
Physics and Astronomy Department 
Galileo Galilei 

University of Padova - Italy

Feynman Integrals & Scattering Amplitudes

Pierpaolo Mastrolia

In  collaboration with: P. Benincasa, G. Brunello, S. Cacciatori, V. Chestnov, G. Crisanti, B. Eden, W. Flieger, M. Giroux, M. Gottwald,  
H. Frellesvig, S. Laporta, M.K. Mandal, S. Matsubara-Heo, S. Mizera, R. Patil, J. Steinhoff, T. Scherdin, S. Smith,  
WJ Torres Bobadilla, F. Vazao, N. Takayama

New Frontiers in Theoretical Physics 
Cortona, 23.05.2025

in Particle Physics, Gravitation & Cosmology



Outline

Intersection Theory Applications

Conclusions

Vector Space Structure of Twisted Period Integrals (Feynman, GKZ, Euler-Mellin, A-hypergeometric)

Post-Minkowskian Corrections

Feynman Integrals

Beyond Feynman Integrals

Intersection Numbers

Post-Newtonian Corrections

De Rahm co-homology groups

Feynman Calculus

Amplitudes and Diagrams for Gravitational Wave Physics

Cosmological correlators and Wave Functions

Integral relations, Differential Equations and Special Functions

Differential Space Structure of Twisted Period Integrals

2

Annihilators and D-modules



Differential Equations 

Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

 ∂(n)
x f(x) + pn−1(x) ∂(n−1)

x f(x) + … + p1(x) ∂(1)
x f(x) + p0(x) f(x) = 0

Theoretical Physics goals: modelling Nature by modelling changes: Systems’ Evolution
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1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)

1.6

r? << r << �GW (1.20)
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CHAPTER 5. POST-NEWTONIAN CORRECTIONS

5.2 The Einstein-Infeld-Ho↵mann Lagrangian from
a 1 PN calculation

Exploiting the previous method we will derive the complete e↵ective action for a
non spinning binary at 1 PN order, i.e. taking care of corrections that scales as
GNv2 and G2

N .
Let’s start our calculation by defining the e↵ective action as

Seff (xa) = �ma

Z
dt

r
1� v2a

c2
� iW (xa, va) (5.8)

where W is evaluated in terms of connected e↵ective diagrams as

W (xa,b, va,b) =

Z
d⌧ad⌧bA(xa,b, va,b) (5.9)

A(xa,b, va,b) =

Z
ddk

(2⇡)d
d!

2⇡
eik·(xa�xb)e�i!(⌧a�⌧b)M(k,!) (5.10)

M(k,!) ⇠ GNv
2, G2

N (5.11)

In order to find which PN e↵ective diagrams participate in 5.11 we start by looking
at the GN and G2

N topologies. For semplicity, from now on we will adopt a thick
black line for a graviton, instead of the gluon one.
As for the GN topology, it is characterized by a unique PM diagram given by

(5.12)

We can now switch to the Kol-Smolkin variables by filling the diagram with �, Ai,
and neglecting �nm since its emission and absorption would be proportional to v4.
So far the connected diagrams are

� Ai (5.13)
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available in “local form”. The diagrams that contribute are of the type

but now there are non-trivial numerator factors that don’t trivially follow from the structure

of propagators. The full integrand is available through to seven loops in the literature [36–

40]. The inspection of the available local expansions on this cut does not indicate an

obvious all-loop generalization, nor does it betray any hint that that the final result can

be expressed in the one-line form given above. For instance just at 5 loops, the local form

of the cut is given as a sum over diagrams,

with intricate numerator factors. If all terms are combined with a common denominator of

all physical propagators, the numerator has 347 terms. Needless to say, the complicated ex-

pression obtained in this way perfectly matches the amplituhedron computation of the cut.

13 Master Amplituhedron

We have defined the amplituhedron An,k,L separately for every n, k and loop order L. How-

ever, a trivial feature of the geometry is that An,k,L is contained in the “faces” of An′,k′,L′ ,

for n′ > n, k′ > k,L′ > L. The objects needed to compute scattering amplitudes for any

number of particles to all loop orders are thus contained in a “master amplituhedron” with

n, k, L → ∞.

In this vein it may also be worth considering natural mathematical generalizations of

the amplituhedron. We have already seen that the generalized tree amplituhedron An,k,m

lives in G(k, k+m) and can be defined for any even m. It is obvious that the amplituhedron

with m = 4, of relevance to physics, is contained amongst the faces of the object defined

for higher m.

If we consider general even m, we can also generalize the notion of “hiding particles”

in an obvious way: adjacent particles can be hidden in even numbers. This leads us

– 24 –
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Feynman Integrals
Momentum-space Representation

=

N-denominator  
generic Integral

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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and on the dimensional regulator d. The integration contour C is defined such that B
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IBP equations

Generating an overdimensioned (sparse) systems of linear equations

Solutions:   
Gauss’ Elimination  
Groebner Bases   
Syzygy Equations  
Finite Fields + Chinese Remainder Theorem + Rational Functions Reconstruction 

Contiguity relations

[d]
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Linear relations for Feynman Integrals
Decomposition in terms of independent Master Integrals

=

N-denominator  
generic Integral

N-denominator 
Master Integrals

(n<N)-denominator 
Master Integrals 
[subtopologies]

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator
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4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
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dz
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=
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@x = A(d, x) (4.16)
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a1 a2 ak ap

b1 b2 bk bp
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Linear relations for Feynman Integrals
 Relations among Integrals in dim. reg.

=

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2

) ) (/p+m) !
X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
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⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q2
1
�m2

1

1
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2
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· · · 1
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I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)
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(4.9)

– 6 –

Pinches

+ +…+ +c1 c2 ck cp

cN−1

 Novel complex-integration techniques: (see 1loop 4ple-cut, 3ple-cut, 2ple-cut, …)

N-denominator cut

(N-1)—denominator cut

(#loop)—denominator cut + cloop=

= + +…+

= + +…+

c1 c2 ck

c1 c2 ck +

Unitarity-based and on-shell methods
1
Di

→ δ(Di)

 Novel integrand generation: product of tree-amplitudes/diagrams; complex momenta across the cut
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Linear relations for Feynman Integrands
 Relations among Integrals in dim. reg.

