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Electrically driven fluids 



• hydrodynamics without relaxation:  

thermal equilibrium requires 

 velocity of fluid is unconstrained in magnitude 

• in contrast with experiments 

→

Motivation
E

stationary configurations?
charged fluid  
applied electric field

𝔼i − ∂iμ = 0
[Kovtun JHEP 28 (2016)]



• electron transport in conductor 

• system relaxes to driven steady state 

• conductivity

Motivation
E

e−

Relaxation term prevents indefinite acceleration of 
charge carriers

Drude’s model

⟨
dp
dt

⟩ = qE−Γ⟨p⟩

DC conductivity  σDC
Lack In hydrodynamics: manifests as an infinite DC conductivity

⟨v⟩ =
qE
Γ

J = nq⟨v⟩ =
nq2

Γ
E



• effective field theoretical in the long-wavelength, long-timescale limit  

1) Hydrodynamics uses that system is characterised by symmetries 

• Can additionally have U(1) internal symmetry giving us conservation of charge current 

• These two equations are starting point of hydrodynamics 

 give us equations of motion to solve (see later!) →

Hydrodynamics

∇μTμν = 0

∇μJμ = 0



2) thermal equilibrium described by constant thermodynamic quantities  

• account for fluctuations away from equilibrium  have non-equilibrium system 

• assume: patches of local thermodynamic equilibrium 

• Probe system on length scales much larger than typical mean free path 

T, μ, vμ

→

Hydrodynamics

T, μ, vμ → T(x), μ(x), vμ(x)

T(x)

x

λmfp

λT

λmfp/λT ≪ 1



• Allows for gradient expansion of  and  in terms of the hydrodynamic variables, called 
constitutive relations 

 order zero means order zero in derivatives,… 

• Example: charge current of system with Lorentz symmetry and internal U(1) symmetry 

• generating functional: placing fluid on curved spacetime (where  become 
geometrised thermodynamic quantities)

Tμν Jμ

→

T, μ, vμ

Hydrodynamics

Jμ = nuμ+σ0 (Eμ − T ∇( μ
T ))+𝒪 (∂2)

non-dissipative 
 ∇μsμ = 0 dissipativeTransport 

coefficients 



• proprosal: incorporate relaxation terms for energy and momentum into the definition of  
stationarity  

• momentum relaxation and external sources constrain velocity to take a specific stationary 
value 
  presence of introduced sinks breaks boost invariance  

• requires us to use boost agnostic hydrodynamics 

→

Motivation
E

Equilibrium state:  
Electric field  
balanced by  
chemical potential 

E
Steady state:  
Energy/momentum  
balanced by  
environment 
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• fluid velocity becomes a thermodynamic variable (momentum conjugate) 

• thermodynamic densities 

• In contrast to Galilean or Lorentz: velocity cannot be set to zero 

 different inertial frames represent distinct hydrodynamic states →

Boost agnostic hydrodynamics 
[Jensen et al. PRL 109 (2012), 
 de Boer et al., SciPostPhys. 9, 018 (2020), 
 Armas, Jain, SciPostPhys. 11, 054 (2021),…]

P(T, μ, ⃗v, 𝔼)

n = ( ∂P
∂μ ), s = ( ∂P

∂T ), ρm = 2 ( ∂P
∂ ⃗v2 ), κ𝔼 = 2 ( ∂P

∂𝔼2 )



• Hydrostatic constraints: place fluid on Aristotelean geometry , notion of time  (τμ, hμν, Aμ)

Stationarity
E Equilibrium state:  

Electric field  
balanced by  
chemical potential 
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Energy/momentum  
baa
environment 

{∂tvi = 0, ∂ivj + ∂jvi = 0, ∂t𝔼i + vj∂j𝔼i + 𝔼j∂ivj = 0}ℒβhμν = 0, ∂[μFνρ] = 0,...

