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Active Matter
• Active Matter: single components transform energy from internal reservoirs or 

from the surrounding environment to self propel
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• Theoretical interest

• Experimental and technological interest

‣ emergence of new features with no counterpart in passive systems

‣ strong connection with biological systems

‣ new paradigm of out-of-equilibrium systems
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Brownian and Active particles models 
··xi(t) = −

dU(x(t))
dxi(t)

+ fi(t) − γ ·xi(t) + 2D ξi(t)

• Langevin equations

Passive 
Brownian 

Particle
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Brownian 
Particle

• Passive vs Active motion
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Large Deviations Theory

p(𝒲τ = w) ≍ e−τI(w)

I(w)

𝒲τ =
1
τ ∫

τ

0
G(x(s), ·x(s), a(s)) ∘ dx(s)• Dynamical observables

• Large Deviations Theory

‣ integrated observables measured along particle trajectories


‣  generic function of positions velocity and active force


‣  essential to make  intensive in time
G
1/τ 𝒲τ

Rate Function (RF) ‣ extension of thermodynamic potentials 
to out of equilibrium configurations

Scaled Cumulant 
Generating Function
(SCGF)

ϕ(λ) = lim
τ→∞

1
τ

ln(⟨eλ𝒲τ⟩)

I(w) = sup
λ∈O

{λw − ϕ(λ)} ‣ RF and SCGF often related through 
Legendre-Fenchel transform

‣ asymptotic equivalence

Phys Rep 2009, Touchette

Dembo and Zeitouni 1988, Springer

7

dx(s) → ·x(s) ds

‣ function whose derivatives generate th 
distribution moments



Dynamical Phase Transitions
• Rate Functions can be singular

PRL 2017, Cagnetta et al

Wτ =
1
τ ∫

τ

0
a(t)v(t) dt

• Active Work in a system of interacting active particles

‣ In singular trajectories 
particles dragged 
against their


   active force

‣ Dynamical Phase Transitions 

    change in the physical mechanism producing fluctuations  
‣ Trajectory Separation  
    trajectories in different regions of the RF behave dynamically different
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Entropy 2019, Corberi et al

• Many examples in the in Brownian and active motion
J Stat Phys 2022, Farago PRL 2003, van Zon et al

PRE 2018, Nyawo et al J Stat Mech 2019, Gradenigo et al

J Stat Mech 2006, Visco

PRE 2013, Pal et al



Analytical study of fluctuations of Active Work

• Setting                                                          
single particle with external potential experimental realisations

confining potentials mimic the trapping 
of other particles at finite density

analytical results feasible

• Scope 

• Approach 

analytical evaluation of the Rate Function through Large Deviations techniques

• Interest 

Soft Matter 2017, 

Nandi et al

PRL 2002,

Wang et al

‣ Theoretical

• energy cost to sustain self propulsion

‣ Practical

• thermodynamic efficiency of Active Engines

PRX 2019, Pietzonka et al

EPL 2021, Fodor et al

• Active Ornstein-Uhlenbeck Particle  (AOUP) 
free or with external harmonic potential

·x(t) = Faγ−1a(t) − kx(t) + 2T/γ ξ(t)
·a(t) = − γRa(t) + 2DR η(t)

‣ investigation of distribution singularities 
and Dynamical Phase Transitions
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Free AOUP
• Free AOUP        

in  dimensionsd
·x(t) = Faγ−1a(t) + 2T/γ ξ(t)
·a(t) = − γRa(t) + 2DR η(t)

• Active work 𝒲a =
1
τ ∫

τ

0
a(t) ·r(t) dt

J Stat Mech 2021, 

Semeraro, Suma, Petrelli, Cagnetta and Gonnella

< a(t)a(t′ ) > ≃ (e−γR(t−t′ ) − e−γR(t+t′ ))

• Probability distribution  
evaluated through path integral techniques

p(w) = ⟨(δ(𝒲a − w)⟩)

• no singularities

    in I(w)

• Fluctuation Theorem

    I(w) − I(−w) = − w/T
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𝒫τ(x(τ), a(τ)) ∝ p(r0, a0) ×

× exp {−
1

4DT ∫
τ

0
[ ·r(s) − Faγ−1a(s)]2 ds} exp {−

1
4DR ∫

τ

0
[ ·a(s) + γRa(s)]2 ds}

Onsager-Machlup weight for trajectories

initial conditions distribution
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Harmonically confined AOUP
• Harmonically-confined 

AOUP in 1 d
γ ·x(t) = a(t) − kx(t) + 2γT ξ(t)
·a(t) = − νa(t) + F 2ν η(t)

