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Energy-momentum conservation in trace-free gravity?

In general relativity, energy-momentum conservation is a consequence of the field equations:

Gab = κ Tab ⟹ ∇aTab = 0

In trace-free Einstein gravity, the Einstein field equations are replaced by

Rab −
1
4

R gab = κ (Tab −
1
4

T gab)

κ∇cTac =
1
4

∇a(R + κT ) ≡ Ja

Using the Bianchi identities, we no longer get a conservation law:

energy-momentum transfer

In trace-free Einstein gravity, energy-momentum conservation for matter fields

becomes an independent assumption, and  in general.∇aTab ≠ 0

[Ellis, van Elst, Murugan, Uzan (2011); Josset, Perez, Sudarsky (2017)]
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Effective dark energy from energy-momentum non-conservation

The field equations can be recast in the form of effective Einstein equations

Rab −
1
2

R gab + (Λ∞ + ∫ℓ
J) gab = κTab

To ensure that the geometry only depends on the point (and not on the path  !)

the energy-momentum transfer must be integrable

ℓ

dJ = 0 ⟹ Ja = − ∇aQ
energy-momentum

transfer potential

Then, the field equations read as Gab = κ (Tab + T̃ab) with κ T̃ab = Q gab
(dark energy with )w = − 1

By construction, the total energy-momentum tensor is conserved ∇a(Tab + T̃ab) = 0

IDE models with  and integrable transfer are embedded in trace-free gravityw = − 1
[Perez, Sudarsky, Josset, Wilson-Ewing (2020)]

(locally)
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Large scale instabilities?
A large class of interacting dark energy models suffers from well-known


non-adiabatic large scale instabilities for super-horizon modes
[Valiviita, Majerotto, Maartens (2008)]

In this context, a model consists of a specific proposal for the transfer potential  .

This does not follow from the field equations and therefore must be prescribed separately.

Q

There are proposals for the possible microscopic origin of energy-momentum 
non-conservation due to spacetime discreteness at the Planck scale.

Goal 1: show that we can build instability-free IDE models

that can be embedded in trace-free Einstein gravity.

[Perez, Sudarsky (2017)]

Transfer models

Goal 2: Test one such model with observational data and

search for evidence of new physics
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Energy non-conservation in quantum gravity
Due to spacetime discreteness, diffeomorphism invariance may not hold on all scales.


 we may have  at a fundamental level.⟹ ∇aTab ≠ 0

‘Energy diffusion’ resulting from the interaction of matter with a ‘granular’ spacetime structure at 
the Planck scale

It is argued that massive fields with spin can probe such a structure, and feel a friction force

uc ∇cua = α
m

M2
Pl

sign(s ⋅ ξ) R sa ( ξ ≡ ∂t )

Ja = κ∇cTca ≈ 2παℏ
T

M2
Pl

R2 (dt)a

Assuming a gas of such particles at thermal equilibrium, one obtains for the current: 

NB: both in Sorkin's causal sets approach and in Jacobson’s spacetime thermodynamics

one actually recovers the trace-free Einstein equations, which are consistent with the above.

[Perez, Sudarsky (2017)]
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Energy non-conservation in quantum gravity
Such diffusion effects may explain the observed value of the cosmological constant

[Perez, Sudarsky (2017); Perez, Sudarsky, Bjorken (2018)]

Furthermore, friction due to spacetime granularity may also spin down BHs.
[Perez, Sudarsky (2019)]

Diffusion effects can potentially resolve the Hubble tension.

The background dynamics has been analyzed in two models, where diffusion kicks in after recombination:


1) sudden transfer from  to  ; 2) anomalous decay of ρm Λ ρm

A full Bayesian analysis including the effects of diffusion on perturbations is still missing

[Perez, Sudarsky, Wilson-Ewing (2020)]

Comparison of some diffusion models with CMB data

(deviations from standard cosmology enter at the background level)

[Landau, Benetti, Perez, Sudarsky (2022)]
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Cosmological perturbations in unimodular gravity
We focus on the scalar sector, because that’s where the instability found in [Valiviita, Majerotto, 

Maartens ‘08] shows up, and also where modifications to GR play a role.

ds2 = a(η)2{−(1 + 2ϕ)dη2 + 2B,idxidη + [(1 − 2ψ)δij + 2E,ij] dxidxj}
(scalar) metric perturbations:

δTa
A b = (δρA + δpA)ūaūb + (ρ̄A + p̄A)(δua

Aūb + ūaδuA
b ) + δpA δa

b + πa
A b

matter perturbations:

dark energy perturbations (recall ) :ρx = − κ−1Q δT̃a
b = − δρx δa

b

Background evolution
ℋ2 =

κ
3

a2 (ρ̄ + ρ̄x) ρ̄′￼A + 3ℋ(ρ̄A + p̄A) = κ−1Q̄′￼A ∑
A

QA = Q

ρ̄′￼+ 3ℋ(ρ̄ + p̄) = κ−1Q′￼= − ρ̄′￼x NB: no dynamical equation for  .Q̄
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Cosmological perturbations in unimodular gravity

