Cortona, 22 maggio 2025

Stefano Scacco^{*a,b*}

On the Atomki nuclear anomaly after the MEG-II result

Based on: Barducci, Germani, Nardecchia, Scacco, Toni, J. High Energ. Phys. 2025, 35 (2025)

a) INFN Sezione di Roma 1
b) Università degli Studi di Roma, Piazzale Aldo Moro 5, 00185 Roma

Summary

•Context

- •Atomki experiment
- Motivation
- Phenomenology spin 0 and spin 1

•Spin 2 model

•MEG-II experiment

 $\bullet {\rm Spin \ parity} \ 0^+$

Latest developments

Discovery of X17 anomaly

Atomki experiment (Hungary)

[1] A.J. Krasznahorkay et al. *Phys. Rev. Lett.* 116, 042501
[2] A.J. Krasznahorkay et al. arXiv:1910.10459
[3] A.J. Krasznahorkay et al. arXiv:2209.10795
[4] J. Gulyś et al. arXiv:1504.00489

Different nuclei tested ⁸Be [1], ⁴He [2], ¹²C [3] \rightarrow resonant peak at 17 MeV

Decay: $X \to e^+e^-$

Atomki signal observables

[1] Denton, Gehrlein, Phys. Rev. D 108 (2023)
 [2] Zhang, Miller, Phys. Lett. B 773 (2017) 159–165

Mass [1] $m_X = (16.85 \pm 0.04) \,\mathrm{MeV}$

 $\frac{\Gamma(^{8}\text{Be}(18.15) \to ^{8}\text{Be} + X)}{\Gamma(^{8}\text{Be}(18.15) \to ^{8}\text{Be} + \gamma)} \text{ BR}(X \to e^{+}e^{-}) = (6 \pm 1) \times 10^{-6}.$

$$\frac{\Gamma(^{4}\text{He}(20.21) \to ^{4}\text{He} + X)}{\Gamma(^{4}\text{He}(20.21) \to ^{4}\text{He} + e^{+}e^{-})} \text{ BR}(X \to e^{+}e^{-}) = 0.20 \pm 0.03 \qquad S^{\pi} = 0^{+}, 1^{-}, 2^{+}, \dots$$

Helium (R_{He})

Beryllium (R_{Be})

$$\frac{\Gamma(^{4}\text{He}(21.01) \to ^{4}\text{He} + X)}{\Gamma(^{4}\text{He}(20.21) \to ^{4}\text{He} + e^{+}e^{-})} \text{ BR}(X \to e^{+}e^{-}) = 0.87 \pm 0.14 \qquad S^{\pi} = 0^{-}, 1^{+}, 2^{-}, \dots$$

Carbon ($R_{\rm C}$)

$$\frac{\Gamma(^{12}C(17.23) \to ^{12}C + X)}{\Gamma(^{12}C(17.23) \to ^{12}C + \gamma)} BR(X \to e^+e^-) = 3.6(3) \times 10^{-6}$$

Physics Beyond Standard Model is required [2]

Summary

Context

Atomki experiment

•Motivation

•Phenomenology spin 0 and spin 1

•Spin 2 model

•MEG-II experiment

• Spin parity 0^+

Latest developments

Philosophy

[1] Feng et al, Phys. Rev. Lett. 117 (2016)
[2] Feng et al, Phys. Rev. Lett. D 95 (2017)
[3] Alves, Phys. Rev. D 103 (2021)
[4] Wong, arXiv:2201.09764
[5] Barducci, Toni, JHEP 02 (2023) 154
[6] Mommers, Vanderhaeghen, Phys. Lett. B 858 (2024)

What is its nature?

If X17 is a new particle

UV Models [1 - 4]

Why haven't we seen it before?

Phenomenology [5, 6]

Philosophy

[1] Feng et al, Phys. Rev. Lett. 117 (2016)
[2] Feng et al, Phys. Rev. Lett. D 95 (2017)
[3] Alves, Phys. Rev. D 103 (2021)
[4] Wong, arXiv:2201.09764
[5] Barducci, Toni, JHEP 02 (2023) 154
[6] Mommers, Vanderhaeghen, Phys. Lett. B 858 (2024)

What is its nature?