=

4. FOR the COLLOQUIUM
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– 6 –

Pinches

+ +…+ +c1 c2 ck cp

OPP Integrand Decomposition

=

4. FOR the COLLOQUIUM
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=
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– 6 –

Pinches

+ +…+ +Δ1 Δ2 Δk Δp

(Block)-triangular system of linear equations:            principle of polynomial identity: integration NOT required

N(k1, …, kloop)

   , therefore  , determined by polynomial division (  are the remainders ) Δi ci Δi

Cuts vs Residues vs Remainders

[integrand identity]

   determined by polynomial fittingci

   are polynomials and Δi ci ∈ Δi
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Evaluating Master Integrals / Differential Equations and Theory Special Functions
1st order Differential Equations for MIs

= + +…+ +

�NLO =
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n

✓
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◆
+

Z
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d�Real

�NLO =
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✓
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dµ2
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K↵ = k↵ + µ↵ , /K = /k + /µ , K2
= k2 � µ2 ,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
us(k) ūs(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏↵�(k)
⇣
✏��(k)

⌘⇤
= �g↵� +

k↵k�

µ2
(4.15)

@x = A(d, x) (4.16)

– 7 –
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Pinches

Barucchi, Ponzano; Kotikov; Remiddi, & Gerhmann; … Bern, Dixon, Kosower, ...,  Anastasiou, Melnikov, Steinhauser, Weinzierl,… Henn, Plefka; Lee; 
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kinematic variable 
(s,t,u, masses)

space-time  
dimensions

 Argeri, diVita, Mirabella, Schubert, Tancredi, Schlenck & P.M.; …
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= e
⌦(d,x)

(4.17)

= e

R
dx A(d,x)

(4.18)
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boundary term 
(simpler integral)

System of 1st ODE Solution

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

(d, x) (4.178)

– 22 –

From here it is easy to deduce that every τ ∈ Tm, m ≥ 1, can be written in a
unique way as

τ = ❅"

τ1
❅"

τ2
❅

τ3
❅"

!

τs

..
..

or τ ≡ a(τ1, τ2, . . . , τs). Then the Magnus expansion can be expressed in the
form [119,120]

Ω(t) =
∞∑

m=0

∑

τ∈Tm

α(τ)
∫ t

0
Hτ (ξ)dξ, (61)

with the scalar α( !) = 1 and, in general,

α(τ) =
Bs

s!

s∏

l=1

α(τl).

Let us illustrate this procedure by writing down explicitly the first terms in
the expansion in a tree formalism. In T1 we only have k1 = k2 = 0, so that a
single tree is possible,

τ1 = ! , τ2 = ! , ⇒ τ = ❅"

!

!

,

with α(τ) = −1/2. In T2 there are two possibilities, namely k1 = 0, k2 = 1
and k1 = 1, k2 = 0, and thus one gets

τ1 = ! , τ2 = ❅"

!

!

⇒ τ = ❅"
❅"

!

!

!

, α(τ) = 1
12

τ1 = ❅"

!

!

, τ2 = ! ⇒ τ = ❅"

❅"

!

!

!

α(τ) = 1
4

and the process can be repeated for any Tm. The correspondence between trees
and expansion terms should be clear from the previous graphs. For instance,
the last tree is nothing but the integral of A, commuted with A, integrated and
commuted with A. In that way, by truncating the expansion (61) at m = 2
we have

Ω(t) =
!

−
1

2

❅"

!

!

+
1

4

❅"

❅"

!

!

!

+
1

12

❅"
❅"

!

!

!

+ · · · , (62)

i.e., the explicit expressions collected in subsection 2.2.
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Dyson/Magnus Series: Iterated Integrals and Geometry

Polylogs Elliptic int’s Calaby-Yau int’s

Hyperplanes Higher-genus
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GR EFT and Amplitudes/Diagrammatic approach
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• Gravitational Waves a new window on the Universe  

• Two-body dynamics and radiative effects to exploring the 
most extreme conditions of spacetime and matter 

• Next generation detectors, ground-based and in space, 
need of accurate waveform templates 

• Precision Physics vs Precision Calculations: Multi-Loop 
Calculus, Scattering Amplitudes and General Relativity 

0123456789();: 

EM domain collectively comprise the first demonstra-
tion of GW–EM multi- messenger astronomy, providing 
an astounding wealth of knowledge, including the first 
definitive link between BNS merger progenitors and 
short gamma- ray bursts29–37; the first definitive obser-
vation of a kilonova38–46, conclusive spectroscopic proof 
that BNS mergers produce heavy elements through 
r- process nucleosynthesis40,47–52; the first demonstration 
that GWs travel at the same speed as light to better than 
a few parts in 1015 (REF.29); and an independent method 
for measuring the Hubble constant using detected GWs 
as a ‘standard siren’ for determining the absolute distance 
to the source53–55. Additionally, the Advanced LIGO and 
Advanced Virgo detections have enabled tests of GR in 
the strong gravity regime that were inaccessible to other 
experiments and astronomical observations56,57, moti-
vating research on many fronts in fundamental physics 
and astrophysics. This only represents a brief overview of 
the recent discoveries and, as we discuss in detail below, 
captures only a fraction of the potential science afforded 
by future GW observations.

Space- based detectors
When launched in the mid-2030s, the Laser Inter-
ferometer Space Antenna (LISA)58 will possess a breath-
taking scientific portfolio. LISA will explore much of 

the GW Universe in the frequency band from 100 μHz 
to 100 mHz. A constellation of three satellites separated 
by 2.5 × 109 m in an Earth- trailing orbit, LISA will be 
capable of detecting the first seed black holes formed 
out to redshifts z ~ 20 or more59, and intermediate- mass 
and ‘light’ super- massive coalescing black hole systems 
in the 102–107 M⊙ (solar mass) range, thus, tracing the 
evolution of black holes from the early Universe through 
the peak of the star formation era. Through detections 
of extreme mass ratio inspirals (EMRIs, binary systems 
with mass ratios as small as ~10−6)60, LISA will directly 
map the curvature of spacetime at the event horizons of  
massive black holes, yielding even more precise tests  
of GR in the strong gravitational field regime. LISA 
might also detect stellar- mass BBH systems years before 
they are detectable by ground- based detectors61, and 
provide very precise sky localization of such events for 
EM follow- up. By discovering new sources of galactic 
compact binaries comprised of white dwarfs, neutron 
stars and stellar- mass black holes, LISA will survey the 
predominant population of binary compact objects and 
map the structure of the Milky Way62.

The LISA Pathfinder (LPF)63, launched in 2015 and 
operated until mid-2017, has paved much of the way 
for the full- scale LISA mission. LPF was a European 
Space Agency (ESA) mission, with contributions from 

Wave period

Wave
frequency

Years

Radio pulsar timing arrays Terrestrial interferometersSpace-based interferometers

(Super-)massive black hole inspiral and merger

Extreme-mass-
ratio inspirals

Detectors

10210–210–410–610–10 10–8 1
Hours Seconds Milliseconds

Big BangSources

Compact binary inspiral and merger

Pulsars, supernovae

Fig. 2 | The gravitational- wave spectrum probed by strain- sensitive gravitational- wave detectors, ranging from 
10−9 Hz to more than 1,000 Hz. The source classes are shown above the spectrum and the detectors below. The portion  
of the gravitational- wave spectrum below 10−9 Hz probed through measurements of the cosmic microwave background 
polarization is not shown.

Multi- messenger astronomy
A new field that explores the 
Universe collectively using  
the information carried by 
photons, gravitational waves, 
neutrinos and cosmic rays.

Nucleosynthesis
r- Process nucleosynthesis 
stands for ‘rapid neutron 
capture nuclear process’, 
whereby a nucleus rapidly 
increases its atomic number by 
repeatedly capturing neutrons 
in a neutron- rich environment.

Standard siren
A gravitational- wave source 
that is determining the 
absolute distance to  
the source.

