

RG RUNNING AND MIXING FOR $\Delta F = 2$ FOUR-FERMION **OPERATORS IN** χ SF SCHEMES

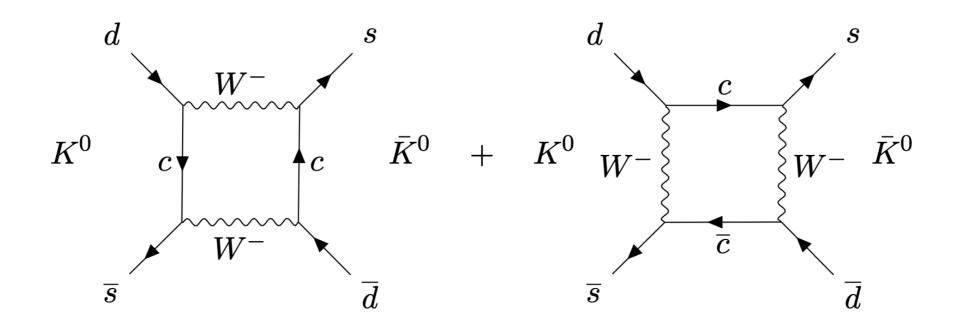
RICCARDO MARINELLI (Sapienza Università di Roma & INFN)

in collaboration with

G.M. De Divitiis, M. Dalla Brida, M. Papinutto, A. Vladikas.

22/05/2025

XXXVIII Convegno Nazionale di Fisica Teorica


-Cortona-

MOTIVATIONS

- Future goal: accurate evaluation of the CP-violating angle δ of the CKM matrix
- **>** $K^0 \bar{K}^0$ oscillations in the SM are sensitive to loop effects, and so to BSM contributions

Indirect investigation of CP violation: ε parameter

$$\varepsilon^{\text{theor}}(\delta) = \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \propto \tilde{U}(\mu) \langle \bar{K}^0 | \mathbf{Q}(\mu) | K^0 \rangle F(\delta)$$

To be evaluated non-perturbatively

Comparing $\varepsilon^{\text{theor}}$ with its experimental estimate we obtain

in the SM:

- **1.** new estimate of the phase δ
- **2.** non-perturbative uncertainties **2.** bounds to BSM contributions

beyond the SM:

- δ kept to the current estimate

2

$K^0 - \bar{K}^0$ OSCILLATIONS

Effective Hamiltonian for K oscillations:

SM:
$$H_{\text{eff}}^{\Delta S=2} = \tilde{U}_1 \mathbf{Q}_1$$

SM: $H_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^5 \tilde{U}_i \mathbf{Q}_i + \sum_{i=1}^3 \tilde{U}'_i \tilde{\mathbf{Q}}_i$
Only one relevant operator
An operator basis $\{O_i\}$

An operator basis $\{Q_i\}$

> Transition amplitudes are calculated with

 $\langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle$

The renormalisation introduces an energy-scale in the matrix elements and in the Wilson coefficients:

$$\langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle_{\text{cons.}}^{\text{parity}} = \tilde{U}_i(\mu) \langle \bar{K}^0 | \mathbf{Q}_i(\mu) | K^0 \rangle$$

FOUR-FERMION OPERATORS RENORMALISATION

Dirac operators:

$$\begin{split} \Gamma_V &= \gamma_{\mu} \;, \quad \Gamma_A = \gamma_{\mu} \gamma_5 \;, \quad \Gamma_s = \mathbf{1} \;, \\ \Gamma_P &= \gamma_5 \;, \quad \Gamma_T = \sigma_{\mu\nu} \;, \quad \Gamma_{\tilde{T}} = \frac{1}{2} \epsilon_{\mu\nu\rho\tau} \sigma_{\rho\tau} \;, \end{split}$$

Four-Fermion Operators:

$$\begin{split} \mathcal{O}_{\left[\Gamma_{1}\Gamma_{2}\pm\Gamma_{2}\Gamma_{1}\right]}^{\pm} &:= \mathcal{O}_{\left[\Gamma_{1}\Gamma_{2}\right]}^{\pm}\pm \mathcal{O}_{\left[\Gamma_{2}\Gamma_{1}\right]}^{\pm} ,\\ \mathcal{O}_{\left[\Gamma_{1}\Gamma_{2}\right]}^{\pm} &:= \frac{1}{2} \Big[\Big(\bar{\psi}_{1}\Gamma_{1}\psi_{2}\Big) \Big(\bar{\psi}_{3}\Gamma_{2}\psi_{4}\Big) \pm \Big(\bar{\psi}_{1}\Gamma_{1}\psi_{4}\Big) \Big(\bar{\psi}_{3}\Gamma_{2}\psi_{2}\Big) \Big] \end{split}$$