If X17 is a new particle

UV Models [1 - 4]

Why haven't we seen it before?

Phenomenology [5, 6]

Summary

Context

- Atomki experiment
- Motivation
- Phenomenology spin 0 and spin 1
- •Spin 2 model

•MEG-II experiment

•Spin parity 0^+

Latest developments

Methodology

- 1) Choose X17 spin and parity.
- 2) Verify symmetries and conservations.
- 3) Write down most general Lagrangian.
- 4) Identify relevant couplings
- 5) Calculate Atomki observables.
- 6) Identify other relevant bounds.
- 7) Produce exclusion plots.

Spin 0

Spin 0 excluded by angular momentum conservation [1]

Process	X boson spin parity			
$N^* \to N$	$S^{\pi} = 1^{-}$	$S^{\pi} = 1^+$	$S^{\pi} = 0^{-}$	$S^{\pi} = 0^+$
⁸ Be(18.15) \rightarrow ⁸ Be	1	0,2	1	/ 🔶
$^{8}\mathrm{Be}(17.64) \rightarrow ^{8}\mathrm{Be}$	1	0,2	1	/ 🔶
$^{4}\text{He}(21.01) \rightarrow {}^{4}\text{He} \parallel$	/	1	0	/
$^{4}\text{He}(20.21) \rightarrow {}^{4}\text{He}$	1	/	/	0
$^{12}C(17.23) \rightarrow ^{12}C$	0, 2	1	/-	1

Angular momentum of X in every nuclear transition, in different spin parity models.

Spin 1

[1] Barducci, Toni, JHEP 02 (2023) 154
[2] Mommers, Vanderhaeghen, Phys. Lett. B 858 (2024)

 $S^{\pi} = 1^{-}$

 $S^{\pi} = 1^{+}$

At least 2σ tension

Cortona, 22 maggio 2025

Summary

Context

- Atomki experiment
- Motivation
- •Phenomenology spin 0 and spin 1

•Spin 2 model +----

•MEG-II experiment

•Spin parity 0^+

Latest developments

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

Spin 2: amplitudes

[1] Panico, Vecchi, Wulzer, JHEP 06 (2016) 184

Contact off shell terms complicate Lagrangian

Following [1], most general real production amplitudes

$$\begin{split} \mathcal{A}(f \to f'X) &= \overline{u}(p', \sigma') \left\{ C_f \left[\gamma_\mu \left(\frac{p'+p}{4} \right)_\nu + \gamma_\nu \left(\frac{p'+p}{4} \right)_\mu \right] \right. \\ &+ \tilde{C}_f \left[\gamma_\mu \gamma_5 \left(\frac{p'+p}{4} \right)_\nu + \gamma_\nu \gamma_5 \left(\frac{p'+p}{4} \right)_\mu \right] \\ &+ D_f \left(p'+p \right)_\mu \left(p'+p \right)_\nu \\ &+ \tilde{D}_f \left(p'+p \right)_\mu \left(p'+p \right)_\nu i\gamma_5 \right\} u(p, \sigma) \left[\epsilon_a^{\mu\nu} (p-p') \right]^* \end{split}$$

Spin 2: free parameters

Spin 2 theories are EFTs

 $C_f \sim \tilde{C}_f \sim \mathcal{O}(M_{\text{BSM}}^{-1})$ and $D_f \sim \tilde{D}_f \sim \mathcal{O}(M_{\text{BSM}}^{-2})$.

At dimension 5, couplings are C_p , C_n , C_e for 2^+ , e \tilde{C}_p , \tilde{C}_n , \tilde{C}_e for 2^- . No neutrino couplings.