‣ Trajectory path probability


‣ Laplace representation of the  function


‣ Cumulant Generating Function


‣ Saddle-point estimation of the RF

δ

• Direct evaluation of through path integral 
techniques becomes difficult

p(w)

𝒫τ ∝ {−
1
2

(x(0) a(0))Σ−1
0 (x(0)

a(0))}exp {−
1
4 ∫

τ

0
[ ·x(s) − a(s) + κx(s)]2 ds}exp {−

1
4Pe2 ∫

τ

0
[ ·a(s) + a(s)]2 ds}

Onsager-Machlup weight for trajectoriesinitial conditions distribution

p(w) =
1

2πı ∫
+ı∞

−ı∞
e−τλw ⟨eλ𝒲a⟩
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δ

• Direct evaluation of through path integral 
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p(w)

‣ Time-discretization procedure


‣ Evaluation of the SCGF functional form


‣ Evaluation of the SCGF domain


‣ Continuum limit


‣ Evaluation of the RF through Legendre-Fenchel transform

• New Large Deviations results  
for quadratic functionals of 
Gauss-Markov chains

J Math Phys 2023, 

Zamparo and Semeraro
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LDT for quadratic functionals of Gauss-Markov chains J Math Phys 2023, 

Zamparo and 

Semeraro

ϕ(λ) = lim
ϵ→0

φ(λ)
ϵ

Xn+1 = SXn + Gn

WN =
1
2

< X0, LX0 > +
1
2

< XN, RXN > +
1
2

N

∑
n=1

< Xn, UXn > +
1
2

N

∑
n=2

< Xn, VXn−1 > quadratic functional𝒲a ⋅ τ →

Langevin Equations  Markov chain→

boundary terms bulk contributions

Primary domain 

 is positive definite for all 

P = (λ̃−, λ̃+)
Fλ(θ) θ ∈ (0,2π)

Effective domain  

the matrices  and  related to the initial conditions ( ) 
and boundary terms  are positive definite

E = (λ−, λ+) ⊆ P
ℒλ ℛλ Σ0

(L, R)

I(w) = sup
λ∈E

{wλ − ϕ(λ)}
‣ Evaluation of the RF through Legendre-Fenchel transform

‣ Time-discretization procedure

‣ Evaluation of the SCGF domain

‣ Continuum limit

φ(λ) = lim
N→∞

1
N

log < eλWN > = −
1

4π ∫
2π

0
ln det Fλ(θ) dθ Fλ(θ) = (I − STeıθ)(I − STe−ıθ) − λ(U + Ve−ıθ + VTeıθ)

Symbol matrix
‣ Evaluation of the SCGF functional form

two technical requests on positive definiteness
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Singular Rate Function
small Pe, κ

PRL 2023, 

Semeraro, Gonnella, 
Suma and Zamparo

singularities

large Pe, κ
• SCGF ϕ(λ) =

1 + κ
2

−
1
2

(1 + κ)2 − 4Pe2λ(1 + λ)

λ̃± = −
1
2

± 1 + ( 1 + κ
Pe )

2
Pe =

Fd
kBT κ =

kd2

kBT

• Primary domain P = (λ̃−, λ̃+)

• E = (λ−, λ+) ≠ (λ̃−, λ̃+) = P Singularities !

• Rate function

I(w) =
(w − w−)λ− + i(w) w ≤ w−
i(w) w− < w < w+

(w − w+)λ+ − i(w) w ≥ w+

i(w) =
1
2

1 + ( w
Pe )

2

+ (1 + κ)2 + Pe2 − 1 − κ − w

• Fluctuation Relation not always satisfied
13

intermediate Pe, κ

singularities



Linear Tails and Trajectory Separation

• Singularities phase diagram • Physical Mechanism:                                                         
singular trajectories are characterised and selected by     
big jumps in the initial ( ) or final ( ) valuesw ≪ w− w ≫ w+

no 
linear 
tails

left 
linear 
tail

left 
and 

right  
linear 

tails

PRL 2023, Semeraro, Gonnella, Suma and Zamparo
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• Underdamped Brownian particle 
with external harmonic potential {

·x = v(t)
·v(t) = − γv(t) − kx(t) + 2D ξ(t)

• Power injected by the random force Wτ =
2D
τ ∫

τ

0
ξ(t) ·x(t)dt =

1
2τ

[v2(τ) − v2(0)] +
k
2τ

[x2(τ) − x2(0)] +
γ
τ ∫

τ

0
v(t) ·x(t) dt

J Phys A, 

Carollo, Semeraro, 

Gonnella and ZamparoFluctuations of Injected power

• Singular Rate Functions • Singular trajectories are 
associate to big jumps                 
in the initial conditions

(a) (b) (c)