Parity-odd operators:

$$\begin{aligned} \mathcal{Q}_{1}^{\pm} &= \mathcal{O}_{[VA+AV]}^{\pm} \quad \mathcal{Q}_{3}^{\pm} = \mathcal{O}_{[PS-SP]}^{\pm} \quad \mathcal{Q}_{5}^{\pm} = -2\mathcal{O}_{[T\tilde{T}]}^{\pm} \\ \mathcal{Q}_{2}^{\pm} &= \mathcal{O}_{[VA-AV]}^{\pm} \quad \mathcal{Q}_{4}^{\pm} = \mathcal{O}_{[PS+SP]}^{\pm} \end{aligned}$$

Renormalisation pattern of parity-odd operators:

$$\begin{pmatrix} \bar{\mathcal{Q}}_{1}^{\pm} \\ \bar{\mathcal{Q}}_{2}^{\pm} \\ \bar{\mathcal{Q}}_{3}^{\pm} \\ \bar{\mathcal{Q}}_{4}^{\pm} \\ \bar{\mathcal{Q}}_{5}^{\pm} \end{pmatrix} = \begin{pmatrix} \mathcal{Z}_{11} & 0 & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{22} & \mathcal{Z}_{23} & 0 & 0 \\ 0 & \mathcal{Z}_{32} & \mathcal{Z}_{33} & 0 & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\ 0 & 0 & 0 & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{pmatrix}^{\pm} \begin{pmatrix} \mathcal{Q}_{1}^{\pm} \\ \mathcal{Q}_{2}^{\pm} \\ \mathcal{Q}_{3}^{\pm} \\ \mathcal{Q}_{4}^{\pm} \\ \mathcal{Q}_{5}^{\pm} \end{pmatrix}$$

RG running and mixing for $\Delta F = 2$ FFO in χ SF schemes

RICCARDO MARINELLI 22/05/2025

EVOLUTION MATRICES

- **Evolution matrices between two scales:** $\bar{Q}_i(\mu_2) = U_{ii}(\mu_2, \mu_1)\bar{Q}_i(\mu_1)$
- Evolution matrices down to a scale $\hat{U}(\mu)$: $U(\mu_2, \mu_1) =: \left[\hat{U}(\mu_2)\right]^{-1} \hat{U}(\mu_1)$
- Problem: for $N_f = 3$ (and 30) two eigenvalues of γ_0/β_0 satisfy the resonance condition $\lambda_i \lambda_j = 2$, making it impossible to adopt the usual definition

$$\tilde{\mathbf{U}}(\mu) = \left[\frac{\bar{g}^2(\mu)}{4\pi}\right]^{-\frac{\gamma_0}{2b_0}} \mathbf{W}(\mu)$$

$W(\mu)$ DEFINITION ISSUES

• W(µ) solves the equation

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \mathbf{W} = \left[\mathbf{\gamma}, \mathbf{W} \right] - \beta \left(\frac{\mathbf{\gamma}}{\beta} - \frac{\mathbf{\gamma}_0}{g\beta_0} \right) \mathbf{W}$$

must the perturbative expansion

 $\mathbf{W} = \mathbf{1} + g^2 \mathbf{J}_1 + g^4 \mathbf{J}_2 + \dots$

therefore the NLO \mathbf{J}_1 solves

- $2\mathbf{J}_1 \left[\frac{\gamma_0}{\beta_0}, \mathbf{J}_1\right] = \frac{\beta_1}{\beta_0} \frac{\gamma_0}{\beta_0} \frac{\gamma_1}{\beta_0}$
- Non-invertible system in the 2|3 submatrix if $N_{\rm f}=3$
- Method still feasible for nonresonant submatrices

WILSON COEFFICIENTS FROM THE POINCARÉ-DULAC THEOREM

A(g) $\equiv \frac{\gamma(g)}{\beta(g)}$ can be set [2013.16220v3] in its canonical form $A^{can}(g) = \frac{1}{g} \left(\Lambda + g^2 N \right)$ upper-diagonal through a change of operator basis Q' = S(g)Q, with $S(g) = \left(1 + g^2 H_2 + g^4 H_4 + ... \right) S_D$

The evolution operator can be evaluated and then rotated back to the original operator basis:

