

Exotic Spectroscopy

"Old" problems and New solutions

A. Esposito, A. Glioti, D. G., A. D. Polosa arXiv:2502.02505 [hep-ph]

Davide Germani

Overview

Introduction

- Exotic hadrons
- Exotic spectroscopy

X(3872): compact vs molucule

- X(3872) natura from NREFT
- Future prospects

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

22/05/2025

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

22/05/2025

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Exotic hadrons are subatomic particles composed of quarks and gluons, but which consist of more than three valence quarks or have an explicit valence gluon content.

R. Jaffe, Phys. Rev. D 15, 267 (1977) DOI: 10.1103/PhysRevD.15.267; H. Fritzsch and M. Gell-Mann, Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia (1972).

• Pieces: quarks, anti-quarks and gluons

SU(3)_C rule: every combination is allowed as long as it respects confinement i.e. boxes forms columns of three elements

Although the existence of exotic states had already been theorized in the 1970s, the first exotic particle was discovered in 2003: the *X(3872)*.

Date of arXiv submission

QWG Exotics hub: https://qwg.ph.nat.tum.de/exoticshub/

Although the existence of exotic states had already been theorized in the 1970s, the first exotic particle was discovered in 2003: the *X(3872)*.

Date of arXiv submission

QWG Exotics hub: https://qwg.ph.nat.tum.de/exoticshub/

Although the existence of exotic states had already been theorized in the 1970s, the first exotic particle was discovered in 2003: the *X(3872)*.

Date of arXiv submission

QWG Exotics hub: https://qwg.ph.nat.tum.de/exoticshub/

Date of arXiv submission

QWG Exotics hub: https://qwg.ph.nat.tum.de/exoticshub/

22/05/2025

Date of arXiv submission

QWG Exotics hub: https://qwg.ph.nat.tum.de/exoticshub/

Exotic spectroscopy

Around **50 exotic hadrons** with at least one heavy (c or b) quark are reported.

N. Hüsken, E. Spadaro Norella, I. Polyakov arXiv:2410.06923 [hep-ph]

Exotic spectroscopy is a branch of particle physics that focuses on studying the properties of exotic hadrons.

- Provide a theoretical explanation of the experimentally observed properties, grounded as much as possible in first principles (QCD).
- Make predictions about the masses and quantum numbers of exotic hadrons to test hypotheses on the non-confining dynamics of QCD.

Who is the *X*(3872)?

$$I(J^{PC}) = \mathbf{0}(\mathbf{1}^{++})$$

Isosinglet

DISTINGUISHING FEATURES:

Threshold distance:

 $(m_D + m_{D^*}) - m_X \sim O(\text{keV})$

Main decay channel:

 $X(3872) \longrightarrow D^0 \overline{D}^{0*} \longrightarrow D^0 \overline{D}^0 \pi^0 \quad (\mathbf{55} \pm \mathbf{28})\%$

Isospin violating decay:

$$\frac{\mathscr{B}(X \to J/\psi\,\omega)}{\mathscr{B}(X \to J/\psi\,\rho)} \simeq 1$$

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Exotic Meson $[Q\overline{Q}q\overline{q}]$

Mass: 3871. 65 \pm 0. 06 MeV

22/05/2025

Who is the *X*(3872)?

Fine Tuning

$$B \ll \Lambda_{QCD} \longrightarrow \frac{1}{10^3}$$

22/05/2025

Compact objects vs Molecules

The X(3872)'s closeness to the $D^0 D^{*0}$ threshold makes it challenging to clearly determine whether the state is molecular or compact.

C. Z. Yuan and S. L. Olsen Nat Rev Phys 1, 480-494 (2019)

Non-relativistic EFT: Effective range & Nature of Poles

At low energies, the scattering amplitude depends on two parameters.

Limit $k \rightarrow 0$:

$$f(\theta) \simeq f_0 = \frac{1}{k \cot \delta_0 - ik}$$

$$k \cot \delta_0 = -\frac{1}{a_s} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$

The sign of r_0 is related to whether the particle is a molecule or a compact state (Weinberg 1965).

Weinberg Phys. Rev. 137, B672 (1965)

- $a_s > 0$: the pole is related to a **real particle**;
- $a_s < 0$: the pole is related to a **virtual particle**.

- $r_0 \ge 0$: The particle is a **bound state**;
- $r_0 < 0$: The particle is a **compact state**.

Non-relativistic EFT: Effective range & Nature of Poles

At low energies, the scattering amplitude depends on two parameters.

Limit $k \rightarrow 0$:

$$f(\theta) \simeq f_0 = \frac{1}{k \cot \delta_0 - ik}$$

Scattering length

$$k \cot \delta_0 = -\frac{1}{a_s} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$

The sign of r_0 is related to whether the particle is a molecule or a compact state (Weinberg 1965).

Weinberg Phys. Rev. 137, B672 (1965)

- $a_s > 0$: the pole is related to a **real particle**;
- $a_s < 0$: the pole is related to a **virtual particle**.

- $r_0 \ge 0$: The particle is a **bound state**;
- $r_0 < 0$: The particle is a **compact state**.

