}}^{\lambda}]/A_{\mathrm{I}}^{0}[0]}$



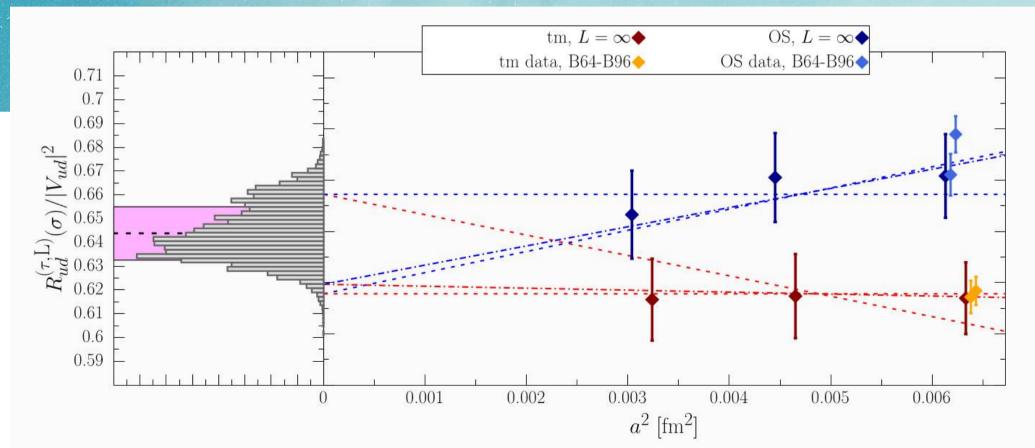
Comparison of different volumes

Systematic of FSE estimated by comparing two volumes Observed difference added as an error

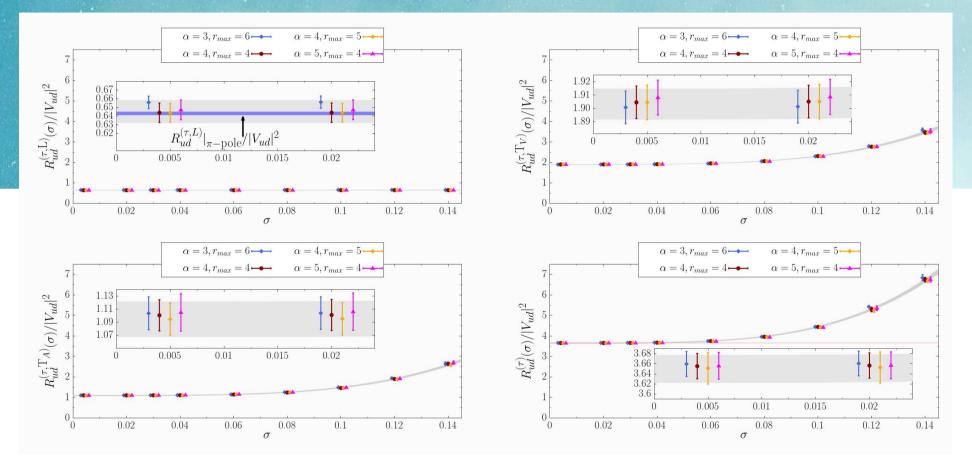


Continuum limit extrapolation

- Combination of two regularizations (OS and TM)
- Several fit ansatz variations

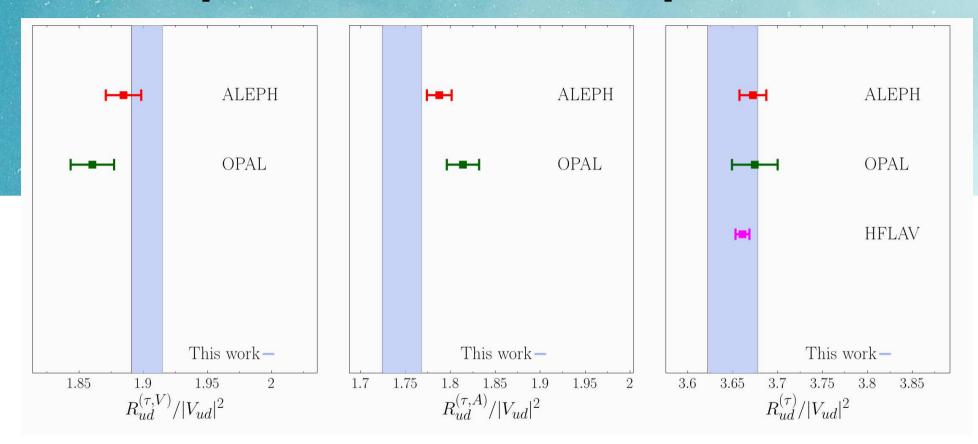


Extrapolating to vanishing smearing



Extrapolation to zero smearing well described by σ^4 asymptotic prediction

Comparison with the experiments



Using the average value $R_{ud}^{(\tau)}(\text{HFLAV}) = 3.471(7)$ we obtain $|V_{ud}| = 0.9752(39)$ Good agreement with $|V_{ud}| = 0.97373(31)$ from superallowed β -decay.