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} u^{-\mathbf{N}/2} u^{-\mathbf{\Lambda}/2} \left(\mathbf{1} + u\mathbf{H}_2 + u^2\mathbf{H}_4 \right) \mathbf{S}_{\mathrm{D}} \qquad u \equiv g^2$$

WILSON COEFFICIENTS CORRESPONDENCE

Wilson coefficient (new approach)

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} u^{-\mathbf{N}/2} u^{-\mathbf{\Lambda}/2} \left(\mathbf{1} + u\mathbf{H}_{2} + u^{2}\mathbf{H}_{4} \right) \mathbf{S}_{\mathrm{D}}$$

With no resonance, $\mathbf{N} = 0$

In absence of resonances, the Wilson coefficients correspond exactly, with the dictionary

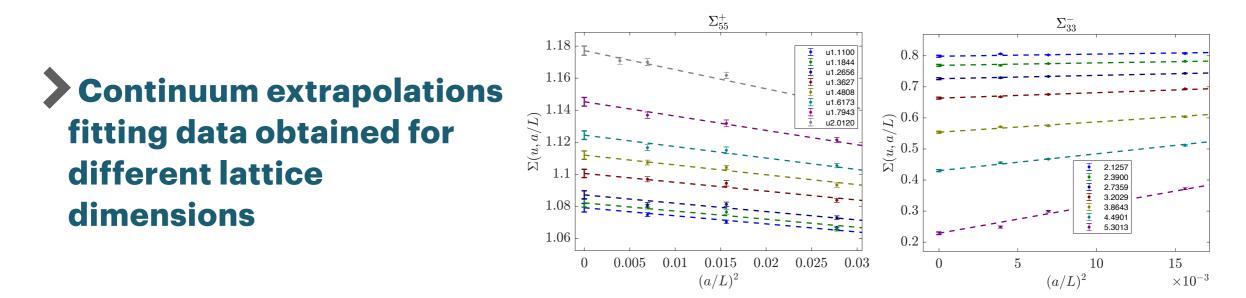
$$\mathbf{J}_k = \mathbf{S}_D^{-1} \mathbf{H}_{2k} \mathbf{S}_D$$

 $\tilde{\mathbf{U}}(u) = u^{-\gamma_0/2\beta_0} \left(\mathbf{1} + u\mathbf{J}_1 + u^2\mathbf{J}_2 \right)$

Wilson coefficient (traditional approach)

Perturbation theory has been fixed...

STEP-SCALING FUNCTIONS


Non-perturbative evolution from the step-scaling functions (SSF):

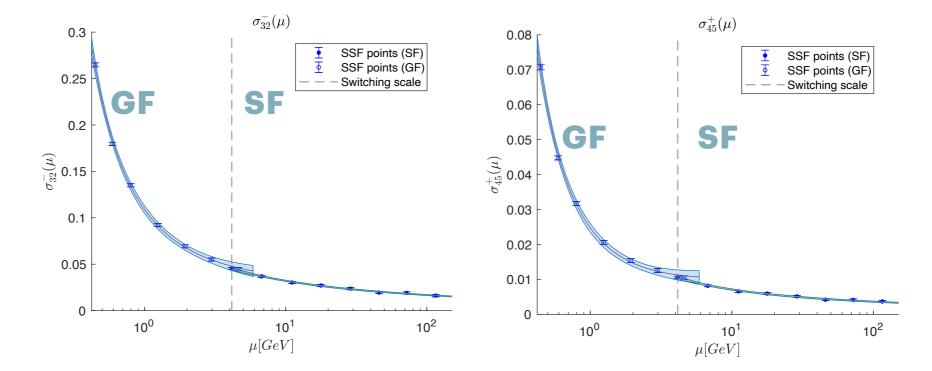
$$\boldsymbol{\sigma}(u) := \mathbf{U}(\mu/2, \mu) \Big|_{\bar{g}^2(\mu) = u} \longrightarrow \mathbf{U}(u_{\text{had}} \equiv u_1, u_{\text{pt}} \equiv u_N) = \boldsymbol{\sigma}(u_1) \dots \boldsymbol{\sigma}(u_N)$$

Discrete step-scaling functions:

$$\boldsymbol{\Sigma}\left(g_0^2, \frac{a}{L}\right) := \boldsymbol{\mathcal{Z}}\left(g_0^2, \frac{a}{2L}\right) \left[\boldsymbol{\mathcal{Z}}\left(g_0^2, \frac{a}{L}\right)\right]^{-1}$$