𝔼i − ∂iμ = 0ℒβAμ + ∂μΛ = 0 𝔼μ − ∂μμ = uν (𝔼ντμ − μ∂[ντμ])
ℒβτμ = 0 ∂μT = 0

∂μT
T

− uν (∂ντμ − ∂μτν) = 0

flat

flat

flat

βμ



• Diffeomorphism and gauge invariance  conservation equations 

• To move away from conservation add non-conservative forces 

→

Relaxations
E
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e−1∂μ (eTμ
ρ ) + Tμ∂ρτμ −

1
2

Tμν∂ρhμν − FρμJμ = Γρ

e−1∂μ (eJμ) = 0

∂tε + ∂iJi
ε − 𝔼iJi = −Γ̂ε

∂tPi + ∂jT
j
i − n𝔼i = −Γ̂i

P

∂tn + ∂iJi = 0

Equilibrium sta
Electric f
baa
chemicaa

Steady state:  
Energy/momentum  
balanced by  
environment 

flat



• (non-)conservation equations at  

                          

• Assuming that neither of the sites is zero on their own we treat these expressions as 
conditions for hydrostaticity  modify our hydrostaticity condition by 

                  

• energy and momentum relaxations related through   

                                          

𝒪(∂0)

nvi (𝔼i − ∂iμ) = Γ̂ε + 𝒪(∂)

n (𝔼i − ∂iμ) = ΓPPi + 𝒪(∂)

→

𝔼i − ∂iμ = 0 → n(𝔼i − ∂iμ) − ΓPPi = 0

Γ̂ε = ΓPvi

Relaxation at order zero

At higher order?

𝔼 ∼ 𝒪(∂0)

Γ̂i
P = ΓPPi𝒪(∂0)



• To obtain first order corrections: require fluid to locally obey second law of thermodynamics  

                                            

• What we find to satisfy 2nd law of thermodynamics: 

Relaxation at order one 
[Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,…]

e−1∂μ (eSμ) ≥ 0

Γ̂ε = ρmΓvj (nvj + Jj
(1),NHS

+ Jj
(1),D) + 𝒪(∂3)



• To compute the conductivities (needed to compare to Drude) we employ linear response 
theory 

• study how each of the charge currents , ,  responds to 
perturbations of the  

• captured in the response matrix 

                      

• Consider small fluctuations of our fluid away from a stationary configuration with 

δJi δQi = δJi
ϵ − μδJi ≡ δTi

0 − μδJi δPi

𝔼, T, v0j

T = const, μ = const

Conductivities

δJi

δQi

δPi

=

σij Tαij ζ1
ij

Tᾱij Tκij ζ2
ij

ζ3
ij ζ4

ij ζ5
ij

δEj

δ(−∂jT/T)

δv0j



Conductivities
• The AC conductivities given by the  limit are 

           

• Noticing that  

• can write 

• differs from the standard hydrodynamic conductivity        appears in certain holographic 
models when momentum-breaking parameter becomes large enough  

k → 0

σ(ω → 0) = σDC = n2/ρmΓ

σ(ω, 0) = σ0 +
n(n − Γρmσ0)
ρm(Γ − iω)

(sum of incoherent term and 
Drude term)

σ(ω) = σ0 +
σDC − σ0

1 − iωτ

 (no Onsager reciprocity yet)

[Z. Zhou et al., Phys. Rev. D 94 (2016);  
 R.A. Davison et al., JHEP 09 (2015)]



• want system to respect microscopic time reversal symmetry in effective correlates at  
for a state at zero velocity 

• In this case the conductivity becomes 

                                  

                  

• Incoherent conductivity disappeared  can only appear if the system does not form a 
steady state or if we violate Onsager reciprocity 

• Main result: thermo-electric conductivities of our model assume Drude form when imposing 
positivity of entropy production and Onsager reciprocity 

ω ≠ 0

→

Imposing time-reversal invariance

σDC =
n2

ρmΓ

σ =
σDC

1 − iωΓ−1 (Drude with DC conductivity)



• Considered hydrodynamic model of a charged fluid in an external electric field in the presence of 
impurities that relax momentum and energy. 