Extreme mass ratio 
inspirals
The orbit of a binary system in 
which the more massive object 
is greater than the less massive 
object by ~10,000 or more.
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a consortium of European national agencies, as well as 
NASA. It convincingly demonstrated some of the key 
performance requirements for the full LISA mission, 
most notably the displacement sensitivity and control 
of spurious acceleration noise required for LISA. More 
on LISA science is presented in the next section, whereas 
the LISA and LPF detector technology is discussed in 
detail in the last section.

PTAs
Pulsar timing arrays (PTAs)64–67 explore the nano-
hertz portion of the GW spectrum ranging from  
10−9 to 10−6 Hz. Rather than using laser light to meas-
ure variations in detector length as ground- based and 
space- based detectors do, a PTA measures variations in 
the radio frequency pulse arrival times at the Earth from 
an array of millisecond pulsars68,69 (FIG. 6).

Pulsars are rotating neutron stars that act like cos-
mic lighthouses, appearing as periodic pulsating radio 
sources. Because millisecond pulsars, pulsars with peri-
ods between roughly 1.4 and 30 ms, possess rotational 
stabilities comparable with the best atomic clocks, they 
are ideal timing sources. Once effects such as rotational 
spin- down, astrometric position and motion, and orbital 
effects from binary companions are accounted for, the 
pulse arrival times can be precisely modelled and pre-
dicted to fractions of a microsecond for up to decades 
into the future70, and variations arising from GW pertur-
bations can be measured. Distortions in the spacetime 
around Earth or the pulsars will produce systematics 
in timing residuals (deviations of the measured pulse 
arrival times relative to the predicted arrival times), 
and, crucially, spatially correlated systematics in the 
timing residuals of the array of pulsars across the sky71. 
A GW emitted from a single binary system passing the 
pulsar- Earth system will cause two frequency compo-
nents in the time series of the timing residuals: one from 
the spacetime variations at the pulsar (‘pulsar term’), the 
other from variations at the Earth (‘Earth term’), with 
different frequencies resulting from changes in the 
orbital frequency of the emitting source during the time 
it takes for the radio pulses to travel to the Earth. The top 
panel of FIG. 7 shows the expected detection in the form 
of the Hellings and Downs curve, the correlated response of 
a pair of pulsar- Earth baselines to a stochastic GW back-
ground averaged over all sky positions and polarizations 

as a function of the angle between the pulsar pair- Earth 
baselines71.

Pulsars are observed at monthly or more rapid 
cadences in order to sample and measure changing pro-
perties, such as the position of the pulsar (that is, proper 
motion) and varying dispersion due to the interstellar 
medium. In addition, they must be observed for roughly 
one half- hour per observation to average over enough 
of the pulses to mitigate the effects of jitter induced by 
astrophysical and receiver noise. The observations them-
selves cover very wide bandwidths (>GHz) or occur 
near- simultaneously at multiple radio frequencies in 
order to correct for the effects of interstellar dispersion. 
Pulsar timing instruments must have fine frequency 
reso lution (~1 MHz) to correct for these effects, coupled 
with high time resolution in order to sufficiently sample 
the roughly millisecond- wide radio pulses.

As each pulsar needs to be timed for about a year 
(equivalent to one Earth orbit) to be properly localized 
and understood, PTA experiments must have years- long 
durations. In practice, the lower end of the frequency 
window is given by the length of the data set (currently 
about 1 nHz), whereas the upper end is given by the 
cadence of the timing observations (currently about 
1 μHz). Timing residual amplitudes of about 100 ns or 
less are resolved for the best timed millisecond pulsars.

Today, there are three major PTAs: the Parkes PTA72 
in Australia, the European PTA Consortium65 and the 
NANOGrav73 consortium in North America. These 
arrays regularly achieve sub- microsecond timing on 
over 100 millisecond pulsars (MSPs), which collec-
tively form the International Pulsar Timing Array74 
(IPTA). PTA science is often sensitivity- limited, and 
many of the MSPs being discovered in recent sur-
veys have flux densities that often require hour- long 
observations with 100- m class (or larger) telescopes 
to achieve the requisite sub- microsecond timing. The 
Five- hundred- meter Aperture Spherical Telescope 
(FAST) (500 m diameter) and MeerKAT (64 antennas ×  
13.7 m diameter) telescopes have been commissioned, 
and are now commencing regular MSP timing, joining 
many existing 64–100- m class facilities in the Northern 
Hemisphere, and the Parkes 64- m telescope in the 
Southern Hemisphere. FIGURE 7 illustrates the radio 
telescopes used for pulsar timing experiments around 
the globe. NANOGrav has used two telescopes — the  
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Fig. 3 | The concept of a simple laser interferometer gravitational- wave detector. A gravitational- wave (GW) strain 
shortens one arm while lengthening the other as it passes the detector, resulting in a slight difference in round- trip travel 
time for the laser light. This, in turn, leads to a phase shift of the light in one arm of the detector relative to the other, 
creating a change in light intensity at the photodetector. The time- dependent intensity recorded by the photodetector 
produces a reconstruction of the propagating GW.

Timing residuals
Deviations of the measured 
pulsar pulse arrival times 
relative to the modelled arrival 
times based on the known 
physics of pulsar emissions.

Hellings and Downs curve
The predicted angular 
correlation of the timing 
residuals of an ensemble of 
independent pairs of pulsars  
as seen from Earth resulting 
from the presence of a 
gravitational- wave background.
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• Post-Minkowskian Expansion  
[relativistic scattering] 
 

• Post-Newtonian Expansion  
[non relativistic system] 
 

• BH perturbation theory / self force 

Effective One Body (EOB) Formalism  
the contributions coming from different kinematic regions for 
combined and calibrated with Numerical Relativity
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Sma
[xa, g] = Spp[xa, g] + δSma
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1
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ΓμΓμ)
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a
·xν
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•  Einstein Hilbert + gauge fixing •  Source/Worldline

Λ−1 = 32πGN

WORLDLINE QUANTUM FIELD THEORY: PROPAGATORS
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where pcani,µ = −∂Lpp/∂ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic
momentum miẋ

µ
i , so we have

mi∆ẋµ
i = i

∂ lnZWQFT

∂bi,µ
. (14)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

χ = −i lnZWQFT. (15)

In section III, we will perform a double copy for the
eikonal to next-to-leading order.
Since we will mostly work in momentum space, it will

be useful to express the worldline fluctuations as

zµ(τ) =

∫

ω
e−iωτzµ(ω),

Ψ(τ) =

∫

ω
e−iωτΨ(ω),

Ψ †(τ) =

∫

ω
e−iωτΨ †(−ω) .

