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Motivation
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- hydrodynamics without relaxation:

[Kovtun JHEP 28 (2016)]

thermal equilibrium requires . —ou=0

— velocity of fluid is unconstrained in magnitude

. N contrast with experiments



Motivation
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- system relaxes to driven steady state | (v) = T
DC conductivity op ¢
— Lack In hydrodynamics: manifests as an infinite DC conductivity
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. conductivity J = ng(v) = TE




yarodynamics

. effective field theoretical in the long-wavelength, long-timescale [imit

1) Hydrodynamics uses that system is characterised by symmetries

vV, T =0

- Can additionally have U(1) internal symmetry giving us conservation of charge current

vV, Jh =0

hese two equations are starting point of hydrodynamics

— give us equations of motion to solve (see later!)



vOrodynamics

2) thermal equilibrium described by constant thermodynamic quantities T, u, v¥

. account for fluctuations away from equilibrium — have non-equilibrium system

I p, vV = T(x), p(x), v¥(x)

.« assume: patches of local thermodynamic equilibrium
T(x)

Ar

> X

. Probe system on length scales much larger than typical mean free path 4mp/4r <1



yarodynamics

. Allows for gradient expansion of T** and J* in terms of the hydrodynamic variables, called
constitutive relations

— order zero means order zero in derivatives, ...

- Example: charge current of system with Lorentz symmetry and internal U(1) symmetry

J' = nut+o, (E’“‘ - TV <%>>+@ (82)

non-dissipative - / -
) ransport dissipative
Vﬂs = 0 coefficients

. generating functional: placing fluid on curved spacetime (where T, u, v¥ become
geometrised thermodynamic quantities)




Motivation

Equilibrium state:
Flectric field
oalanced by
chemical potential

Steady state:
Energy/momentum
balanced by
environment

relaxation
byiiily

No relaxation
biilily o

. proprosal: incorporate relaxation terms for energy and momentum into the definition of
stationarity

- momentum relaxation and external sources constrain velocity to take a specific stationary
value

— presence of introduced sinks breaks boost invariance

e requires us to use poost agnostic hydrodynamics



[Jensen et al. PRL 109 (2012),
de Boer et al,, SciPostPhys. 9, 018 (2020),
Armas, Jain, SciPostPhys. 11, 054 (2021),...]

Boost agnostic hydrodynamics

. fluid velocity becomes a thermodynamic variable (momentum conjugate)

P(T,u,v, E)

. thermodynamic densities

0P oP , 0P , oP
n = 0 § = 9 m — - ” Kg =
ou or) " T AR =3

. |In contrast to Galilean or Lorentz: velocity cannot be set to zero

— different inertial frames represent distinct hydrodynamic states



otationarity
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. Hydrostatic constraints: place fluid on Aristotelean geometry (7,,, hﬂ AM), notion of time f#

L?

flat
gﬁAﬂ—l'aﬂA:O > _M_ M//t:l/t <_Dfﬂ_ﬂa[1/fﬂ]> > _l_al//t:()
aﬂT 5 flat
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flat
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Relaxations

L -
Equilibrium state: O E, Steady state:
Electric field S Energy/momentum
balanced by 5 — balanced by
chemical potential @ —> environment
—

- Diffeomorphism and gauge invarionce — conservation equations

- To move away from conservation add non-conservative forces

1
_1 _
e "0, (eT;;‘) + 140,71, — 5 ™o, —F,Jt=1, flat

> 0,P; + ajT{ —nE, = -1},

1
e 0 (eJ*) =0 .




Relaxation at order zero

. (non-)conservation equations at O(a")

ny' ( - — 6i/,t) — fg + O@0) | — " 0@)

- Assuming that neither of the sites is zero on their own we treat these expressions as
conditions for hydrostaticity — modifty our hydrostaticity condition by

- energy and momentum relaxations related through

A\

[, =Tpv At higher order?