• Looked for steady states 

 find that stationarity constraints need to be modified to incorporate relaxations 

• included dissipative corrections and related energy relaxation to momentum relaxation 

• allows us to consider conductivity of fluids that reach a stationary state in a driving electric field 

• positivity of entropy production and Onsager reciprocity constrained transport in the fluid 

 no incoherent conductivity to make a contribution to the DC 

• Further: stability of the model? hydrodynamical realisation of steady states in prope brane models?

→

→

Conclusion



Thank you! 





More slides



• Aristotelean spacetime: manifold equipped with two metrics 

• energy-momentum tensor 

• Dynamical evolution: time-like Killing vector  

• Geometrization of thermal parameters in terms of  

βμ

(τμ, hμν, Aμ)

Z
τμ , hμν = δabea

μeb
ν ( = diag(0,1,1,1))

e = det(τ, ea
μ)

Boost agnostic hydrodynamics 
[Jensen et al. PRL 109 (2012), 
 de Boer et al., SciPostPhys. 9, 018 (2020), 
 Armas, Jain, SciPostPhys. 11, 054 (2021),…]

T =
1

τμβμ
, μ = T (Aμβμ + Λ), uμ = Tβμ, Fμν = 2∂[μAν] = 𝔼μτν − 𝔼ντμ

Tμ
ν = − Tμτν + Tμρhρν



• simplification: assume hydrostaticity condition and constitutive relation for momentum 
relaxation term to be exact                             

• i.e. relations true at all orders in derivatives 

• flat spacetime 

                                

• Still:  receives derivative correction as it was derived as a consequence of the equations of 

motion on hydrostatic solutions  constitutive relation cannot be freely specified 

• We choose 

Γ̂ϵ
→

𝔼 ∼ 𝒪(∂)

Relaxation at order one

𝔼i − ∂iμ −
ΓPi

n
= 0, Γ̂i

⃗P
= ΓPi



• To obtain first order corrections: require fluid to locally obey second law of thermodynamics  

                                            

• The entropy current can be split into  

•  from covariantising Euler relation     

                             

•  together with relaxation scalar cancel hydrostatic contributions to entropy 
production 

Sμ = Sμ
can + Sμ

non

Sμ
can

Sμ
non

Relaxation at order one 
[Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,…]

Sμ
can = − Tμ

νβν + Pβμ −
μ
T

Jμ − κ𝔼𝔼ν𝔼νβμ

e−1∂μ (eSμ) ≥ 0



• Using (non-)conservation equation of energy-momentum tensor and charge current, 
divergence of canonical entropy current in terms of altered stationarity condition is  

where                                             

• Rewriting divergence in this way allows us to isolate the order one in derivatives 
contributions to the constitutive relations of Tμ, Tμν, Jμ

δ′￼ℬAμ = δℬAμ −
1

nT
hμνhνρΓρ

Relaxation at order one 

e−1∂μ (eSμ
can)+(βρ +

1
nT (Jν − Jν

(0)) hνσhσρ) Γρ

= (Tμ − Tμ
(0)) ℒβτμ −

1
2 (Tμν − Tμν

(0)) ℒβhμν − (Jμ − Jμ
(0)) δ′￼ℬAμ

δℬAμ := ℒβAμ − ∂μΛ = ℒβAμ − ∂μ ( uνAν − μ
T )



• decompose each constitutive relations into: hydrostatic, non-hydrostatic non-dissipative and 
dissipative corrections 

                     

• assume: separate relaxation contributions into those that can be expressed in terms of 
stationary tensor structures and those that vanish at stationarity  

• What we find to satisfy 2nd law of thermodynamics:

Relaxation at order one 

Tμ − Tμ
(0) = Tμ

HS + Tμ
NHS + Tμ

D

Tμν − Tμν
(0) = Tμν

HS + Tμν
NHS + Tμν

D

Jμ − Jμ
(0) = Jμ

HS + Jμ
NHS + Jμ

D

Γ̂ε = ρmΓvj (nvj + Jj
(1),NHS

+ Jj
(1),D) + 𝒪(∂3)



