CALICO:

parametric annihilators for loop integrals & special functions

Gaia Fontana (University of Zürich)

In collaboration with Giuseppe Bertolini & Tiziano Peraro

New Frontiers in Theoretical Physics - XXXVIII Convegno Nazionale di Fisica Teorica

Introduction

Loop Integrals

- LEGO® blocks of perturbative QFT beyond tree level
- Key ingredient of phenomenological predictions
- Rich and interesting mathematical structures

Thousands of loop integrals appear when studying perturbative predictions!

- Crucial: Finding relations between them
- Loop integrals admit various integral representations with different tradeoffs and mathematical properties

This work

- Study and elaborate on the method of parametric annihilators for finding integral identities,
 - Focus on parametric representation of loop integrals
 - Extend applications to different representations
 - Illustrate a similar technique for finding differential equations
- Provide an implementation of annihilators and differential operators based on modern linear solvers relying on cutting edge finite-fields techniques
- Implement such techniques in a public Mathematica package: CALICO

Computing Annihilators from Linear Identities
Constraining (differential) Operators

Some useful definitions

We are interested in families of integrals of the form

These include many parametrizations of loop integrals

What do we want to do?

- Finding and solving linear relations satisfied by integrals having the form of I_{lpha}
- Express integrals within a family as a linear combination of a set of independent master integrals (MIs)

$$I_{\alpha} = \sum_{\beta \in \text{MIs}} c_{\alpha\beta} I_{\beta}$$

Crucial ingredient are Integration-By-Parts identities (IBP):

$$\int d^n \mathbf{z} \, \partial_j \left(\varphi_\alpha(\mathbf{z}) \, u(\mathbf{z}) \right) = 0$$

Regulated integrals vanish at the integration boundary

Parametric annihilators & Differential operators

Integral identities via parametric annihilators

Parametric annihilator of order o of u(z)

[Baikov(1996), Lee(2014), Bitoun, Bogner, Klausen, Panzer (2017)]

$$\hat{A} = c_0(\mathbf{z}) + \sum_{j} c_j(\mathbf{z}) \,\partial_j + \sum_{j_1 \le j_2} c_{j_1 j_2}(\mathbf{z}) \,\partial_{j_1} \partial_{j_2}$$

$$+ \dots + \sum_{j} c_{j_1 \dots j_o}(\mathbf{z}) \,\partial_{j_1} \dots \partial_{j_o}$$

 $c_{j_1j_2}$... polynomials in ${f z}$

Such that

 $j_1 < \cdots < j_o$

$$\hat{A}u(\mathbf{z}) = 0$$

For any annihilator \hat{A} , we have infinitely many integral identities

$$\int d^n \mathbf{z} \, \varphi_{\alpha}(\mathbf{z}) \, \hat{A} \, u(\mathbf{z}) = 0, \ \forall \alpha$$

symbolic α

Using IBPs on derivatives, we get a template identity for symbolic α

$$\int u(\varphi_{\alpha}c_0) - \sum_{j} \int u(\partial_j c_j \varphi_{\alpha}) + \dots + (-1)^o \sum_{j_1 \leq \dots \leq j_o} \int u \,\partial_{j_1} \dots \partial_{j_o}(c_{j_1 \dots j_o} \varphi_{\alpha}) = 0$$

All the integrals belong to the family I_{lpha}

Laporta algorithm

[Chetyrkin, Tkachov (1981), Laporta (2000)]

$$\int u(\varphi_{\alpha}c_0) - \sum_{j} \int u(\partial_j c_j \varphi_{\alpha}) + \dots + (-1)^o \sum_{j_1 \leq \dots \leq j_o} \int u \,\partial_{j_1} \dots \partial_{j_o} (c_{j_1 \dots j_o} \varphi_{\alpha}) = 0$$

Seeding the template eq.s : replacing symbolic α with integer numbers

- ► Applying each template identity to a large number of seed integrals: obtain a linear system of equations
- ► Choice of an **ordering:** express **complex** integrals as a function of **simple** ones
- ► solving it: reduction to master integrals

$$I_{\alpha} = \sum_{\beta \in \text{MIs}} c_{\alpha\beta} I_{\beta}$$

Differential equations

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

- Integrals in the form of I_{α} also depend on additional free parameters x (e.g. kinematic invariants)
- Studying of analytic structure & their numerical or analytical evaluation
- Reducing the derivative of MIs with respect to x to MIs, write a system of differential equations satisfied by the MIs themselves

$$\partial_x I_\alpha = \sum_{\beta \in \text{MIs}} M_{\alpha\beta} I_\beta, \quad \text{for } \alpha \in \text{MIs}.$$

x free parameter of the integrals

Differential equations via differential operators

• Derive an operator \hat{O}_x that realizes differentiation with respect to x

$$\hat{O}_x = c_0^{(x)}(\mathbf{z}) + \sum_j c_j^{(x)}(\mathbf{z}) \,\partial_j + \sum_{j_1 \le j_2} c_{j_1 j_2}^{(x)}(\mathbf{z}) \,\partial_{j_1} \partial_{j_2}$$

$$+ \dots + \sum_{j_1 < \dots < j_o} c_{j_1 \dots j_o}^{(x)}(\mathbf{z}) \,\partial_{j_1} \dots \partial_{j_o}$$