Relaxation at order one

- To obtain first order corrections: require fluid to locally obey second law of thermodynamics

|Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,...]

e‘laﬂ (eS*) > 0

- What we find to satisty 2nd law of thermodynamics:

lA"g = Pl V; (nvj +J

j 3
(H.NHS M J(l),D> + 0(0")




Conaductivities

- To compute the conductivities (needed to compare to Drude) we employ linear response
theory

. study how each of the charge currents 8J°, 6Q" = 8J. — udJ' = 8T} — udJ', 5P’ responds to
oerturbations of the E, T, Voi

. captured in the response matrix

|

5.] / Gl:]. Tal] ij 5E]
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- Consider small fluctuations of our fluid away from a stationary configuration with
' = const, u = const



Conaductivities

- The AC conductivities given by the k — 0 limit are

(0. 0) nin—1p,0,)
o(w,V) = o, 4 i ‘
0 > T — io) (no Onsager reciprocity yet)
. Noticing that (@ — 0) = 65~ = n/p, I
e CON Write On — O ~
o(w) = 0, DC | 0 (sum of incoherent term and
1 —iwz Drude term)

. differs from the standard hydrodynamic conductivity — appears in certain holographic

) . [Z. Zhou et al., Phys. Rev. D 94 (2016);
models when momentum-breaking parameter becomes large enough e b 00 o



mposing time-reversal iInvariance

want system to respect microscopic time reversal symmetry in effective correlates at w # 0
for a state at zero velocity

IN this case the conductivity becomes

Opc
O = : L
1 — o[- (Drude with DC conductivity)
n2
] = —
DC T

Incoherent conductivity disappeared — can only appear if the system does not form a
steady state or it we violate Onsager reciprocity

Main result: thermo-electric conductivities of our model assume Drude form when imposing
positivity of entropy production and Onsager reciprocity




Conclusion

- Considered hydrodynamic model of a charged fluid in an external electric field in the presence of
impurities that relax momentum and energy.

- Looked for steady states

— find that stationarity constraints need to be modified to incorporate relaxations

- included dissipative corrections and related energy relaxation to momentum relaxation
. allows us to consider conductivity of fluids that reach a stationary state in a driving electric field

. positivity of entropy production and Onsager reciprocity constrained transport in the fluid

— No incoherent conductivity to make a contribution to the DC

. Further: stability of the model? hydrodynamical realisation of steady states in prope brane models?




Thank you!






More slides



300st agnostic nydrodynamics

. Aristotelean spacetime: manifold equipped with two metrics

T, hy, =uele) (=diag(0,1,1,1))

po

e = deft(r, eﬁ)

« energy-momentum tensor

1) =—-T't, +1T"h,

1

. Dynamical evolution: time-like Killing vector f#

. Geometrization of thermal parameters in terms of (7,,, hﬂ

A)

L?

[Jensen et al. PRL 109 (2012),
de Boer et al,, SciPostPhys. 9, 018 (2020),
Armas, Jain, SciPostPhys. 11, 054 (2021),...]

T =

(e

Cu=T(ABHA), W =TR, F,=20,A,=

u'v

vou




Relaxation at order one

- simplification: assume hydrostaticity condition and constitutive relation for momentum
relaxation term to be exact

« j.e. relations true at all orders in derivatives

- flat spacetime rp.

A\

. Still: I, receives derivative correction as it was derived as a consequence of the equations of

motion on hydrostatic solutions — constitutive relation cannot be freely specified

. We choose £ ~ O(0)




Relaxation at order one

- To obtain first order corrections: require fluid to locally obey second law of thermodynamics

[Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,...]

e‘ldﬂ (eS*) > 0

. The entropy current can be splitinto ¥ =S4+ S/
. SF  from covariantising Euler relation
H
Sélcm — Tﬂl/ﬁy +PpT - ?]ﬂ — Ke = _Vﬁﬂ

. SH

r o, together with relaxation scalar cancel hydrostatic contributions to entropy
oroduction