The us channel

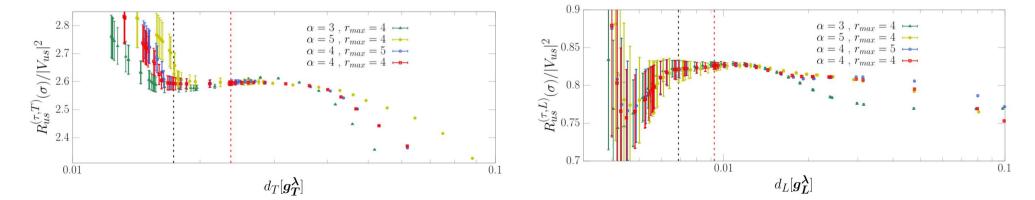
PHYSICAL REVIEW LETTERS 132, 261901 (2024)

Inclusive Hadronic Decay Rate of the τ Lepton from Lattice QCD: The $\bar{u}s$ Flavor Channel and the Cabibbo Angle

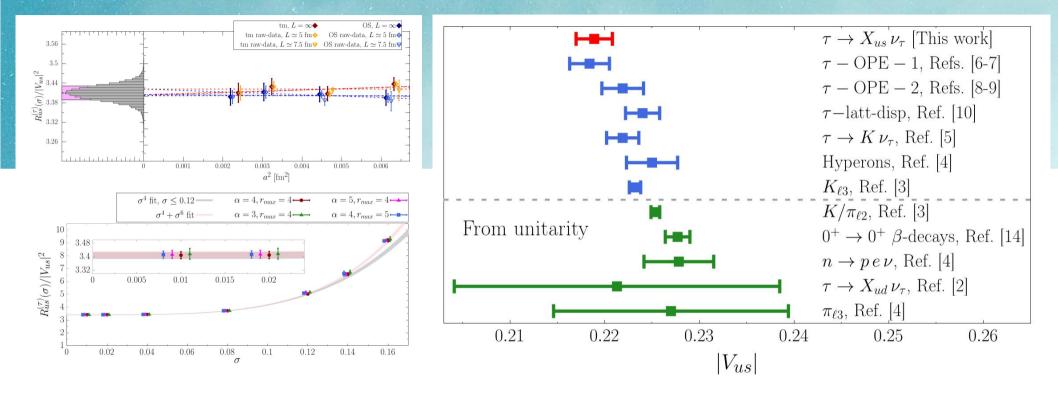
Constantia Alexandrou,^{1,2} Simone Bacchio,² Alessandro De Santis,³ Antonio Evangelista,³ Jacob Finkenrath,⁴ Roberto Frezzotti,³ Giuseppe Gagliardi,⁵ Marco Garofalo,⁶ Bartosz Kostrzewa,⁷ Vittorio Lubicz,⁸ Simone Romiti,⁶ Francesco Sanfilippo,⁵ Silvano Simula,⁵ Nazario Tantalo[®],³ Carsten Urbach,⁶ and Urs Wenger⁹

(Extended Twisted Mass Collaboration)

$$R_{us}(\sigma) = 12\pi S_{EW} |V_{ud}|^2 \int_0^\infty \frac{dEE^2}{m_{\tau}^3} \left\{ K_T^{\sigma} \left(\frac{E}{m_{\tau}}\right) \rho_T(E^2) + K_L^{\sigma} \left(\frac{E}{m_{\tau}}\right) \rho_L(E^2) \right\}$$



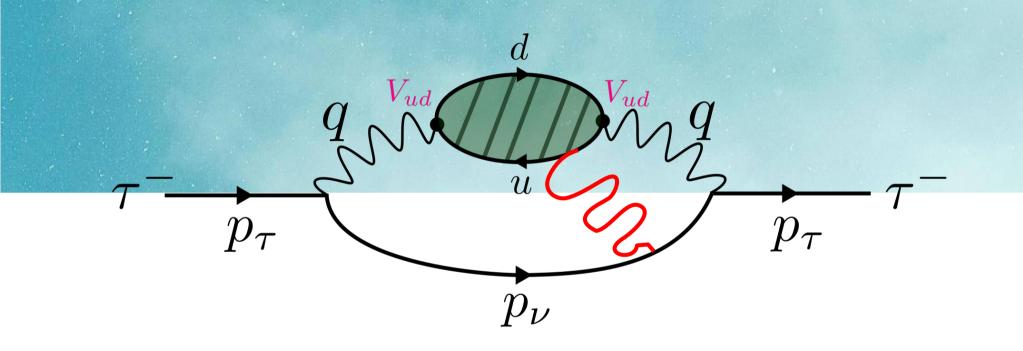
The us channel



Alternative determination, not (yet) competitive with $K_{\ell 3}$ but independent

Some tension is visible indeed...

Perspective: Isospin Breaking



Needs to include the photon exchange between hadrons and tau

A few percent effect, but very important to perform effective prediction Work in progress...