Conservatively, $\Lambda_c = 4\pi m_{\!X} \approx 200~{\rm MeV}$

Spin 2: Atomki signal observables

Final results

$$\begin{split} R_{\rm Be} &= \frac{km_X^2}{18\pi} \left| \sqrt{\frac{4\pi}{3}} [(-\alpha_1 + \beta_1 \xi) M \mathbf{1}_{I=1}^{\gamma} \left(C_p - C_n \right) + \beta_1 M \mathbf{1}_{I=0}^{\gamma} \left(C_p + C_n \right)] \\ &\quad - \frac{1}{2} \left(5C_p - 4C_n \right) \langle^8 \text{Be} || \hat{\sigma}^{(p)} ||^8 \text{Be}(18.15) \rangle \\ &\quad + \frac{1}{2} \left(4C_p - 5C_n \right) \langle^8 \text{Be} || \hat{\sigma}^{(n)} ||^8 \text{Be}(18.15) \rangle \left|^2 \frac{\text{BR}(X \to e^+e^-)}{\Gamma(^8 \text{Be}(18.15) \to ^8 \text{Be} + \gamma)} \right. , \\ R_{\rm He} &= \frac{m_N^2}{\alpha^2} \frac{5}{4} \frac{km_X^4}{\omega^5} \left(C_p + C_n \right)^2 \left| 1 - \left(3 - 2\frac{k^2}{m_X^2} \right) r_{\rm He} \right|^2 \text{BR}(X \to e^+e^-) , \\ R_{\rm C} &= \frac{m_N^2}{12\pi\alpha} \frac{m_X^4}{k\omega^3} \left[1 + 6r_{\rm C}^2 \right] \left(C_p - C_n \right)^2 \text{BR}(X \to e^+e^-) , \end{split}$$

$$S^{\pi} = 2^+$$

$$\begin{split} R_{\rm Be} &= \frac{m_N^2 k^3}{18\pi m_X^2} \left| \tilde{C}_p \left< {}^8{\rm Be} || \hat{\sigma}^{(p)} || {}^8{\rm Be}(18.15) \right> + \tilde{C}_n \left< {}^8{\rm Be} || \hat{\sigma}^{(n)} || {}^8{\rm Be}(18.15) \right> \right|^2 \\ &\times \left(1 + \frac{2}{3} \frac{\omega^2}{m_X^2} \right) \frac{{\rm BR}(X \to e^+ e^-)}{\Gamma({}^8{\rm Be}(18.15) \to {}^8{\rm Be} + \gamma)} , \\ R_{\rm C} &= \frac{m_N^2}{32\pi\alpha} \frac{k^5}{m_X^2 \omega^3} \left(\tilde{C}_p - \tilde{C}_n \right)^2 |\tilde{r}_{\rm C}|^2 , \\ R_{\rm He} &= \frac{80m_N^2}{\alpha^2} \frac{\sigma_- \Gamma_+}{\sigma_+ \Gamma_-} \left(\frac{k}{\omega} \right)^5 \left(\tilde{C}_p + \tilde{C}_n \right)^2 |\tilde{r}_{\rm He}|^2 {\rm BR}(X \to e^+ e^-) , \end{split}$$

$$S^{\pi} = 2^{-}$$

Estimated parameters that were absent in literature

$$egin{array}{c|c|c|c|c|c|c|c|} \hline r_{
m He} & ilde{r}_{
m He} & r_{
m C} & ilde{r}_{
m C} \ \hline \sim 4.6 & \sim 7.7 & \sim 5.5 & \sim 1 \ \hline \end{array}$$

On the Atomki nuclear anomaly after the MEG-II result Corto

Cortona, 22 maggio 2025

Spin 2: other bounds

SINDRUM Experiment [1, 2]: $\pi^+ \rightarrow e^+ \nu_e(X \rightarrow e^+ e^-)$ BR($\pi^+ \rightarrow e^+ \nu_e X$) × BR($X \rightarrow e^+ e^-$) < 6.0 × 10⁻¹⁰ x π^+ w^+ w^+ π^+ w^+ π^+ w^+ π^+ w^+ w^+ π^+ w^+ $w^ w^ w^-$