 $c_{i_1 i_2 \dots}^{(x)}$ polynomials

Such that
$$\hat{O}_x u(\mathbf{z}) = \partial_x u(\mathbf{z})$$

How to compute parametric annihilators

Computing annihilators via linear constraints

- Computing parametric annihilators up to a certain order and polynomial degree
- implemented in the CALICO package

$$\hat{A} = c_0(\mathbf{z}) + \sum_{\alpha} c_j(\mathbf{z}) \partial_j + \dots$$

$$c_{j_1 j_2 \dots}(\mathbf{z}) = \sum_{\alpha} c_{\alpha; j_1 j_2 \dots} \mathbf{z}^{\alpha}$$

[Peraro (2019)]

Applications

Hypergeometric $_2F_1$

$$I_{\alpha} = \int_{0}^{1} dz \, \varphi_{\alpha}(z) \, u(z)$$

$$\varphi_{\alpha}(z) = z^{\alpha}, \qquad u(z) = z^{b_{2}-1} \, (1-z)^{b_{3}-b_{2}-1} \, (1-xz)^{-b_{1}}$$

Related to the hypergeometric ${}_2\!F_1$

$$I_{\alpha} = \frac{\Gamma(b_2 + \alpha)\Gamma(b_3 - b_2)}{\Gamma(b_3 + \alpha)} {}_{2}F_{1}(b_1, b_2 + \alpha, b_3 + \alpha; x)$$

1. 1 first-order annihilator \rightarrow reduction to 2 MIs

$$\{I_0, I_1\}$$

2. First-order differential operator

$$\partial_x \begin{pmatrix} I_1 \\ I_0 \end{pmatrix} = \begin{pmatrix} \frac{b_1 x - b_3}{(1 - x) x} & \frac{b_2}{(1 - x) x} \\ \frac{b_1 - b_3}{1 - x} & \frac{b_2}{1 - x} \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ I_0 \end{pmatrix}$$

Generalised to Hypergeometric $_{n+1}F_n$

Loop integrals

Momentum-space representation

$$J_{\alpha} = J_{\alpha_{1} \dots \alpha_{n}} = \int \prod_{i=1}^{\ell} \frac{\mathrm{d}^{d} k_{i}}{i \pi^{d/2}} \frac{1}{D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}}$$

 $D_i s$ are generalised denominators

- Proper denominators: D_i such that $\alpha_i > 0$
- Irreducible scalar products (ISPs): D_i such that $\alpha_i \leq 0$

$$D_{F,j} = l_j \cdot v_j - m_j^2$$

$$D_{F,j} = l_j^2 - m_j^2$$

$$D_{F,j} = l_j^2 - m_j^2$$

 l_i linear combination of k_i , v_i linear combination of p_i

IBPs in momentum space

[Tkachov (1981), Chetyrkin, Tkachov (1981)]

$$\int \prod_{i=1}^{\ell} \frac{\mathrm{d}^d k_i}{i\pi^{d/2}} \frac{\partial}{\partial k_j^{\mu}} \frac{v^{\mu}}{D_1^{\alpha_1} \dots D_n^{\alpha_n}} = 0, \quad \text{with } v^{\mu} = k_i^{\mu}, p_i^{\mu}$$

Parametric representations of loop integrals

Baikov

$$I_{\alpha} = \int \mathrm{d}^n \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} \, B(\mathbf{z})^{\gamma}$$

Also Loop-by-Loop Baikov & Duals of loop integrals

Lee-Pomeransky

$$I_{\alpha} = \int d^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})} \right) \mathbf{z}^{\alpha-1} G(\mathbf{z})^{-d/2}$$

$$G(\mathbf{z}) = \mathcal{U}(\mathbf{z}) + \mathcal{F}(\mathbf{z})$$

Schwinger
$$I_{\alpha} = \int \mathrm{d}^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})}\right) \mathbf{z}^{\alpha-1} \exp\left[-\mathcal{F}(\mathbf{z})/\mathcal{U}(\mathbf{z})\right] \mathcal{U}(\mathbf{z})^{-d/2}$$

L loop bananas

 ℓ -loop & one internal mass m, defined by the set of $\ell+1$ proper denominators:

$$D_{j} = k_{j}^{2} - m^{2} \quad \text{for } j = 1, ..., \ell$$

$$D_{\ell+1} = (k_{1} + \cdots + k_{\ell} - p)^{2} - m^{2}$$

Momentum space has $(\ell + 2)(\ell - 1)/2$ ISPs \rightarrow for $\ell = 6$, it has 20 ISPs

Use Lee-Pomeranski or Schwinger representation to

- Reduce to MIs
- Derive DEQs

Without the need of additional ISPs!

Done in a couple of minutes on a laptop up to 6 loops (mostly spent computing annihilators and template eqs)

Family for $t\bar{t}H$ production

Cutting-edge example

- Many different scales
- Many external legs

- Schwinger
- Lee-Pomeranski

Tested: numerical reduction on a laptop with up to 3 extra powers of denominators

Finding relations between integrals with constant numerator and higher powers of proper denominators

Useful for finding integrals with good properties

- Quasi-finite [von Manteuffel, Panzer, Schabinger (2014)]
- Pure functional form [Henn (2013)]

Conclusions & Outlook

- Parametric annihilators are a useful tool for finding linear relations between integrals
- Allow to use integral parametrizations tailored to specific problems
- Still WIP: study of more cutting-edge integral families
- Implementation will be released in the public package CALICO
- * Bonus: can also solve syzygy equations and polynomial decomposition problems

Thank you for your attention!

... more drawings @qftoons :)