(16)

The dual color wave function Ψ̃ in momentum space is
defined in the same way as Ψ . For convenience we use
the integral shorthands

∫

ω :=
∫

dω
2π ,

∫

k :=
∫

d4k
(2π)4 as well

as δ−(ω) := 2πδ(ω) and δ−(4)(kµ) := (2π)4δ(4)(kµ). When
evaluated on the worldline, the generic field Φ may be
expanded as

Φ(x(τ)) =

∫

k
eik·(b+vτ+z(τ))Φ(−k) =
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n=0
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)

+O(z2). (17)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµν to all orders in z may be found in [16].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ zν
ω

= − i

m

ηµν

ω2
(18)

Ψ † Ψ
ω

=
i

ω
. (19)

The propagator of the dual field Ψ̃ is identical to the one
for Ψ .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (16) and (17) we can expand the
interaction term of Spc from eq. (2) as
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+O
(

(z,Ψ)2
)

where we keep the interaction to linear order in worldline
fluctuations. The Feynman rules of the worldline-gluon

vertices can be directly read off from (20),

Aa
µ

k = igeik·bδ−(k · v)vµca (21)

zρ

Aa
µ

ω

k = −geik·bδ−(k·v + ω)

× (ωηµρ + vµkρ)ca
(22)

Ψ †

Aa
µ

ω

k = igeik·bδ−(k · v + ω)vµ(T aψ) (23)

Ψ

Aa
µ

ω

k = igeik·bδ−(k · v − ω)vµ(ψ†T a). (24)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

∫

dτφaã(x(τ))Ca(τ)C ã(τ) (25)

=
y

m

∫

k
eik·bφaã(−k)δ−(k · v)cacã

   Graviton propagator:⇒

Perturbative (quantum) gravity (in the bulk):
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Let us now establish the Feynman rules for the in-in WQFT. As we argued in

the last section if one is interested in tree-level one-point functions (as we are) we

only need the retarded propagators. We then have for the graviton

k

!µ⌫ ⇢�

� +
= i

Pµ⌫;⇢�

(k0 + i0)2 � k2
, (2.31)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1

D�2
⌘µ⌫⌘⇢�. The retarded worldline propagators for the

fluctuations zµ
i
(!) and anti-commuting vectors  0µ

i
(!) are respectively

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)2
,

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)
. (2.32)

Note that now the direction of the arrow above the propagators indicates the causality

flow. The retarded propagators were already used in [47–51].

For the in-in WQFT vertices at linear order in minus fields the vertex structure

is particularly simple — generalizing the scalar field discussion of eq. (2.27):

S
WQFT

in-in, int

���
lin �

= h
µ⌫

�

 
�S

WQFT

int
[h, z, 0]

�hµ⌫

!

+

+
2X

i=1

z
µ

i�

 
�S

WQFT

int
[h, z, 0]

�z
µ

i

!

+

+
2X

i=1

 
0µ
i�

 
�S

WQFT

int
[h, z, 0]

� 
0µ
i

!

+

. (2.33)

We find precisely the same Feynman rules (including symmetry factors) as in the

in-out formalism, with the distinction that these are extended by dressing each leg

successively by a minus label and all others by a plus label. Importantly, starting

with the one-point functions connected to the background trajectories the connecting

graviton field always carries a minus label:

hµ⌫(k)

�

, (2.34)

while the tensorial structure remains as before [47–51]. Again, the outgoing leg

relevant for the one-point functions hhµ⌫

+ (k)i, hzµ
i+
(!)i or h 0µ

i+
(!)i is strictly plus by

virtue of (2.23).

This leads to the following causality structure for the WQFT in the in-in for-

malism: for the graviton emission

hh
µ⌫(k)i =

� � �

� � �

k

+�
µ⌫

+
+
+

+
+
+

(2.35)
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retarded propagator

(in-in formalism)
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GR Effective Field Theory (GREFT)
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h⇥(⌧, ✓) =
1

r

✓
GNMc

c2

◆5/4✓ 5

c⌧

◆1/4

cos(✓)sin(�(t)) , (1.101)

where ⌧ = tcoal � t is the time to coalescence.
From (1.92) and (1.99) we obtain the time dependence of the GW phase �:

�(⌧) = �2

✓
5GNMc

c3

◆�5/8

⌧5/8 + �0 (1.102)

in which we used d⌧ = �dt and the integration constant �0 associated to the value of � at coalescence,
namely �0 = �(⌧ = 0).
Approaching the coalescence this quasi-circular orbit description eventually loses its validity, due to
the visible growth of Ṙ and ẇs, however at this stage we would be definitely outside the inspiral
phase, namely the one we are interested in.
Besides, even within the quasi-circular regime the currently achieved results represent only a first step
in the modeling of binary-radiated GWs, suitable to support the detection experiments, since they
are the ultimate offspring of the quadrupole approximation in the context of Newtonian dynamics.
In the next section we will address the problems one encounters in trying to go beyond linearized
General Relativity and introduce possible analytical methods to accomplish that.

1.7 Beyond Linearized General relativity

Figure 1.2: Contributions to PM and PN perturbative schemes at different orders. PM order scales with the
number of horizontal lines, whereas PN order is increases along the diagonals

In order to describe the production of GWs in a multipole expansion in v/c, with v the typical internal
speed of the system, we assumed that the background space-time is the usual Minkowski one, and
that the GWs sources do not contribute to the space-time curvature. However, this assumption is
valid only if the background space-time curvature and the velocity of the source can be treated as
independent variables. Unfortunately, this is not the case if the system is governed by gravitational
forces.
Indeed, for a self-gravitational system the virial theorem holds:

v2

c2
⇠ rs

r
, (1.103)

where rs = 2Gm/c2 is the Schwarzschild radius, m the total mass, and r the typical size of the
system. Since the ratio rs/r is a way to quantify the strength of the gravitational field around the
corresponding system, if we want to increase multipoles we need to modify the background space-
time. Therefore, we cannot proceed straightforwardly in the multipole expansion while remaining
in the theoretical framework of the previous sections. We need to use more accurate models which
give us general relativistic corrections as progressive deviations from the Minkowskian background
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1PM

2PM

3PM

4PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

+ + + + +1 v2 v4 v6 v8

+ + + + + +1 v2 v4 v6 v8 v10

+ + + + + + +1 v2 v4 v6 v8 v10 v12

+ + + + + + + + . . .1 v2 v4 v6 v8 v10 v12 v14

. . .

. . .

. . .

( ) G

) G2

) G3

) G4

(

(

(

6PM . . .) G6+ + +1 v2 v4(

5PM + + + +1 v2 v4 v6 . . .) G5(

1687

1938

1980

2000

2014

Extensive work in the spinless PN theory, using (mostly) traditional methods: 

Ohta, Okamura, Kimura, Hiida, Jaranowski, Schäfer, Damour, Jaranowski, Blanchet, Faye, Porto, Rothstein, 
Iyer, Will, Wiseman, Poisson, Cutler, Finn, Flanagan, Deruelle, Thorne, Sathyaprakash, Bini, Geralico, Goldberger, 
Rothstein, Buonanno, Le Tiec, Marsat, Foffa, Sturani, Mastrolia, Sturm, Torres Bobadilla, Blümlein, Maier, Marquard, etc.

1PM

2PM

3PM

4PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

+ + + + +1 v2 v4 v6 v8

+ + + + + +1 v2 v4 v6 v8 v10

+ + + + + + +1 v2 v4 v6 v8 v10 v12

+ + + + + + + + . . .1 v2 v4 v6 v8 v10 v12 v14

. . .

. . .

. . .