Charged pion bremsstrahlung X17 production diagrams.

$$BR(\pi^{+} \to e^{+}\nu_{e}X) = \frac{m_{\pi}^{12} \left(90 \left(\eta_{2}^{2} (C_{p} - C_{n})^{2} + \eta_{3}^{2} (C_{p} + C_{n})^{2}\right) + 3C_{e}^{2} + 10C_{e}\eta_{3} (C_{p} + C_{n})\right)}{2^{8} 3^{3} 5\pi^{2} m_{\mu}^{2} m_{X}^{4} \left(m_{\pi}^{2} - m_{\mu}^{2}\right)^{2}} \qquad S^{\pi} = 2^{+}$$
$$BR(\pi^{+} \to e^{+}\nu_{e}X) = \frac{m_{\pi}^{12} \left(54\eta_{2}^{2} (\tilde{C}_{p} - \tilde{C}_{n})^{2} + 5\tilde{C}_{e}^{2}\right)}{2^{8} 3^{2} 5^{2} \pi^{2} m_{\mu}^{2} m_{X}^{4} \left(m_{\pi}^{2} - m_{\mu}^{2}\right)^{2}} \qquad S^{\pi} = 2^{-}$$

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

Spin 2: exclusion plots

Exclusion plots. Legend: Atomki observables compatible at 1σ (Green), 2σ (Yellow), 3σ (Orange). SINDRUM exclusion region: grey region to the left, outside of ellipse on the right (continuous line for $C_e = 0$, Dashed lines for $C_e = \pm 10^{-4}$).

Spin 2 is excluded

Summary

Context

- Atomki experiment
- Motivation
- •Phenomenology spin 0 and spin 1

•Spin 2 model

•MEG-II experiment ← •Spin parity 0⁺

•Latest developments

On the Atomki nuclear anomaly after the MEG-II result

MEG-II null result

MEG-II Experiment, PSI (Svizzera) [1]

X17 with Beryllium

How to treat an inconclusive result?

Atomki signal is almost compatible with MEG-II

Both scenarios explored

Summary

Context

- Atomki experiment
- Motivation
- •Phenomenology spin 0 and spin 1

•Spin 2 model

•MEG-II experiment

•Spin parity 0^+ \longleftarrow

Latest developments

On the Atomki nuclear anomaly after the MEG-II result

0^+ exclusion plot

Directly at renormalizable level

 $\mathcal{L}_{\rm int}^{d\leq 4} = z_p \overline{p} p X + z_n \overline{n} n X + z_e \overline{e} e X$

<u>Exclusion plots</u>. Legend: Atomki observables compatible at 1σ (Green), 2σ (Yellow), 3σ (Orange). SINDRUM exclusion region in grey.

It works...

Summary

Context

- Atomki experiment
- Motivation
- •Phenomenology spin 0 and spin 1

•Spin 2 model

- •MEG-II experiment •Spin parity 0⁺
- Latest developments

PADME's (unexpected) result

[1] PADME Collab., JHEP 08 (2024) 121

Positron beam against diamond target apparatus [1]:

PADME announced a local 2.5 σ excess at 17 MeV at LDMA (April 2025)

Courtesy of Mauro Raggi

Conclusion

"X17 is dead! Long live X17!"

(Claudio Toni)

Excesses compatible X17 are observed left and right

BUT

No phenomenological model works so far

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

Procedural diagram of a theoretical physicist

Thanks for your attention

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

Backup slides

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

The independent X17 confirmation

[1] Abraamyan et al, Phys. Part. Nucl. 55(4):868-873

JINR Experiment [1] (Russia)

Observed process: $p + N \rightarrow \gamma \gamma + \dots$

 $X \to \gamma \gamma$ Decay:

Landau-Yang theorem

Theorem:

"A massive odd spin boson cannot decay into two photons."

It excludes spin 1

Spin 2?