Non-relativistic EFT: Effective range & Nature of Poles

At low energies, the scattering amplitude depends on two parameters.

Limit $k \rightarrow 0$:

$$f(\theta) \simeq f_0 = \frac{1}{k \cot \delta_0 - ik}$$

Scattering length

$$k \cot \delta_0 = -\frac{1}{a_s} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$

Effective range

The sign of r_0 is related to whether the particle is a molecule or a compact state (Weinberg 1965).

Weinberg Phys. Rev. 137, B672 (1965)

- $a_s > 0$: the pole is related to a **real particle**;
- $a_s < 0$: the pole is related to a **virtual particle**.

- $r_0 \ge 0$: The particle is a **bound state**;
- $r_0 < 0$: The particle is a **compact state**.

Proton – Neutron: the dibarion field (aka deuteron)

$$\mathscr{L} = N^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) N + \sigma D^{\dagger} \left(i\partial_t + \frac{\nabla^2}{4M} - \mu \right) D - \left[g D^{\dagger}(NN) + h.c. \right]$$

D. B. Kaplan, Nucl. Phys. B 494(1997), 471–484, nucl-th/9610052.

Dibarion field

The dibarion's kinetic term is defined up to a sign $\sigma=\pm 1$

$$\int f = -\frac{M}{4\pi} \frac{\sigma g^2}{E - \mu + i \sigma g^2 \frac{M}{4\pi} k}$$

D. B. Kaplan, Nucl. Phys. B 494(1997), 471–484, nucl-th/9610052.

22/05/2025

Proton – Neutron: the dibarion field (aka deuteron)

$$\mathscr{L} = N^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) N + \sigma D^{\dagger} \left(i\partial_t + \frac{\nabla^2}{4M} - \mu \right) D - g D^{\dagger}(NN) + h.c.$$

$$r_0 = -\sigma \frac{8\pi}{g^2 M^2}$$

- $\sigma = +1$: 'Classical' kinetic term and $r_0 < 0$. The field represents a **compact particle** if $\mu < 0$.
- $\sigma = -1$: 'Inverted' kinetic term and $r_0 > 0$. The field represents a **bound** state if $\mu > 0$.

$$f(\theta) \simeq f_0 = \frac{1}{k \cot \delta_0 - ik}$$

22/05/2025

XXXVIII Convegno Nazionale di Fisica Teorica Cortona, May 20-23, 2025

 $k \cot \delta_0 = -\frac{1}{a_s} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$

The XEFT

A. Esposito et al. arXiv:2502.02505 [hep-ph]

$$\begin{split} \mathcal{L}_{kin} &= D^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_D} - \begin{pmatrix} \Delta_1 & 0\\ 0 & 0 \end{pmatrix} \right) D + \bar{D}^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_D} - \begin{pmatrix} 0 & 0\\ 0 & \Delta_1 \end{pmatrix} \right) \bar{D} + \\ &+ D^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_{D^*}} - \begin{pmatrix} \Delta_2 & 0\\ 0 & 0 \end{pmatrix} \right) D + \bar{D}^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_{D^*}} - \begin{pmatrix} 0 & 0\\ 0 & \Delta_2 \end{pmatrix} \right) \bar{D} + \\ &+ X^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2(m_D + m_{D^*})} - m_F \right) X \,. \end{split}$$

 $egin{aligned} \mathscr{L}_{ ext{int}} \supset & -rac{\lambda_S}{2} (ar{D} m{D})^{\dagger}_+ igg(ar{1} & -1 \ -1 & 1 igg) (ar{D} m{D})_+ - rac{\lambda_T}{2} (ar{D} m{D})^{\dagger}_+ igg(ar{1} & 1 \ 1 & 1 igg) (ar{D} m{D})_+ \ & -rac{g}{\sqrt{2}} m{X}^{\dagger} (ar{D}^0 m{D}^0)_+ + rac{g}{\sqrt{2}} m{X}^{\dagger} (D^- m{D}^+)_+ \,. \end{aligned}$

and interactions

The XEFT: what can we do?

R. Aaij, et al. [LHCb], Phys. Rev. D 102, 9 (2020),092005, 2005.13419.

$$\frac{dR(J/\psi\pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{|D(E)|^{2}}$$
$$D(E) = E - E_{f} + \frac{i}{2}[g(k_{1} + k_{2}) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_{0}]$$

A. Esposito et al. arXiv:2502.02505 [hep-ph]

22/05/2025

The XEFT: what needs to be done

In the previous Lagrangian, it is also possible to add a field for the isospin triplet X_t , that we expect since SU(2) is a good symmetry of QCD. By doing so, we can generate loops that turn the isosinglet X(3872) into its neutral isotriplet partner X_t^0 .

The enhancement of the isospin violating decay could be due to mixing between the isosinglet and isotriplet, induced by *D*-meson loops.

Conclusions

Since 2003, the nature of the X(3872) has eluded our understanding. In a NREFT framework, we can infer the nature of the resonance by analyzing the kinetic term in the Lagrangian. So far, LHCb data suggest a compact nature for the resonance. By introducing the isospin triplet partners, the isospin-violating decay can be explained through the mixing induced by D and D^* mesons.

Tetraquark

22/05/2025

Molecule