Even more slides



Generating functional
• generating functional : correlation functions  

(leading term)                

• define one-point functions  

                                      

W[τ, h, A]

W(0)[τ, h, A] = ∫ dd+1x e P (T, μ, 𝔼2, ⃗v2, ⃗v ⋅ 𝔼)

Tμν =
2
e

δW
δhμν

, Tμ = −
1
e

δW
δτμ

, Jμ =
1
e

δW
δAμ



Relaxation 

Γρ = −T Γ̂σ ((βσ +
1

nT (Jμ
NHS + Jμ

D) hμνhνσ) τρ −
1
T

hσμhμρ)
−Γρσ (βσ +

1
nT (Jμ

NHS + Jμ
D) hμνhνσ),

Γμν = Γ (c1τμτν + c2hμν) + 𝒪 (∂3)



• Hydrostatic part has to satisfy following non-conservation equation 

                                                  

• At order  in constitutive relations:  

• At order  in constitutive relations:  find that using only hydrostatic conditions that do not involve relaxation term  

• Now considering entropy production in presence of relaxation terms 

• Have freedom to define  ,  satisfying 

                                 

• In this way we eliminate all stationary configurations consistent with positivity of entropy production (by defining a relaxation scalar and non-
canonical entropy current that cancels hydrostatic contributions to entropy production)  

                                                 

∂μTHS
μ

ν − FνμJμ
HS − ΓHS

ν = 0,
∂μJμ

HS = 0

𝒪(∂0) ΓHS
(1),ν = ρmΓ (v2, vi)

𝒪(∂1) ΓHS
(2),ν ≡ 0

Sμ
non Γnon

e−1∂μ (eSμ
non) + Γnon = − Tμ

HSℒβτμ +
1
2

Tμν
HSℒβhμν + Jμ

HSδ′￼ℬAμ

Γnon = −
1

nT
Jμ

HShμσhσρΓρ

Sμ = Sμ
can + Sμ

non

Hydrostatic part



• Part that makes no contribution to entropy production but is not hydrostatic 

                                         

• At order one: must be linear combinations of  

• Correspondingly equation above is quadratic form in hydrostatic constraints 

• quadratic form: to fail to contribute to entropy production must be antisymmetric (in this way no entropy production) 

                         

• We obtained most general tensor structures consistent with our symmetries and defined 24 non-hydrostatic, non-
dissipative transport coefficients

Tμ
NHSℒβτμ − Tμν

NHS
1
2

ℒβhμν − Jμ
NHSδ′￼ℬAμ ≡ 0

ℒβτμ, ℒβhμν, δ′￼ℬAμ

Tμ
(1),NHS

Tμν
(1),NHS

Jμ
(1),NHS

=
0 Nμ(ρσ)

2 Nμρ
1

−Nρ(μν)
2 0 Nρ(μν)

3

−Nρμ
1 −Nμ(ρσ)

3 0

ℒβτρ

− 1
2 ℒβhρσ

−δ′￼ℬAρ

Non-hydrostatic, non-dissipative part



Dissipative part
• Dissipative terms lead production of entropy  

• Analogously dissipative contributions can be written in quadratic form in terms of symmetric 
coefficient matrix, allowing for entropy production  

     

• Obtained most general structures consistent with our symmetries and defined 42 dissipative 
transport coefficient terms

Tμ
(1),D

Tμν
(1),D

Jμ
(1),D

=
Dμρ

1 Dμ(ρσ)
2 Dμρ

3

Dρ(μν)
2 D(μν)(ρσ)

4 Dρ(μν)
5

Dρμ
3 Dμ(ρσ)

5 Dμρ
6

ℒβτρ

− 1
2 ℒβhρσ

−δ′￼ℬAρ