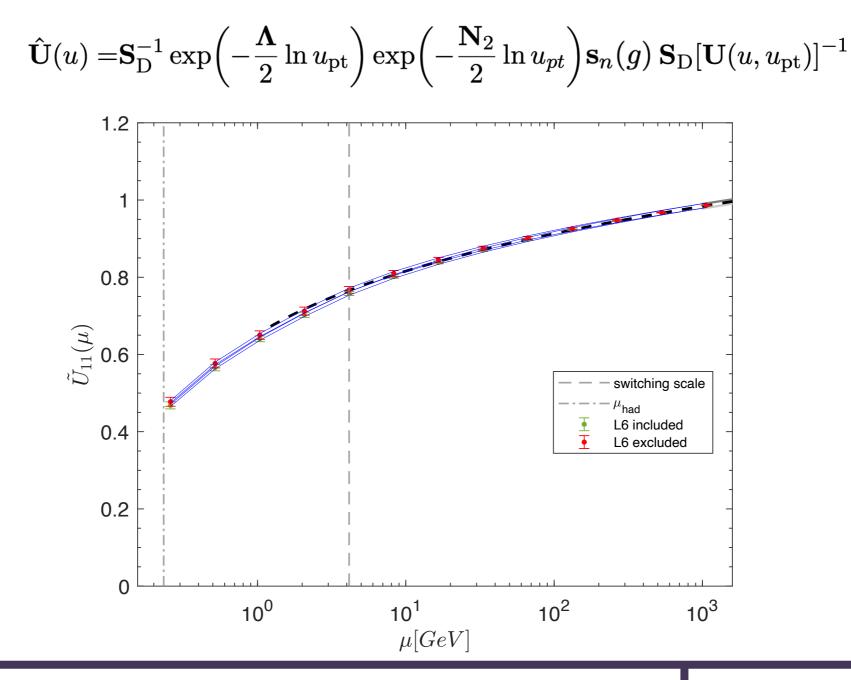
Obtained on the lattice, lattice spacing dependence!

RG running and mixing for $\Delta F = 2$ FFO in χ SF schemes


RICCARDO MARINELLI 22/05/2025

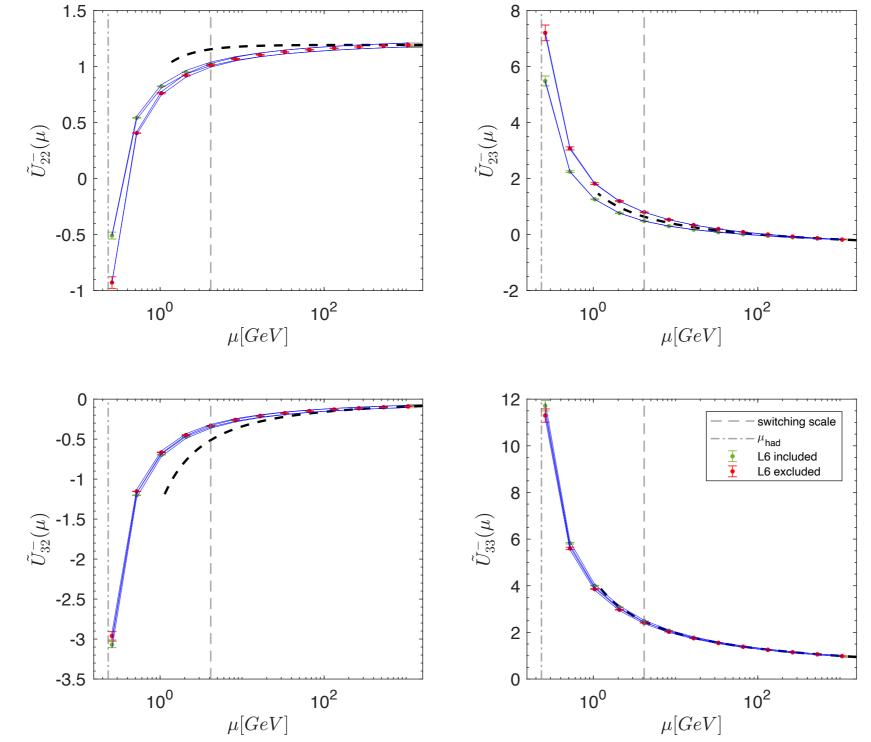
EVOLUTION MATRICES FROM SSF

Continuum Step-scaling functions $\sigma(\mu)$ as functions of the scale:


Evolution operator between u_1 and u_N : $\mathbf{U}(u_1, u_N) = \boldsymbol{\sigma}(u_1) \dots \boldsymbol{\sigma}(u_N)$

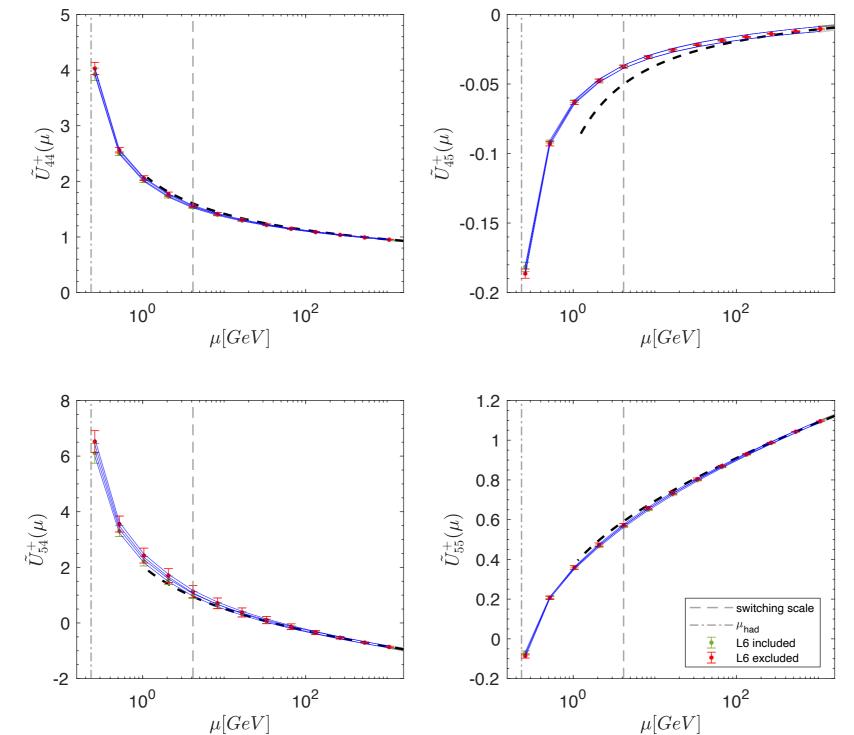
NP RUNNING: SM 1 3 INDICES

Final non-perturbative running:


RG running of ΔF = 2 FFO from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

NP RUNNING: BSM 2|3 INDICES


RG running of ΔF = 2 **FFO** from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

NP RUNNING: BSM 4 5 INDICES

RG running of ΔF = **2 FFO** from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

FUTURE DEVELOPMENTS

Preliminary analysis computing non-perturbatively the running down to a scale $\mathcal{O}(200 \text{ MeV})$ incorporating the NLO in the perturbative part of the study and solving the problem that appears for $N_f = 3$.

In order to evaluate the value of $\varepsilon^{\text{theor}}$ we are planning to perform the following computations:

- bare tm-QCD matrix elements estimated on Wilson gauge configurations (CLS);
- a non-perturbative evaluation of the renormalisation constants in the χSF at the lattice spacings of the CLS ensembles.

Thank you

BACKUP

FLAG2021]				Cation.	chips, up stati,	etting	renorm volume ation		10, 00	$B_i \propto \langle \mathbf{Q}_i (\mu = 3 \text{GeV}) \rangle$		
Collaboration	Ref.	N_f	p_{nYn}		Chi.	finit.	o de la construcción de la const	^t m ₂	B_2	B_3	B_4	B_5
ETM 15	[55]	2+1+1	Α	*	0	0	*	a	0.46(1)(3)	0.79(2)(5)	0.78(2)(4)	0.49(3)(3)
RBC/UKQCD 16	6 [<mark>60</mark>]	2+1	A	0	0	0	*	b	0.488(7)(17)	0.743(14)(65)	0.920(12)(16)	0.707(8)(44)
SWME 15A	[58]	2 + 1	A	*	0	*	<mark>0</mark> †	_	0.525(1)(23)	0.773(6)(35)	0.981(3)(62)	0.751(7)(68)
SWME 14C	[508]	2 + 1	С	*	0	*	<mark>0</mark> †	_	0.525(1)(23)	0.774(6)(64)	0.981(3)(61)	0.748(9)(79)
SWME $13A^{\ddagger}$	[495]	2 + 1	A	*	0	*	<mark>0</mark> †	_	0.549(3)(28)	0.790(30)	1.033(6)(46)	0.855(6)(43)
RBC/ UKQCD 12E	[502]	2+1	A	•	0	*	*	b	0.43(1)(5)	0.75(2)(9)	0.69(1)(7)	0.47(1)(6)
ETM 12D	[59]	2	A	*	0	0	*	c	0.47(2)(1)	0.78(4)(2)	0.76(2)(2)	0.58(2)(2)