( ) G

) G2

) G3

) G4

(

(

(

6PM . . .) G6+ + +1 v2 v4(

5PM + + + +1 v2 v4 v6 . . .) G5(

1687

1938

1980

2000

2014
6PM

Extensive work in the spinless PN theory, using (mostly) traditional methods: 

Ohta, Okamura, Kimura, Hiida, Jaranowski, Schäfer, Damour, Jaranowski, Blanchet, Faye, Porto, Rothstein, 
Iyer, Will, Wiseman, Poisson, Cutler, Finn, Flanagan, Deruelle, Thorne, Sathyaprakash, Bini, Geralico, Goldberger, 
Rothstein, Buonanno, Le Tiec, Marsat, Foffa, Sturani, Mastrolia, Sturm, Torres Bobadilla, Blümlein, Maier, Marquard, etc.

1PM

2PM

3PM

4PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

+ + + + +1 v2 v4 v6 v8

+ + + + + +1 v2 v4 v6 v8 v10

+ + + + + + +1 v2 v4 v6 v8 v10 v12

+ + + + + + + + . . .1 v2 v4 v6 v8 v10 v12 v14

. . .

. . .

. . .

( ) G

) G2

) G3

) G4

(

(

(

6PM . . .) G6+ + +1 v2 v4(

5PM + + + +1 v2 v4 v6 . . .) G5(

1687

1938

1980

2000

2014

Extensive work in the spinless PN theory, using (mostly) traditional methods: 

Ohta, Okamura, Kimura, Hiida, Jaranowski, Schäfer, Damour, Jaranowski, Blanchet, Faye, Porto, Rothstein, 
Iyer, Will, Wiseman, Poisson, Cutler, Finn, Flanagan, Deruelle, Thorne, Sathyaprakash, Bini, Geralico, Goldberger, 
Rothstein, Buonanno, Le Tiec, Marsat, Foffa, Sturani, Mastrolia, Sturm, Torres Bobadilla, Blümlein, Maier, Marquard, etc.

1PM

2PM

3PM

4PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

+ + + + +1 v2 v4 v6 v8

+ + + + + +1 v2 v4 v6 v8 v10

+ + + + + + +1 v2 v4 v6 v8 v10 v12

+ + + + + + + + . . .1 v2 v4 v6 v8 v10 v12 v14

. . .

. . .

. . .

( ) G

) G2

) G3

) G4

(

(

(

6PM . . .) G6+ + +1 v2 v4(

5PM + + + +1 v2 v4 v6 . . .) G5(

1687

1938

1980

2000

2014

Extensive work in the spinless PN theory, using (mostly) traditional methods: 

Ohta, Okamura, Kimura, Hiida, Jaranowski, Schäfer, Damour, Jaranowski, Blanchet, Faye, Porto, Rothstein, 
Iyer, Will, Wiseman, Poisson, Cutler, Finn, Flanagan, Deruelle, Thorne, Sathyaprakash, Bini, Geralico, Goldberger, 
Rothstein, Buonanno, Le Tiec, Marsat, Foffa, Sturani, Mastrolia, Sturm, Torres Bobadilla, Blümlein, Maier, Marquard, etc.

1PM

2PM

3PM

4PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

+ + + + +1 v2 v4 v6 v8

+ + + + + +1 v2 v4 v6 v8 v10

+ + + + + + +1 v2 v4 v6 v8 v10 v12

+ + + + + + + + . . .1 v2 v4 v6 v8 v10 v12 v14

. . .

. . .

. . .

( ) G

) G2

) G3

) G4

(

(

(

6PM . . .) G6+ + +1 v2 v4(

5PM + + + +1 v2 v4 v6 . . .) G5(

1687

1938

1980

2000

2014

18 CHAPTER �. GRAVITATIONAL WAVES IN GENERAL RELATIVITY

h⇥(⌧, ✓) =
1

r

✓
GNMc

c2

◆5/4✓ 5

c⌧

◆1/4

cos(✓)sin(�(t)) , (1.101)

where ⌧ = tcoal � t is the time to coalescence.
From (1.92) and (1.99) we obtain the time dependence of the GW phase �:

�(⌧) = �2
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in which we used d⌧ = �dt and the integration constant �0 associated to the value of � at coalescence,
namely �0 = �(⌧ = 0).
Approaching the coalescence this quasi-circular orbit description eventually loses its validity, due to
the visible growth of Ṙ and ẇs, however at this stage we would be definitely outside the inspiral
phase, namely the one we are interested in.
Besides, even within the quasi-circular regime the currently achieved results represent only a first step
in the modeling of binary-radiated GWs, suitable to support the detection experiments, since they
are the ultimate offspring of the quadrupole approximation in the context of Newtonian dynamics.
In the next section we will address the problems one encounters in trying to go beyond linearized
General Relativity and introduce possible analytical methods to accomplish that.

1.7 Beyond Linearized General relativity

Figure 1.2: Contributions to PM and PN perturbative schemes at different orders. PM order scales with the
number of horizontal lines, whereas PN order is increases along the diagonals

In order to describe the production of GWs in a multipole expansion in v/c, with v the typical internal
speed of the system, we assumed that the background space-time is the usual Minkowski one, and
that the GWs sources do not contribute to the space-time curvature. However, this assumption is
valid only if the background space-time curvature and the velocity of the source can be treated as
independent variables. Unfortunately, this is not the case if the system is governed by gravitational
forces.
Indeed, for a self-gravitational system the virial theorem holds:

v2

c2
⇠ rs

r
, (1.103)

where rs = 2Gm/c2 is the Schwarzschild radius, m the total mass, and r the typical size of the
system. Since the ratio rs/r is a way to quantify the strength of the gravitational field around the
corresponding system, if we want to increase multipoles we need to modify the background space-
time. Therefore, we cannot proceed straightforwardly in the multipole expansion while remaining
in the theoretical framework of the previous sections. We need to use more accurate models which
give us general relativistic corrections as progressive deviations from the Minkowskian background
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[credit: Bern et al.]
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•  Amplitudes based approach

Let us now consider a classical test of GR: bending of light. When one of the

particles is massless, we have
p
s = M + ! and p1 · p2 = M!. This yields

↵G = 2GM! . (2.11)

The deflection angle is given by ✓ = 2@�(s,b)

@J
, where b = J/!. This gives us

✓ =
4GM!

J
=

4GM

b
, (2.12)

which is the classic deflection angle formula in GR. Notice that the deflection angle

does not depend on the frequency !, just on the impact parameter b.

Audience question 2.1 Is the fact that ! cancels out a consequence of the equiv-

alence principle?

Answer: Yes, exactly. Higher orders including quantum corrections will give depen-

dence on the frequency.

We can also consider the Shapiro time delay. Recall that the time delay is given

by �t = 2@�(s,b)

@
p
s
. In the case of a null geodesic, for which

p
s = ! +M , we get

�t = �4GM log(b/bIR) > 0 , (2.13)

which again is the correct answer in GR. As expected, gravity slows you down.

Let us now do something slightly more interesting and ask what would happen

as we go to higher orders in the expansion. The amplitude admits an expansion with

more and more loops:

iM = + + + + + . . .

(2.14)

In the hydrogen atom, the tree-level diagram contains the Coulomb potential and

the ladder diagrams are iterations of it. However, in GR we have mixing between

di↵erent terms. To distinguish which terms contribute to the ‘potential’ and which

terms are iterations, we will use the connection to an “e↵ective-one-body” Lippmann–

Schwinger equation, which resums all such contributions. We will follow the exposi-

tion of Todorov [3], who did his work in 1970 while at IAS (see also [9] for a modern

review).