− △ ψ + 3ℋ(ψ′￼+ ℋϕ) = −
κ
2

a2(δρ + δρx) , ℋϕ + ψ′￼= −
κ
2

a2(ρ̄ + p̄)v , ψ − ϕ = κ a2π ,

ψ′￼′￼+ ℋ(ϕ′￼+ 2ψ′￼) + (2
a′￼′￼

a
− ℋ2) ϕ =

κ
2

a2 (δp − δρx +
2
3

△ π)

perturbed field equations (longitudinal gauge ): E = B = 0

δ′￼A + (3ℋ(c2
s A − wA) + κ−1 Q̄′￼A

ρ̄A ) δA + (wA + 1)θA − 3(wA + 1)ψ′￼+ 3ℋ(c2
s A − c2

a A)[3ℋ(1 + wA) − κ−1 Q̄′￼A

ρ̄A ] θA

k2
= κ−1 δQ′￼A

ρ̄A
,

θ′￼A + ℋ(1 − 3c2
s A)θA − k2ϕ −

k2

1 + wA
c2

s AδA +
2k4

3(1 + wA)ρ̄A
πA = κ−1 [ k2

ρ̄A(1 + wA)
δQA − ( 1 + c2

s A

1 + wA ) Q̄′￼A

ρ̄A
θA]

continuity equations: 

Note that there is no additional equation for  !δx = δQ/Q̄

 is not defined for a fluid with .

We can identify it with the velocity perturbation for the total fluid .

θx w = − 1
θx ≡ θ

θA ≡ △ (vA + B) , δA ≡
δρA

ρ̄A
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A simple transfer model
In order to solve the equations, we also need to model the energy-momentum transfer.

We choose a model where the violation of energy-momentum conservation is

only due to dark matter and the transfer potential is

Q = − Λ∞ + ϵ κ ρc

energy density of CDMcosmological constant

at future infinity


(integration constant)

With this, dark energy evolves adiabatically w.r.t. CDM  ζx = ζc ⟹ Sxc = 0

The CDM (non)conservation equations then read as:

(1 − ϵ)ρ̄′￼c + 3ℋρ̄c = 0

(1 − ϵ)δ′￼c + θc − 3ψ′￼= 0 , θ′￼c + ( 1 − 4ϵ
1 − ϵ ) ℋθc − k2ϕ − ϵ k2δc = 0

background:

perturbations:

Due to diffusion, CDM effectively behaves as a fluid with  c2
s,eff = weff =

ϵ
1 − ϵ
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Effective sound speed of DM

CDM effectively behaves as a fluid with  c2
s,eff = weff =

ϵ
1 − ϵ

To avoid gradient instabilities, we shall require .ϵ ≥ 0

This condition also tells us that energy flows from dark matter to dark energy

(the effective cosmological ‘constant’ must be increasing)

The characterisation of DM with parameters   resembles

the generalized dark matter phenomenological model (in the inviscid case) 

c2
s,eff , weff

[Hu (1998)]  [Kopp, Skordis, Thomas (2016)]
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Radiation dominated era
We solve the gravity+matter equations during RDE at tight coupling for super-horizon modes, 

taking into account baryons, photons, neutrinos in addition to DE and CDM

Constant mode: ψ = (1 +
2
5

Ων) ϕ +
4
15

SνγΩν(1 − Ων)

Matter perturbations  ,  ,  are also well behaved in both casesθA δA σν

Decaying mode: ψ ≈ (kη)n n ≈ − 3+ 8
5 Ων ϕ = (1− 8

5 Ων) ψ

δx = − 3
ϵ

1 − ϵ ( ρ̄c

ρ̄x ) ψ

DE density perturbations are also bounded and decreasing in magnitude:

No instability!



Marco de Cesare (SSM)IDE from trace-free Einstein gravity 12

Matter dominated era

ψ′￼′￼+ 3ℋ(1 + c2
s,eff)ψ′￼+ (2ℋ′￼+ ℋ2(1 + 3c2

s,eff))ψ + c2
s,effk2ψ = 0

c2
s,eff =

ϵ
1 − ϵ

ℋ = ( 1 − ϵ
1 + 2ϵ ) 2

η

Assume only interacting CDM and DE as matter fields.

There is no anisotropic stress, so .ϕ = ψ

Super-horizon modes ( )cs,eff kη ≪ 1

ψ = ψ0 + C η
−( 5 + 3c2

s,eff
1 + 3c2

s,eff ) δc ∼ a1+3c2
s,eff

same as in Hu’s GDM model

Also in this case there are no instabilities.

The CDM limit  is continuous on these scales.Λ ϵ → 0
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Matter dominated era
Sub-horizon modes ( )cs,eff kη ≫ 1

ψ ∼ cos(cs,effkη + φk) δc ∼ a
1
2 (1+3c2

s,eff) sin(cs,effkη + φk)

on these scales, the potential and the density contrast oscillate,

the latter with increasing amplitude

different power compared to

super-horizon modes 

in CDM, the sound speed of CDM is exactly zero and  on all scalesΛ δc ∼ a

Therefore,  is a singular limit. For any finite non-zero values of  (no matter how small),

the behaviour of sub-horizon modes is qualitatively different from the  case.