Feynman rules spin 2

Spin 2 decays

Atomki signal calculation (1)

Nuclear interaction from

$$H_{\rm int}^s = \int d^3 \vec{r} \, \mathcal{H}_{\mu\nu}(\vec{r}) X^{\mu\nu}(\vec{r})$$

Interaction picture

$$\mathcal{T}_{fi}^{s} = \langle N, X | H_{\text{int}}^{s} | N^{\star} \rangle = \langle N | \int d^{3}\vec{r} \left[\epsilon_{a}^{\mu\nu}(\vec{k}) \right]^{*} \mathcal{H}_{\mu\nu}(\vec{r}) e^{-i\vec{k}\cdot\vec{r}} \left| N^{\star} \right\rangle$$

 $\mathscr{H}_{\mu\nu}$ expanded in non-relativistic limit, in powers of $\langle p_N
angle^2/m_N^2 pprox 0.06$

Tensor boson 2^+

Axial tensor boson $2^-\,$

Atomki signal calculation (2)

Given $kr \approx 0.1$ — Long wavelength approximation

$$e^{-i\vec{k}\cdot\vec{r}} \approx 1 - i\vec{k}\cdot\vec{r} - \frac{1}{2}(\vec{k}\cdot\vec{r})^2 + \dots$$

- Selection rules parity and angular momentum.
- Lowest order expansion.

Transition amplitude given as

$$\mathcal{T}_{fi}^{s} = \langle N | \sum_{\mathcal{O}} \sum_{JM} \mathcal{O}_{JM} | N^{\star} \rangle$$

Use Wigner-Eckart theorem

$$\langle J_f M_f | \mathcal{O}_{J,-M} | J_i M_i \rangle = \frac{(-1)^{J_i - M_i}}{\sqrt{2J+1}} C^{J,-M}_{J_f,M_f;J_i,-M_i} \langle J_f | | \mathcal{O}_J | | J_i \rangle$$

Use isospin conservation for Helium and Carbon

$$\sum_{N} m_{N}C_{N} \approx \frac{m_{N}}{2} \left(C_{p} + C_{n}\right) \mathbf{I} + \frac{m_{N}}{2} \left(C_{p} - C_{n}\right) \tau_{z}$$
$$\sum_{N} m_{N}\tilde{C}_{N} \approx \frac{m_{N}}{2} \left(\tilde{C}_{p} + \tilde{C}_{n}\right) \mathbf{I} + \frac{m_{N}}{2} \left(\tilde{C}_{p} - \tilde{C}_{n}\right) \tau_{z}$$

SINDRUM constraint (1)

Calculation method

 χ PT used. At lowest order:

$$U = \exp\left\{\frac{i}{f_{\pi}} \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\pi^- & -\pi^0 \end{pmatrix}\right\} \longrightarrow \mathcal{L}_{\chi \mathrm{PT}} = \frac{f_{\pi}^2}{4} \mathrm{Tr}\left[(D^{\mu}U)^{\dagger} D_{\mu}U\right] + \frac{f_{\pi}^2}{4} \mathrm{Tr}\left[U^{\dagger}\chi + \chi^{\dagger}U\right]$$

Spin 2 as external current $\chi_L^{\mu\nu} \to g_L \chi_L^{\mu\nu} g_L^{\dagger}$ e $\chi_R^{\mu\nu} \to g_R \chi_R^{\mu\nu} g_R^{\dagger}$