2.2 Relativistic Born series

In the center of mass frame we have the ingoing momenta

p
µ

1
= (E1,p) , E1 =

q
|p|2 +m

2

1
, (2.15)
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The Fourier transform to position space gives

V (r) =
G

r

m
2

1
m

2

2
� 2(p1 · p2)2p

s
� G

2

r2

3m2

1
m

2

2
(m1 +m2)

2
p
s

(1� 5�2) +O(G3) , (2.41)

where we remind that

� ⌘ p1 · p2
m1m2

. (2.42)

We can then compute O(G2) corrections to the deflection angle. In fact, the state of

the art is currently O(G4), or equivalently 3 loops. For the purposes of this section,

we will be satisfied with O(G2).

Let us compute one more classical test of GR: the precession of the perihelion

of Mercury. It is reproduced by plugging the above potential into the radial action

(1.41) and taking its J derivative:

�� = ⇡ +
@IJ(E)

@J
= G

2
3⇡m2

1
m

2

2
(m1 +m2)

2J2
p
s

(5�2 � 1) . (2.43)

In the non-relativistic limit we have � ! 1 and
p
s ! m1 + m2. If in addition,

we use the probe limit m = m2 ⌧ m1 = M and make use of the identity J
2 =

m
2
GM(1� e

2)a, we find the famous result of the Mercury perihelion shift

��Mercury =
6⇡GM

(1� e2)a
. (2.44)

Now, let us say some words about higher orders in this perturbative expansion

in G. What is exciting about this expansion is that there is some new physical

e↵ect at every order. At O(G2) we have the perihelion precession just discussed.

At order O(G3) there are radiation e↵ects. For radiative e↵ects one can use the so-

called Kosower–Maybee–O’Connell (KMOC) formalism [13]. The big open problem

in this area is how to analytically continue the result of the scattering problem to

the bound-state problem. The problem occurs at O(G4), where you get diagrams of

this form:

(2.45)

These are responsible for the tail e↵ects. The radiated graviton feels the attraction of

the two-body system it was emitted from (this does not happen in QED due to lack

of photon self-interactions). When trying to compute the e↵ective potential with

these diagrams, we get terms of the form G
4
⇢(E), where ⇢(E) is a distribution, not

a function, of the energy. It does not admit a good analytic continuation. The way

to deal with it is a big open problem.
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and

Smatter =

Z
d4
x

h
(@�1)

2 + (@�2)
2 +

p
Ghµ⌫(T

µ⌫ [�1] + T
µ⌫ [�2]) +O(G)

i
. (2.6)

The action has an infinite number of terms, which becomes quite cumbersome at

higher orders. This is where the on-shell revolution plays a big role. Essentially, we

have learned that we do not need any of this formalism.2

We are going to follow the “bootstrap” philosophy and use general principles to

constrain the amplitudes instead. It will su�ce to know that the graviton is a spin-2

massless particle and use a few of the modern tools such as:

• Unitarity and factorization on poles

• Spinor-helicity formalism

• Double copy relations (gravity ⇠ Yang–Mills2)

• Generalized unitarity

• Integration by parts and di↵erential equations

In this lecture we are not going to review any of the above methods, instead we are

mostly interested in how to extract physical observables from scattering amplitudes.

Analogously to the hydrogen atom case discussed previously, we start with tree-

level scattering of m1m2 ! m1m2 in gravity, which reads:

iM0 = = 16⇡G
(2(p1 · p2)2 �m

2

1
m

2

2
)

t
⌘ 16⇡G

m
2

1
m

2

2
(2�2 � 1)

t
, (2.7)

in the small t limit. We define � ⌘ p1·p2
m1m2

. The eikonal phase at the leading order in

G is then

�(s, b) = �↵G(s) log(b/bIR) , (2.8)

with

↵G(s) = G
2(p1 · p2)2 �m

2

1
m

2

2p
s|p| =

Gm1m2(2�2 � 1)p
�2 � 1

. (2.9)

In the non-relativistic limit (say one of the particles is very heavy, m1 = M � m =

m2) we have p1 · p2 = Mm and
p
s = M . This gives us

↵G =
2GMm

2

|p| =
2GMmp
2E/m

, (2.10)

where E ⌘ |p|2
2m

coming from E ⌘
p
s�M �m. Notice that structurally, this is the

same e↵ective coupling we got before in (1.9) for QED.

2At this stage, Miguel crossed out all the above equations.
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•  Potential V from Lippman-Schwinger equation

p
µ

2
= (E2,�p) , E2 =

q
|p|2 +m

2

2
, (2.16)

with the outgoing momenta given by

p
µ

3
= (E1,p

0) = (E1,p+ q) , (2.17)

p
µ

4
= (E2,�p0) = (E2,�p� q) . (2.18)

Here, q = p0�p is the momentum exchange. Let T (s, t) be the scattering amplitude

for the scattering of two scalars of mass m1 and m2 where the Mandelstam invariants

read

s = (p1 + p2)
2
, t = (p1 � p3)

2
. (2.19)

These relate to p and q in the center of mass frame via

|p|2 =
⇥
s� (m1 +m2)2

⇤⇥
s� (m1 �m2)2

⇤

4s
, t = �|p0 � p|2 = �|q|2. (2.20)

The vectors p and q are further constrained by the condition p · q = �|q|2/2 that

stems from energy conservation |p| = |p0|. We will use the notation T (p,p0) where

it is understood that the dependence on s and t is given in terms of p and p0 in

Eq. (2.20).

We define the potential V (p,q) in terms of the Lippmann–Schwinger equation:

T (p,p0) = V (p,p0) +

Z
d3kT (p,k)G(p,k)V (k,p0) , (2.21)

where G(p,k) is a Green’s function. It is not unique, but it will have to satisfy

some consistency conditions and we will fix it shortly. This equation is easier to

understand at the level of pictures:

= +T V T V

p

�p� �p

p� p p� p p� k

�k

�p� �p �p �p� 

(2.22)

Note that in the last term, the momentum k is o↵-shell and we integrate over it.

The fact we chose this to be a 3D integral makes it connect directly to the

standard Lippmann–Schwinger equation of one-body quantum mechanics. In fact,

in the eikonal or WKB limit one finds a relation to the e↵ective one-body formalism

by Buonanno and Damour [11, 12].3

3Miguel was not sure about the spelling of Alessandra Buonanno’s family name. The Italians in
the audience advised that it should contain three instances of the letter n.
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G

We now require the potential V (p,p0) = V (s, t) to be a real function in the

scattering regime s > (m1 +m2)2, i.e.,

ImV (p,p0) = 0 for s > (m1 +m2)
2
. (2.23)

We will now also require consistency of the Lippmann–Schwinger equation with elas-

tic unitarity in order to fix the form of G(p,k). Elastic unitarity, which is the optical

theorem applied below the three-particle threshold, reads

ImT (p,p0) =
1

8⇡2

Z
d4
k �

+
�
k
2 �m

2

1

�
�
+
�
(k � p1 � p2)

2 �m
2

2

�
T (p, k)T ⇤(k, p0)

=
1

16⇡2
p
s

Z
d3k �(|k|2 � |p|2)T (p,k)T ⇤(k,p0) , (2.24)

where k is the 4-momentum and �
+ denote putting the corresponding particle on-

shell and imposing the positive-energy condition. In the second line, we recast it

as a 3D integral in order to resemble the Lippmann–Schwinger equation, by getting

rid of one of the delta functions. Since we imposed that V (p,q) is real across the

2-particle cut, the discontinuity of the amplitude should be captured by the Green’s

function G(p,k).