ϵ → 0 ϵ
ϵ = 0

This offers an opportunity to test the model and constrain the coupling .ϵ

also similar to [Pan, Yang, Di Valentino, Mota, Silk (2022)] (non-interacting case for DM with ) w ≠ 0
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Observational tests of Q = − Λ∞ + ϵ κ ρc

Y. Zhai, MdC, C. van de Bruck, E. Di Valentino, E. Wilson-Ewing [arxiv:2503.15659]
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Observational tests of Q = − Λ∞ + ϵ κ ρc

Y. Zhai, MdC, C. van de Bruck, E. Di Valentino,

E. Wilson-Ewing [arxiv:2503.15659]
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A uniform prior is imposed on  in the interval [0.,0.1].

Negative values are not allowed so as to avoid a gradient instability.

ϵ

Observational tests of Q = − Λ∞ + ϵ κ ρc

Non-zero values of  are mildly favoured by the combined datasets.

The situation does not change if negative values are allowed in the prior.

ϵ

Y. Zhai, MdC, C. van de Bruck, E. Di Valentino, E. Wilson-Ewing [arxiv:2503.15659]



Marco de Cesare (SSM)IDE from trace-free Einstein gravity 17

Further generalizations
We could choose a more general model for the transfer potential. Some examples are:

One could also include a functional dependence on further geometric invariants

or additional interactions with other matter species.

In any case, we would still have , but such modifications may introduce

further features to the effective fluid description of DM.

w = − 1

QII = − Λ∞ + α(∇au(c)
a )2 QIII = − Λ∞ + L−1 ∇au(c)

a

QIV = − Λf + α uc ∇c(∇aua) ……

Models motivated from fundamental physics

(e.g., energy diffusion due to spacetime discreteness) are of primary interest.
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Conclusions
• IDE models with  and integrable transfer are embedded in unimodular gravity (trace-free 

Einstein equations) 


• For this class of models, we derived the general equations for scalar cosmological perturbations. These 
are a special case of [Valiviita, Majerotto, Maartens ’08]. However, the models at hand are free from 
large-scale non-adiabatic instabilities.


• We assume a simple model    and examine the evolution of perturbations


✦ CDM effectively behaves as a fluid with 


✦  ensures that there is no gradient instability. Energy flows from CDM to DE.


✦ We solved the equations analytically for super-horizon modes during RDE, and for both super-
horizon and sub-horizon modes during MDE. No large scale instabilities.


✦ The model predicts small deviations from CDM. Data favour small but non-zero values of 
.

w = − 1

Q = − Λ∞ + ϵ κ ρc

c2
s,eff = weff = ϵ/(1 − ϵ)

ϵ ≥ 0

Λ
ϵ ∼ 𝒪(10−4)

Open questions
• Several generalisations are possible, providing a general framework for phenomenology and to study 

diffusion effects from fundamental physical processes.


• What about the  and  tensions? [Perez, Sudarsky, Wilson-Ewing (2020)]


• Can we explain DE evolution as observed by DESI in DR2 within this class of IDE models?

H0 S8
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Backup slides
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Aside on the unimodularity condition
The trace-free Einstein equations can be obtained from the action

S = ∫ d4x −g [ 1
2κ R + λ (ω − −g )]

‘unimodularity constraint’

{

The linearized unimodularity constraint for cosmological perturbations reads .∇2E + ϕ − 3ψ = 0

In this approach one finds, in addition to the trace-free equations, a constraint that

breaks the diffeomorphism invariance of GR down to volume-preserving diffeomorphisms.

Following this approach, the class of allowed gauges is clearly restricted.
[Gao, Brandenberger, Cai, Chen (2014)]

In our approach, we do not assume an action principle.


Instead, we take only the trace-free Einstein equations as a starting point.


 full diffeomorphism invariance is retained.⟹
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Aside: equivalence with generalized dark matter

TDM
ab + TDE

ab = Ťab − κ−1Λ∞ gab

Ťab = (ρ̌ + p̌)uaub + p̌ gab + πab

ρ̌ = ρd + ρ̃x , p̌ = pd − ρ̃x

Tdark
ab = TDM

ab + TDE
ab

total stress-energy of the dark sector: TDE
ab = − ρx gab

TDM
ab = (ρd + pd)uaub + pd gab + πab

more in general, i.e. without assuming a specific transfer model

This rewriting is possible for all ‘interacting vacuum’ models

generalized dark matter (late-time) cosmological constant



Marco de Cesare (SSM)IDE from trace-free Einstein gravity 22

TDM
ab + TDE

ab = Ťab − κ−1Λ∞ gab

Tdark
ab = TDM

ab + TDE
ab

total stress-energy of the dark sector: TDE
ab = − ρx gab

TDM
ab = (ρd + pd)uaub + pd gab + πab

more in general, i.e. without assuming a specific transfer model

NB: there may still be entropy perturbations if   depends on extra fields other than DMρx

The absence of instabilities depends of course on the transfer model.


However, it remains true in general that  and therefore the velocity instability found

by Majerotto et al. cannot arise in this class of models.

θx ≡ θ

Aside: equivalence with generalized dark matter


