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Introduction

Quantum Chaos Beyond Universality

Quantum Chaos is ubiquitous across physics: many-body systems, nuclear physics, black holes, etc.

In contrast to classical chaos, quantum chaos lacks a single definition.
Currently, the term refers to di↵erent phenomena that co-occur (thermalization, scrambling, ergodicity)

BGS conjecture

can be generalized to random matrix universality as an operational criterion:
The spectral statistics of a quantum-chaotic system match those of a random matrix ensemble.

We challenge this notion by computing the moments of the spectral form factor in the SYK model,
revealing deviations from random matrix theory.
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Introduction

The SYK model

SYK (Sachadev-Ye-Kitaev) model is a all-to-all connected systems of N Majorana fermions:

H = iq/2
X

1i1<···<iqN

Ji1...iq i1 . . . iq ,  i =  †

i , { i , j} = �ij (1)

The couplings Ji1...iq are i.i.d. Gaussian random variables with

hJ
2

i1...iq i =
J
2(q � 1)!
Nq�1

. (2)

It gained a lot of attention recently since it is:

Originally introduced as toy model for non-Fermi liquid.
[Sachdev-Ye ’92]

Prototypical example of a many-body chaotic system for q > 2.

Analytically tractable [Maldacena-Stanford ’16].

Holographically dual to near-extremal black holes.
[Kitaev’s talk ’15, Sachdev ’15]
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Introduction

Spectral form factor (SFF)

Since quantum chaos encompasses multiple phenomena, we need concrete probes to diagnose it.
The SFF, introduced in random matrix theory, is a diagnostic tool for spectral correlations:

K(T ) =
|Z(iT )|2

|Z(0)|2
=

1
L2

LX

m,n=1

e
i(Em�En)T

Z(iT ) = Tr
h
e
iHt

i
(3)

While K(T ) is a very erratic function, its disorder-averaged value hK(T )i exhibits a universal profile.
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Spectral form factor (SFF)

Since quantum chaos encompasses multiple phenomena, we need concrete probes to diagnose it.
The SFF, introduced in random matrix theory, is a diagnostic tool for spectral correlations:

K(T ) =
|Z(iT )|2

|Z(0)|2
=

1
L2

LX

m,n=1

e
i(Em�En)T

Z(iT ) = Tr
h
e
iHt

i
(3)

While K(T ) is a very erratic function, its disorder-averaged value hK(T )i exhibits a universal profile.

Slope Ramp Plateau
Caused by level repulsion
(Spectral rigidity)

E
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Review

Review of [Saad-Shenker-Stanford ’18]: SFF for the SYK model

The SFF for the SYK model can be represented as a path integral

Z(iT )Z(�iT ) =

Z
D exp

⇢
i

Z T

0

d t


i
2
 a

i @t 
a
i � Ji1...iq

⇣
i
q
2  L

i1 . . . 
L
iq � (�i)

q
2  R

i1 . . . 
R
iq

⌘��
, (4)

If we average over the coupling and introduce collective fields G ,⌃ we can integrate out the fermions

h|Z(iT )|2i =

Z
DGD⌃ e

�I [G ,⌃]

1
N

I [G ,⌃] = �
1
2
log det(@t � ⌃) +

1
2

Z T

0

Z T

0

d t d t0

⌃ab(t, t

0)Gab(t, t
0)�

J
2

q
sabGab(t, t

0)q
�

sLL = sRR = �1, sLR = sRL = iq.

(5)

We introduced the two-point function Gab(t, t
0) = 1

N

P
i  

a
i (t) 

b
i (t

0) and its self-energy ⌃ab(t, t
0).
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Review

Review of [Saad-Shenker-Stanford ’18]: SFF for the SYK model

The large-N limit makes the saddle point approximation reliable:

⌃ab(t1 � t2) = J
2
sabGab(t1 � t2)

q�1 ,

Gab(!) = (�i! � ⌃(!))�1

ab ,
(6)

There are two solutions to this equation, obtained numerically or for ! ! 0:

G
(2)

⇤ =


⇤ 0
0 ⇤

�
G

(2)

⇤ =


⇤ ⇤

⇤ ⇤

�

“Disconnected” “Wormhole”

L R L R
K

JT

Zimm



The moments of the spectral form factor in SYK

Results

Moments of the SFF in SYK: path integral

The calculation for the kth moment of the SFF is formally very similar

hZ(iT )kZ(�iT )ki =

Z
DGD⌃ e

�I [G ,⌃]

1
N

I [G ,⌃] = �
1
2
log det(@t � ⌃) +

1
2

ZZ T

0

d t d t0

⌃ab(t, t

0)Gab(t, t
0)�

J
2

q
sabGab(t, t

0)q
�

sL#L# = sR#R#
= �1, sL#R#

= sR#L# = iq.

(7)

Main features:

There are k L and R fields ) G ,⌃ are 2k ⇥ 2k matrices.

There is a S
2

k symmetry for the permutations of the L and R copies

The saddle point equations are formally identical as the k = 1 case:

⌃ab(t1 � t2) = J
2
sabGab(t1 � t2)

q�1 ,

Gab(!) = (�i! � ⌃(!))�1

ab ,
(8)
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Results

Moments of the SFF in SYK: saddle point

A simple solution is given by:

G(t) =

2

664

G
(2)

⇤ (t) 0 0

0 G
(2)

⇤ (t) 0

0 0
. . .

3

775 . (9)

In principle the G
(2)

⇤ can be either “Disconnected” or “Wormhole”.
Far away from the point where they change dominance we have two dominant solutions:

h|Z(iT )|2ki = |hZ(iT )i|2k h|Z(iT )|2ki = k!h|Z(iT )|2ik

L R

L R

1 1

2 2

L R

L R

1 1

2 2

L

RL

R1

12

2

··

: :
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Results

Moments of the SFF in SYK: saddle points

No other saddle dominates, as we can see from a numerical analysis:

This result follows random matrix universality. But we expect that at high k there will be corrections.

k=3

k=2

k=4
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Results

Moments of the SFF in SYK: perturbative corrections

To calculate the corrections a perturbative analysis is needed.
Expanding around the wormhole saddle point we find:

h|Z(iT )|2ki
h|Z(iT )|2ik

= k!


1 +

k(k � 1)
4

q!
Nq

T
2
|�E |

2 + o(N2�q)

�
(10)

1) �E can be seen as a di↵erence of energies, it is extensive and it gets its contribution from the edge
of the spectrum.

2) Nq

q! ⇠
�
N
q

�
= # i.i.d. couplings in the Hamiltonian. We expect this to be true also for other

disordered systems.

3) Deviation from random matrix theory for k ⇠ N
q/2�1.
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Conclusions

Let’s conclude with some remarks:

Moments of the SFF probe model-specific deviations from random matrix universality in chaotic
systems.

In disordered quantum many-body systems, the correction is inversely proportional to the number
of random variables in the Hamiltonian (shown numerically in sparse SYK).
How does this generalize to non-disordered systems?

The spectral edge is the main source of universality violation [Altland et al. ’24] .
Relevant for holographic duality, which emerges in the IR of SYK.
) In JT gravity, corrections are exponentially suppressed in N. How do we reconcile this?

Results are relevant for experimental SYK realizations [Pikulin-Franz. ’17, Chew et al. ’17, . . . ] :
often involve small, sparse systems ) deviations from the original model can become relevant.

THANK YOU
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Results

Moments of the SFF in SYK: perturbative corrections

We performed a numerical analysis using exact diagonalization for N = 18 fermions in sparse SYK:

Filtered SFF

Usual SFF

A