$$\begin{split} \mathcal{L}_{\chi\rm PT} &+ \Delta \mathcal{L}_{\chi\rm PT}^{\rm spin-2} \supset (\partial_{\mu}\pi^{+})(\partial^{\mu}\pi^{-}) - m_{\pi}^{2}\pi^{+}\pi^{-} \\ &+ \eta_{3}(C_{u} + C_{d})X^{\mu\nu}(\partial_{\mu}\pi^{+})(\partial_{\nu}\pi^{-}) \\ &+ \frac{gf_{\pi}}{2}\eta_{3}(C_{u} + C_{d})X^{\mu\nu}(V_{ud}W_{\mu}^{+}\partial_{\nu}\pi^{-} + V_{ud}^{*}W_{\mu}^{-}\partial_{\nu}\pi^{+}) \\ &- i\frac{gf_{\pi}}{2}\eta_{2}(C_{u} - C_{d})X^{\mu\nu}(V_{ud}W_{\mu}^{+}\partial_{\nu}\pi^{-} - V_{ud}^{*}W_{\mu}^{-}\partial_{\nu}\pi^{+}) \\ &+ i\frac{gf_{\pi}}{2}\eta_{2}(\tilde{C}_{u} - \tilde{C}_{d})X^{\mu\nu}(V_{ud}W_{\mu}^{+}\partial_{\nu}\pi^{-} - V_{ud}^{*}W_{\mu}^{-}\partial_{\nu}\pi^{+}) \\ &+ \frac{gf_{\pi}}{2}(V_{ud}W_{\mu}^{+}\partial_{\nu}\pi^{-} + V_{ud}^{*}W_{\mu}^{-}\partial_{\nu}\pi^{+}) + \dots , \end{split}$$

SINDRUM constraint (2)

$$BR(\pi^{+} \to e^{+}\nu_{e}X) = \frac{m_{\pi}^{12} \left(10 \left(\eta_{2}^{2} (C_{d} - C_{u})^{2} + \eta_{3}^{2} (C_{u} + C_{d})^{2}\right) + 3C_{e}^{2} - 10C_{e}\eta_{3} (C_{u} + C_{d})\right)}{2^{8} 3^{3} 5\pi^{2} m_{\mu}^{2} m_{X}^{4} \left(m_{\pi}^{2} - m_{\mu}^{2}\right)^{2}}$$

$$Tensor boson 2^{+}$$

$$m_{\pi}^{12} \left(10\eta_{2}^{2} (\tilde{C}_{d} - \tilde{C}_{u})^{2} + 3\tilde{C}_{e}^{2}\right)$$

$$BR(\pi^+ \to e^+ \nu_e X) = \frac{m_\pi^{12} \left(10\eta_2^2 (\hat{C}_d - \hat{C}_u)^2 + 3\hat{C}_e^2 \right)}{2^8 \ 3^3 \ 5\pi^2 m_\mu^2 m_X^4 \left(m_\pi^2 - m_\mu^2 \right)^2}$$

Axial tensor boson 2⁻

On the Atomki nuclear anomaly after the MEG-II result

Cortona, 22 maggio 2025

SINDRUM constraint (3)

From quark to nucleon coupling

Static quark model [13]. Nucleons are 3 states quark $|q_1 \uparrow, q_2 \uparrow, q_3 \downarrow\rangle$. Identical quarks in J = 1.

$$\left|\frac{1}{2},\frac{1}{2}\right\rangle = \sqrt{\frac{2}{3}} \left|1,1;\frac{1}{2},-\frac{1}{2}\right\rangle - \sqrt{\frac{1}{3}} \left|1,0;\frac{1}{2},\frac{1}{2}\right\rangle$$