(d) (e) (f)

singularities

‣ Fixed initial conditions 
x(0) = 0, v(0) = 0

‣ Stationary initial conditions 
σ2

x = D/(kγ), σ2
v = D/γ

‣ Generic uncorrelated initial conditions 
σ2

x = 10, σ2
v = 10

~w
~w ~w

singularity

15

(a) (b) (c)

(d)



Take-home 
messages

• Fluctuations of Active Work 

     for a single harmonically confined AOUP

• Analysis with new Large Deviation Results 

for quadratic functionals of Gauss-Markov chains

• Singular Rate Functions are analytically obtained

• Initial or final big jumps are responsible 

     for the appearance of singularities

• Big jumps behind singular rate functions and 
dynamical phase transitions in Brownian systems
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Dynamical Phase Transitions: examples

PRL 2017, Cagnetta, Corberi, Gonnella and Suma

𝒲a =
1
τ ∫

τ

0
a(s)v(s) ds

• System of many interacting ABPs

• Driven Brownian particle

‣ Singular trajectories:                                                        
particles rapidly escaping from                                
give rise to the RF left linear branch

[a, b]

·x(t) = μ ⋅ t + 2D ξ(t)

ρ =
1
τ ∫

τ

0
1[a,b](x(t)) dt

‣ Singular trajectories:     

‣        particles dragged against their active force 


‣        generate  values in the linear tails𝒲a

EPL 2017, Nyawo and Touchette

a b

‣ Empirical measure:


‣        fraction of time spent by the particle in the interval [a, b]

‣ Active Work

PRE 2021, Keta, Fodor, van Wijland and Cates
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Free AOUP: saddle point J Stat Mech 2021, 

Semeraro, Suma, Petrelli, 

Cagnetta and Gonnella

⟨eμ𝒲a⟩ =
eτ d

2 (γR−α)

( 1 + e−2τα

2 )
d/2 (2 +

γ2
R + α2

γRα tanh(τα))
d/2 = F(μ)eτ d

2 (γR−α)• Cumulant Generating Function α = γ2
R − 4DRμγ(1 + DTγμ)

Introduction to Path-Integral Methods in Physics and Polymer Science, 
Wiegel 1986, Work Scientific

 0

 1

 2

 3

 4

 5

-100 -50  0  50  100

Im
(λ

)

Re(λ)

λ1
λ2

τ=1
τ=10
τ=20
τ=50

τ=100

Im
(λ

)

Re(λ)

‣ Saddle-points

p(w) ≍
F(μ̃(s))

2π ( 2π
𝒞 )

1/2

e−τI(w)

A =
γ2

RDT

4DR
μ̃1/2 =

γ2
R

4DRγ (−
1 ± 1 + 4A

2A )• Sources of singularities ‣ Branch points

‣ Poles of F(μ) μ̃1/2(y) =
γ2

R

4DRγ
−

1 ± 1 + 4A(1 + y2)

2A

‣ Steepest descent paths

w > 0 w < 0

μw − ϕ(μ) = 0 → μ̃(s)
± =

γ2
R

4DRγ
−

1 ± 1 + 4A ( 4w̃2 − 1
4(A + w̃)2 )

2A

Im[μw − ϕ(μ)] = 0

• Saddle-point estimation of p(w) =
1

2πı ∫
+ı∞

−ı∞
dμ F(μ)eτ d

2 (γR−α)

‣ Integration along steepest dissent paths 
deformed to pass by                            
and avoid non-analicities of the integrand

μ̃(s)
± Extraction of the Rate Function I(w)

22



LDT for quadratic functionals of Gauss-Markov chains
‣ Continuous model ( )γ, T, d = 1

·x(t) = a(t) − κx(t) + 2 ξ(t)
·a(t) = − a(t) + Pe 2 η(t)

𝒲a ⋅ τ = ∫
τ

0
a(t) ·r(t) dt

‣ Discrete model as a Gauss-Markov chain        
 sequence of normal rvτ = N ⋅ dt, xn, ax ≡ x(n ⋅ dt), a(n ⋅ dt), {ξn}, {ηn}

rn+1 = (1 − κdt) rn + an dt + 2dt ξn

an+1 = (1 − dt) an + Pe 2dt ηn

Xn+1 = SXn + Dζn

S = (1 − κdt dt
0 1 − dt)

Xn = (xn, an)T

D =
2dtdt dt

0 Pe 2dt
ζn = (ξn 0

0 ηn)