To arrive at the constraint on G as quickly as possible, it will pay o↵ to work

with a short-hand notation. Schematically, the relativistic Born series can be written

as

T = V + V GV + V GV GV + · · · = V
1

1�GV
, (2.25)

where multiplication denotes integrating over the intermediate momentum, as above,

and we suppress all the constants and kinematic dependence. Imposing the reality

condition, V ⇤ = V , gives

T
⇤ = V

1

1�G⇤V
. (2.26)

In the same notation, Elastic unitarity takes the form

T � T
⇤ = TT

⇤
. (2.27)

Using (2.25) and (2.26), the right-hand side can be written as

TT
⇤ = V

1

1�GV
V

1

1�G⇤V
, (2.28)

whereas the left-hand side is

T � T
⇤ = V


1

1�GV
� 1

1�G⇤V

�
= V

1

1�GV
(G�G

⇤)V
1

1�G⇤V
. (2.29)

Unitarity then fixes G�G
⇤ = 1, i.e., the imaginary part of the Green’s function is a

delta function. After carefully working out all the factors, in terms of equations this

constraint reads

ImG(p,k) =
�(|k|2 � |p|2)

16⇡2
p
s

. (2.30)
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+
�
k
2 �m

2

1

�
�
+
�
(k � p1 � p2)

2 �m
2
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�
T (p, k)T ⇤(k, p0)

=
1

16⇡2
p
s

Z
d3k �(|k|2 � |p|2)T (p,k)T ⇤(k,p0) , (2.24)

where k is the 4-momentum and �
+ denote putting the corresponding particle on-

shell and imposing the positive-energy condition. In the second line, we recast it

as a 3D integral in order to resemble the Lippmann–Schwinger equation, by getting

rid of one of the delta functions. Since we imposed that V (p,q) is real across the

2-particle cut, the discontinuity of the amplitude should be captured by the Green’s

function G(p,k).

To arrive at the constraint on G as quickly as possible, it will pay o↵ to work

with a short-hand notation. Schematically, the relativistic Born series can be written

as

T = V + V GV + V GV GV + · · · = V
1

1�GV
, (2.25)

where multiplication denotes integrating over the intermediate momentum, as above,

and we suppress all the constants and kinematic dependence. Imposing the reality

condition, V ⇤ = V , gives

T
⇤ = V

1

1�G⇤V
. (2.26)

In the same notation, Elastic unitarity takes the form

T � T
⇤ = TT

⇤
. (2.27)

Using (2.25) and (2.26), the right-hand side can be written as

TT
⇤ = V

1

1�GV
V

1

1�G⇤V
, (2.28)

whereas the left-hand side is

T � T
⇤ = V


1

1�GV
� 1

1�G⇤V

�
= V

1

1�GV
(G�G

⇤)V
1

1�G⇤V
. (2.29)

Unitarity then fixes G�G
⇤ = 1, i.e., the imaginary part of the Green’s function is a

delta function. After carefully working out all the factors, in terms of equations this

constraint reads

ImG(p,k) =
�(|k|2 � |p|2)

16⇡2
p
s

. (2.30)
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The simplest choice is to write the solution as

G(p,k) =
1

(2⇡)3
1

2
p
s

1

|k|2 � |p|2 � i✏
, (2.31)

This solution is written up to analytic (real) terms which can be absorbed into the

potential.

Audience question 2.2 So what exactly is the freedom in choosing G?

Answer: You can add any analytic function to the above solution, as long as it is

compatible with the constraint (2.30). Di↵erent choices will lead to other e↵ective

potentials V di↵ering by o↵-shell pieces. In coordinate space these choices correspond

to di↵erent coordinate systems [9]. We observe that the above choice selects isotropic

coordinates (see below).

Let us take the non-relativistic probe limit as a cross-check. This amounts to

setting:
p
s = M +m+ E, |p|2 = 2µE =

2mM

m+M
E , (2.32)

where we made use of Eq. (2.20) and µ = m1m2
m1+m2

is the reduced mass of the system.

In this limit, we get

G ⇠ 1
|k|2
2µ

� E � i"

. (2.33)

This is precisely the non-relativistic propagator from the Schrödinger equation, as

expected.

Let us examine this Green’s function closer. The |k|2 dependence is the same in

the relativistic and non-relativistic cases. It means that after a Fourier transform,

we still get quadratic derivatives in the spatial directions. The di↵erence is the

dependence on E, which is linear in the non-relativistic case. This is in contrast to

the relativistic case, in which we had

|p|2 = [s� (m1 +m2)2][s� (m1 �m2)2]

4s
, (2.34)

and the energy dependence is very non-linear. To summarize, we end up with an

e↵ective Schrödinger equation with

|k|2 ! �r2
, |p|2 = f(E) , (2.35)

for f(E) given by eq. (2.34) where s = E
2. This is called the relativistic e↵ective

one-body Schrödinger equation:

f(E) = (r2 + V ) . (2.36)
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𝒪(G) 𝒪(G3)

p
µ

2
= (E2,�p) , E2 =

q
|p|2 +m

2

2
, (2.16)

with the outgoing momenta given by

p
µ

3
= (E1,p

0) = (E1,p+ q) , (2.17)

p
µ

4
= (E2,�p0) = (E2,�p� q) . (2.18)

Here, q = p0�p is the momentum exchange. Let T (s, t) be the scattering amplitude

for the scattering of two scalars of mass m1 and m2 where the Mandelstam invariants

read

s = (p1 + p2)
2
, t = (p1 � p3)

2
. (2.19)

These relate to p and q in the center of mass frame via

|p|2 =
⇥
s� (m1 +m2)2

⇤⇥
s� (m1 �m2)2

⇤

4s
, t = �|p0 � p|2 = �|q|2. (2.20)

The vectors p and q are further constrained by the condition p · q = �|q|2/2 that

stems from energy conservation |p| = |p0|. We will use the notation T (p,p0) where

it is understood that the dependence on s and t is given in terms of p and p0 in

Eq. (2.20).

We define the potential V (p,q) in terms of the Lippmann–Schwinger equation:

T (p,p0) = V (p,p0) +

Z
d3kT (p,k)G(p,k)V (k,p0) , (2.21)

where G(p,k) is a Green’s function. It is not unique, but it will have to satisfy

some consistency conditions and we will fix it shortly. This equation is easier to

understand at the level of pictures:

= +T V T V

p

�p� �p

p� p p� p p� k

�k

�p� �p �p �p� 

(2.22)

Note that in the last term, the momentum k is o↵-shell and we integrate over it.