Tensor boson 2⁺

$$\mathcal{E} \approx m_s C_s \mathbf{1}$$
 Non-relativistically
 $C_p = \frac{1}{m_N} \langle p | \mathcal{E} | p \rangle = \frac{2}{3} \frac{2m_u^{\text{eff}} C_u + m_d^{\text{eff}} C_d}{m_N} + \frac{1}{3} \frac{2m_u^{\text{eff}} C_u + m_d^{\text{eff}} C_d}{m_N} = \frac{2}{3} C_u + \frac{1}{3} C_d$
 $C_n = \frac{1}{m_N} \langle n | \mathcal{E} | n \rangle = \frac{2}{3} \frac{m_u^{\text{eff}} C_u + 2m_d^{\text{eff}} C_d}{m_N} + \frac{1}{3} \frac{m_u^{\text{eff}} C_u + 2m_d^{\text{eff}} C_d}{m_N} = \frac{1}{3} C_u + \frac{2}{3} C_d$
 $\tilde{C}_n = \frac{1}{m_N} \langle n | \mathcal{E} | n \rangle = \frac{2}{3} \frac{m_u^{\text{eff}} C_u + 2m_d^{\text{eff}} C_d}{m_N} + \frac{1}{3} \frac{m_u^{\text{eff}} C_u + 2m_d^{\text{eff}} C_d}{m_N} = \frac{1}{3} C_u + \frac{2}{3} C_d$
 $\tilde{C}_n = \frac{1}{m_N} \langle n | \mathcal{P} | n \rangle = \frac{2}{3} \frac{-m_u^{\text{eff}} \tilde{C}_u - m_d^{\text{eff}} \tilde{C}_d}{m_N} + \frac{1}{3} \frac{m_u^{\text{eff}} \tilde{C}_u}{m_N} = -\frac{1}{9} \tilde{C}_u + \frac{4}{9} \tilde{C}_d$

$$BR(\pi^{+} \to e^{+}\nu_{e}X) = \frac{m_{\pi}^{12} \left(90 \left(\eta_{2}^{2} (C_{p} - C_{n})^{2} + \eta_{3}^{2} (C_{p} + C_{n})^{2}\right) + 3C_{e}^{2} + 10C_{e}\eta_{3} (C_{p} + C_{n})\right)}{2^{8} 3^{3} 5\pi^{2} m_{\mu}^{2} m_{X}^{4} \left(m_{\pi}^{2} - m_{\mu}^{2}\right)^{2}}$$

$$BR(\pi^{+} \to e^{+}\nu_{e}X) = \frac{m_{\pi}^{12} \left(54\eta_{2}^{2} (\tilde{C}_{p} - \tilde{C}_{n})^{2} + 5\tilde{C}_{e}^{2}\right)}{2^{8} 3^{2} 5^{2} \pi^{2} m_{\mu}^{2} m_{X}^{4} \left(m_{\pi}^{2} - m_{\mu}^{2}\right)^{2}}$$
Axial tensor boson 2⁻

Lagrangian for 0^+

Renormalizable level

$$\mathcal{L}_{\rm int}^{d \le 4} = z_p \overline{p} p X + z_n \overline{n} n X + z_e \overline{e} e X$$

With effective photon coupling

$$\mathcal{L}_{ ext{int}}^{d=5} = rac{lpha}{8\pi} rac{X}{f_{\gamma}} F_{\mu
u} F^{\mu
u}$$

Relevant couplings z_e, z_p, z_n . No neutrino couplings.

Decay rate

$$\Gamma = \Gamma(X \rightarrow e^+ e^-) = \frac{z_e^2 m_X}{8\pi} \left(1 - \frac{4m_e^2}{m_X^2}\right)^{3/2}$$

Atomki signal and other constraints

Prompt decay in Atomki

Decay in apparatus (geometrically)

 $\Gamma \ge 1.3 \times 10^{-4} \text{ eV} \longrightarrow |z_e| \ge 1.4 \times 10^{-5}$

Electron
$$g - 2$$

$$\delta a_e^{\text{BSM}} \approx \frac{z_e^2}{4\pi^2} \frac{m_e^2}{m_X^2} \left[\ln \frac{m_X}{m_e} - \frac{7}{12} \right] \qquad \longrightarrow \qquad |z_e| \le 10^{-4}$$

Atomki observables

Same method as before

$$R_{\rm He} = \frac{1}{\alpha^2} \frac{15}{8} \left(\frac{k}{\omega}\right)^5 (z_p + z_n)^2 |1 + 3r_{\rm He}|^2 \operatorname{BR}(X \to e^+ e^-) ,$$
$$R_{\rm C} = \left(\frac{k}{\omega}\right)^3 \frac{(z_p - z_n)^2}{8\pi\alpha_e} \operatorname{BR}(X \to e^+ e^-) ,$$

Spin 0 SINDRUM bound (1)