ΣN =

Σ−1
0 + S⊤D−2S −S⊤D−2

−D−2S D−2 + S⊤D−2S ⋱
⋱ ⋱ ⋱

⋱ D−2 + S⊤D−2S −S⊤D−2

−D−2S D−2

−1

{(x0, a0), …, (aN, xN)}
‣ Entire trajectory is Gaussian distributed with                

zero mean and covariance matrix 

Σ0 =
1 + κ + Pe2

κ(1 + κ)
Pe2

1 + κ

Pe2

1 + κ Pe2
Σ0 = (σ2

x 0
0 σ2

a)

‣ Discretisation of Active Work as a quadratic functional

WN =
1
2

N

∑
n=1

(an + an−1)(rn − rn−1) =
1
2

(r0 a0 … rN aN) 𝖬N

r0
a0
⋮
rN
aN

𝖬N ≡

−E+ E⊤
−

E− 0 ⋱
⋱ ⋱ ⋱

⋱ 0 E⊤
−

E− E+

E± ≡
1
2 ( 0 1

±1 0)quasi-Toeplitz block matrix

initial conditions 
covariance matrix
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φ(λ) = lim
N→∞

1
N

log < eλWN > = −
1

4π ∫
2π

0
ln det Fλ(θ) dθ

LDT for quadratic functionals of Gauss-Markov chains

‣ Positive definiteness

Σ−1
N − λMN =

L V⊤

V U ⋱
⋱ ⋱ ⋱

⋱ U V⊤

V R

- bulk block Toeplitx matrix  is positive definite𝖳N

log < eλWN > = −
1
2

ln det(Σ−1
N − λMN) − N ln(2 dt Pe) −

1
2

ln det Σ0

Gaussian integral

‣ Evaluation of the SCGF (generalization of Szegö theorem) Symbol matrix

Fλ(θ) ≡ Ve−iθ + U + V⊤eiθ

−(D−2S + λE−)e−iθ + D−2 + S⊤D−2S − (D−2S + λE−)⊤eiθ

L = Σ−1
0 + S⊤D−2S + λE+

U = D−2 + S⊤D−2S

R = D−2 − λE+

V = − D−2S − λE−

𝖳N

bulk block Toeplitz

symbol matrix             
positive definite for all 

Fλ(θ)
(0,2π)

Primary domain P = (λ̃−, λ̃+)

- Schur complement 𝖲N ≡ (
L − V⊤(𝖳−1

N )11V −V⊤(𝖳−1
N )1NV⊤

−V(𝖳−1
N )N1V R − V(𝖳−1

N )NNV⊤) positive definite(ℒλ 0
0 ℛλ)N → ∞

ℒλ ≡ Σ−1
0 + S⊤D−2S + λE+ − (D−2S + λE−)⊤Φλ(0)H−1

λ (D−2S + λE−)

ℛλ ≡ D−2 − λE+ − (D−2S + λE−)K−1
λ Φλ(0)(D−2S + λE−)⊤

positive 
definiteness of

Effective domain E = (λ−, λ+)

Hλ ≡ I + (D−2S + λE−)Φλ(1) Kλ ≡ I + Φλ(1)(D−2S + λE−)Φλ(n) ≡
1

2π ∫
2π

0
F−1

λ (θ)e−inθdθ
invertible

Hermitian
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Harmonically confined AOUP: condensation
• Trajectories corresponding to  values in the linear tails are 

characterized by big jumps in the initial or final conditions
𝒲a Condensation mechanism

• At stationarity • Fixed initial conditions
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Entropy Production at stationarity
• Entropy Production  is closely related to the Active Work 𝒮 𝒲a

𝒮 ≡ ln
Pτ(r(t), a(t))

Pτ(r(τ − t), a(τ − t))
= 𝒲a +

1
2 (r(τ) v(τ)) Ω (r(τ)

v(τ)) − (r(0) v(0)) Ω (r(0)
v(0)) Ω = Σ−1

0 − (κ 0
0 Pe−2)

• SCGF with P = (λ−, λ+) = E ϕ(λ) =
1 + κ

2
−

1
2

(1 + κ)2 − 4Pe2λ(1 + λ) λ̃± = λ± = −
1
2

± 1 + ( 1 + κ
Pe )

2

• Rate function. No linear tails. I(w) = i(w) =
1
2

1 + ( w
Pe )

2

+ (1 + κ)2 + Pe2 − 1 − κ − w

• No singularities and Dynamical Phase Transitions !

• Fluctuation Relation satisfied !

PRL 2023, 

Semeraro, Gonnella, 
Suma and Zamparo
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Fluctuations of Injected power J Phys A, 

Carollo, Semeraro, 

Gonnella and Zamparo

• Trajectories corresponding to  values in the linear tails are characterized 
by big jumps in the initial conditions with similar patterns

𝒲τ

• Positive- and negative-tail trajectories are discerned by looking the the white noise realisations

(a) (b) (c)

(d)
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