Relaxation at order one

. Using (non-)conservation equation of energy-momentum tensor and charge current,
divergence of canonical entropy current in terms of altered stationarity condition is

~19 (eS* Py JY—J% Vh, hoP | T
< ,u(e can)_l_ P T — Y0 ) "vo p

1 U /
(- 13) 2= (=) D (- ),

. u“A, — u
5@14” .— gﬁA/" — aﬂA — gﬂAﬂ — aﬂ

where // : 4
Sigy = D3y = I, T,

- Rewriting divergence in this way allows us to isolate the order one in derivatives
contributions to the constitutive relations of T#, T#, J#



Relaxation at order one

. decompose each constitutive relations into: hydrostatic, non-hydrostatic non-dissipative ana
dissipative corrections

T —T¢ =T + T +T"

(0) HS NHS
Uy UV __ UV Uy Uy
I T(O) o THS T TNHS T TD

U JH — JH U M
J J(O) o JHS T JNHS T JD

.« gssume: separate relaxation contributions into those that can be expressed in terms of
stationary tensor structures and those that vanish at stationarity

- What we find to satisty 2nd law of thermodynamics:

I =p Tv.|m/+F J 0(0°
e = Pl V, (nv + N S+ (1),D>+ (0°)




Even more s.
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Generating runctional

. generating functional W]z, h, A]: correlation functions

(leading term) Wolz, h,Al = Jdd+1xeP (T,//t,

. define one-point functions

T

2 6W 1 6W

e Shy,’ e 51,




Re

laxation

: 1 1
r =-Trf, ( (ﬁ — (s + 95 ) Bk ) 6~ —h ﬂhﬂp>

—I /° A : JE -+ JEYh hY°
po | 2T \"NHS D) u ?

r,=r (ClTMTV + czh/w) + 0 (0°)



yarostatic part

Hydrostatic part has to satisty following non-conservation equation

0,Tys", — F,Jt . — T} =0,

VI HS
0,J! =0

At order O(0) in constitutive relations: F(l) = Pl (Vz, Vi)

At order @(()1) in constitutive relations: find that using only hydrostatic conditions that do not involve relaxation term F{gy =0

Now considering entropy production in presence of relaxation terms

Have freedom to define §¥ , T satisfying

nomn '’

1
e_ld (eS” )+Fn0n= —T” fZﬂT +ET ”ffﬂh +J’“‘ 5%A

non

1
[ = — — T h™T,

In this way we eliminate all stationary configurations consistent with positivity of entropy production (by defining a relaxation scalar and non-
canonical entropy current that cancels hydrostatic contributions to entropy production)

QH — QH QH

can non




Non-nhydrostatic, non-dissipative part

- Part that makes no contribution to entropy production but is not hydrostatic

/72% 1 /
RusZ s Tﬂ_TNHSEg My = Jaus®%4, = 0

| - ,
. At order one: must be linear combinations of Sfﬁf , Eﬂhﬂy, %Aﬂ

- Correspondingly equation above is quadratic form in hydrostatic constraints

- guadratic form: to fail to contribute to entropy production must be antisymmetric (in this way no entropy production)

17}  NHS 0 NyPo) Nt 247,

1
Tisms [ =|=N2" 0 NI —=Zph,,
JiyNms -Np* —N§PO 0 —0g4,

- We obtained most general tensor structures consistent with our symmetries and defined 24 non-hydrostatic, non-
dissipative transport coefficients



D1ssipative part

- Dissipative terms lead production of entropy

- Analogously dissipative contributions can be written in guadratic form in terms of symmetric
coefficient matrix, allowing for entropy production

T(ﬂl),D D {w D 5 e Dﬁl ’ Z Alp

1
T{tII;,D _ sz(ﬂw D Z(L/u/)(pa) DSP(//”/) - gﬂ hpa
Jﬁ),D D¥ Dg(pa) D —5A,

- Obtained most general structures consistent with our symmetries and defined 42 dissipative
transport coefficient terms