Scalar boson included in $\chi = 2B_0(s + ip)$

$$s + ip = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} - X \begin{pmatrix} z_u & 0 \\ 0 & z_d \end{pmatrix}$$

Need $\mathcal{O}(p^4)$ Lagrangian

$$\begin{split} \mathcal{L}_{\chi\mathrm{PT}}^{\mathrm{NLO}} =& L_{1}\mathrm{Tr}\left[D_{\mu}U^{\dagger}D^{\mu}U\right]^{2} + L_{2}\mathrm{Tr}\left[D_{\mu}U^{\dagger}D_{\nu}U\right]\mathrm{Tr}\left[D^{\mu}U^{\dagger}D^{\nu}U\right] \\ &+ L_{3}\mathrm{Tr}\left[D_{\mu}U^{\dagger}D^{\mu}UD_{\nu}U^{\dagger}D^{\nu}U\right] + L_{4}\mathrm{Tr}\left[D_{\mu}U^{\dagger}D^{\mu}U\right]\mathrm{Tr}\left[U^{\dagger}\chi + \chi^{\dagger}U\right] \\ &+ L_{5}\mathrm{Tr}\left[D_{\mu}U^{\dagger}D^{\mu}U(U^{\dagger}\chi + \chi^{\dagger}U)\right] + L_{6}\mathrm{Tr}\left[U^{\dagger}\chi + \chi^{\dagger}U\right]^{2} \\ &+ L_{7}\mathrm{Tr}\left[U^{\dagger}\chi - \chi^{\dagger}U\right]^{2} + L_{8}\mathrm{Tr}\left[U^{\dagger}\chi U^{\dagger}\chi + \chi^{\dagger}U\chi^{\dagger}U\right] + \dots , \end{split}$$

After NLO correction to kinetic and m_{π}

$$\begin{split} \mathcal{L}_{\chi\rm PT} + \mathcal{L}_{\chi\rm PT}^{\rm NLO} \mid_{\rm rescaled} &\supset (\partial_{\mu}\pi^{+})(\partial^{\mu}\pi^{-}) - m_{\pi}^{2}\pi^{+}\pi^{-} \\ &+ (1+\delta_{1})m_{\pi}^{2}\frac{z_{u}+z_{d}}{m_{u}+m_{d}}X\pi^{+}\pi^{-} \\ &- 2\delta_{2}\frac{z_{u}+z_{d}}{m_{u}+m_{d}}X(\partial_{\mu}\pi^{+})(\partial^{\mu}\pi^{-}) \\ &- \delta_{2}gf_{\pi}\frac{z_{u}+z_{d}}{m_{u}+m_{d}}X(V_{ud}W_{\mu}^{+}\partial^{\mu}\pi^{-} + V_{ud}^{*}W_{\mu}^{-}\partial^{\mu}\pi^{+}) \\ &+ \frac{gf_{\pi}}{2}(1+\delta_{2})(V_{ud}W_{\mu}^{+}\partial_{\nu}\pi^{-} + V_{ud}^{*}W_{\mu}^{-}\partial_{\nu}\pi^{+}) + \dots , \end{split} \qquad \delta_{1} = 16\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{6}(m_{\pi}) + L_{8}(m_{\pi})\right] \\ &\delta_{2} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{2} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{2} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{3} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{4} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{4} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{4} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{4}(m_{\pi}) + L_{5}(m_{\pi})\right] \\ &\delta_{5} = 4\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\left[2L_{5}(m_{\pi}) +$$

Spin 0 SINDRUM bound (2)

Final result

$$\Gamma(\pi^+ \to e^+ \nu_e X) = \frac{G_F^2 f^2 |V_{ud}|^2 m_\pi^3}{32(2\pi)^3} \left[(z_u + z_d)^2 F_1 + z_e (z_u + z_d) F_2 + z_e^2 F_3 \right]$$

 $F_1 \cong 0.024$ $F_2 \cong -0.143$ $F_3 \cong 0.676$