• Inconsistencies between different estimates

• Some results refer to perturbative renormalisation

RG running of ΔF = **2 FFO** from step-scaling matrices

THE XSF

> In the continuum we map the SF into the χ SF with a chiral rotation:

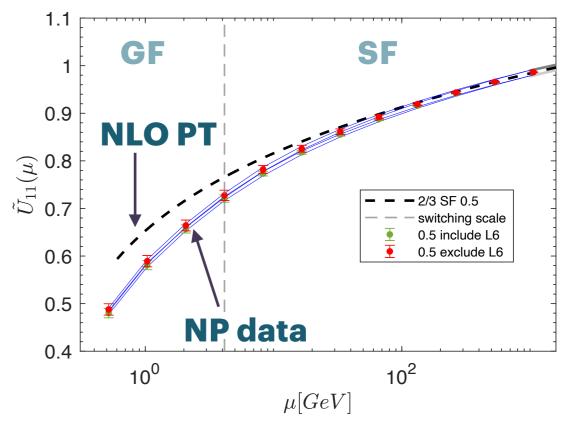
$$\psi' = R\left(\frac{\pi}{2}\right)\psi, \quad \bar{\psi}' = \bar{\psi}R\left(\frac{\pi}{2}\right), \quad R(\alpha) = e^{\frac{i}{2}\alpha\gamma_5\tau^3}$$

Correspondence between correlation functions in the SF and χSF:

$$\langle O[\psi, \bar{\psi}] \rangle_{\rm SF}^{\rm cont} = \left\langle O\left[R\left(\pi/2\right)\psi, \bar{\psi}R\left(\pi/2\right)\right] \right\rangle_{\chi \rm SF}^{\rm cont}$$

The boundary rotation removes O(a) effects in the observables!

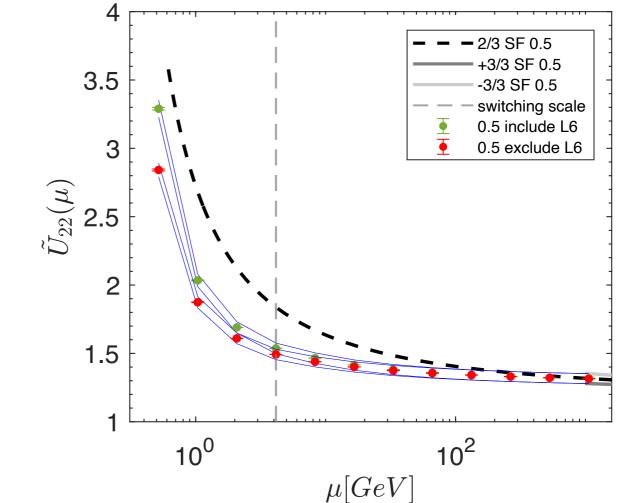
$$\left\langle O_{\text{even}} \right\rangle_{\text{c}} = \left\langle O_{\text{even}} \right\rangle_{\text{c}}^{\text{cont}} + \mathcal{O}(a^2)$$


RG running and mixing for $\Delta F = 2$ FFO in χ SF schemes

NP FEATURES

- Running evaluation with 3 quark flavours in the sea down to ~ 4GeV with SF coupling;
- Running evaluation down to ~ 200MeV with Gradient Flow (GF) coupling;
- New theoretical formulation of the operator running and mixing in the perturbative regime for $N_f = 3$.

A difference often observed between PT and non-PT results at 3GeV (the scale at which matrix elements in FLAG are renormalised), could be relevant in the estimate of quantities like $\varepsilon(\delta)$



ERROR ESTIMATES

The non-perturbative running is finally given by

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{\mathbf{\Lambda}}{2} \ln u_{\mathrm{pt}}\right) \exp\left(-\frac{\mathbf{N}_2}{2} \ln u_{pt}\right) \mathbf{s}_n(g) \, \mathbf{S}_{\mathrm{D}}[\mathbf{U}(u, u_{\mathrm{pt}})]^{-1}$$

- Statistical errors: propagation from the fits
- **Systematic errors (guess) :**
 - Lack of knowledge on higher orders of the anomalous dimension
 - Differences arising if L=6 is included or not