The fact we chose this to be a 3D integral makes it connect directly to the

standard Lippmann–Schwinger equation of one-body quantum mechanics. In fact,

in the eikonal or WKB limit one finds a relation to the e↵ective one-body formalism

by Buonanno and Damour [11, 12].3

3Miguel was not sure about the spelling of Alessandra Buonanno’s family name. The Italians in
the audience advised that it should contain three instances of the letter n.
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•  GR EFT Feynman rules / on-shell / double-copy / spinor-formalism / recurrence relations

PM Corrections / Scattering Amplitudes based approach
Cheung, Rothstein, Solon
Bern, Cheung, Hermannn, Parra Martinez,  
Roiban, Schen Solon, Zeng…
(see Correia et al.’s review)

Correia, Isabella 
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|ψ⟩in = ∫ dϕ(p1)dϕ(p2) ϕ1(p1)ϕ2(p2)ei(b1⋅p1+b2⋅p2) |p1, p2⟩in |ψ⟩out = S |ψ⟩in S = 1 + i T
wavefunction Two particle  

momentum eigenstates
On-shell phase 
 space integral

Δ⟨𝒪⟩ = ⟨𝒪⟩out − ⟨𝒪⟩in = out⟨ψ |𝒪 |ψ⟩out − in⟨ψ |𝒪 |ψ⟩in = in⟨ψ |S†[𝒪, S] |ψ⟩in

•  Expectation value of a Physical Observable: 

• Asymptotic states

• Impulse as Fourier Transform of Scattering Amplitudes dμ =
2

∏
i=1

̂dDqi δ(2pi ⋅ qi + q2
i ) eibi⋅qi

− i ∫ d(LIPS) ℓμΔ⟨pμ
1 ⟩ = ∫ dμ ̂δD(q1 + q2)( ) .

4-point amplitude Iteration terms 
Fourier Transform

qμ

• Waveform as Fourier Transform of Scattering Amplitudes

Δ⟨𝒲h⟩(u, ⃗n) =
1

4πr ∫
∞

0

̂dω∫ dμ{ ̂δD(q1 + q2 − k)e−i ωu ( ) + c . c.}− i ∫ d(LIPS)

5-point amplitude Iteration termsFourier Transform

>> [in-in formalims]

[credit: Brunello]

PM Corrections / Classical Observables based approach (KMOC) Kosower, Maybee,o’Connel

Brunello,  De Angelis

Caron Huot, Giroux,  
Hanesdottir, Mizera
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• Scattering scenario
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RELATIVISTIC TWO BODY PROBLEM IN PM: TRADITIONAL  APPROACH 

Point-particle approximation for BHs (or NSs)
<latexit sha1_base64="BbYPIhx1CBztnAc7AQCSCpt9i/0="></latexit>

S = �
2X

i=1

Z
d⌧i

q
gµ⌫ ẋ

µ
i (⌧i)ẋ

⌫
i (⌧i) +

1

16⇡G

Z
d4x

p
�gR+ Sg.f.

Point particle approximation Bulk gravity & gauge fixing

1) Equations of motion: <latexit sha1_base64="J0URwpa/GZJ/SEN9IxzsZz43B5Y="></latexit>

Rµ⌫ � 1

2
gµ⌫ =

2

8
Tµ⌫

Einstein’s eqs.

<latexit sha1_base64="Ff+O1Yjjgngkp2ZLUtiWKKnNyAk="></latexit>

ẍµ
i + �µ

⌫⇢ẋ
⌫
i ẋ

⇢
i = 0

Geodesic eqs.

3) Construct observables

Far field waveform:

„Impulse“ (change in momentum):

<latexit sha1_base64="mXJVakUmDN8wwKRFKQBieqn0a8g="></latexit>

lim
r!1

hµ⌫ =
fµ⌫(t� r, ✓,')

r
+O(

1

r2
)

14

straight line: „in“ state deflectionsemitted radiation

2) Solve iteratively in 
<latexit sha1_base64="gqOnhn4WtQHF8ooes4RYnLpamAs="></latexit>

xµ
i (⌧) = bµi + vµi ⌧ +

1X

n=1

Gnz(n)µi (⌧)

<latexit sha1_base64="fR8FsciwB9vuBKVAh+g9I+v9ZU4="></latexit>
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ẍµ
i + �µ

⌫⇢ẋ
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straight line: „in“ state deflectionsemitted radiation

2) Solve iteratively in 
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xµ
i (⌧) = bµi + vµi ⌧ +

1X

n=1

Gnz(n)µi (⌧)
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gµ⌫ = ⌘µ⌫ +
p
G

1X

n=0

Gnh(n)
µ⌫ (x)

WORLDLINE QUANTUM FIELD THEORY: PERTURBATIVE SETUP
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SWQFT = �m

2

Z
d⌧gµ⌫ ẋ

µ(⌧) ẋ⌫(⌧) +
1

16⇡G

Z
d4x

p
�g R(g)
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gµ⌫ = ⌘µ⌫ +
p
Ghµ⌫
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xµ
i (⌧) = bµi + vµi ⌧ + zµ(⌧)Scattering scenario:

Worldline propagators: 
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hzµ(!)z⌫(�!)i = � i

m

⌘µ⌫
(! + i0)2

4

where pcani,µ = −∂Lpp/∂ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic
momentum miẋ

µ
i , so we have

mi∆ẋµ
i = i

∂ lnZWQFT

∂bi,µ
. (14)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

χ = −i lnZWQFT. (15)

In section III, we will perform a double copy for the
eikonal to next-to-leading order.
Since we will mostly work in momentum space, it will

be useful to express the worldline fluctuations as

zµ(τ) =

∫

ω
e−iωτzµ(ω),

Ψ(τ) =

∫

ω
e−iωτΨ(ω),

Ψ †(τ) =

∫

ω
e−iωτΨ †(−ω) .

(16)

The dual color wave function Ψ̃ in momentum space is
defined in the same way as Ψ . For convenience we use
the integral shorthands

∫

ω :=
∫

dω
2π ,

∫

k :=
∫

d4k
(2π)4 as well

as δ−(ω) := 2πδ(ω) and δ−(4)(kµ) := (2π)4δ(4)(kµ). When
evaluated on the worldline, the generic field Φ may be
expanded as

Φ(x(τ)) =

∫

k
eik·(b+vτ+z(τ))Φ(−k) =

∞
∑

n=0

in

n!

∫

k
eik·(b+vτ)(k · z(τ))nΦ(−k)

=

∫

k
eik·bΦ(−k)

(

eik·vτ + i

∫

ω
ei(k·v+ω)τk · z(−ω)

)

+O(z2). (17)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµν to all orders in z may be found in [16].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ zν
ω

= − i

m

ηµν

ω2
(18)

Ψ † Ψ
ω

=
i

ω
. (19)

The propagator of the dual field Ψ̃ is identical to the one
for Ψ .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (16) and (17) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

∫

dτ ẋµ(τ) ·Aa(x(τ))Ca(τ) (20)

=g

∫

k
eik·bv ·Aa(−k)δ−(k · v)ca

+ g

∫

k,ω
eik·bAa

µ(−k)δ−(k · v + ω)

×
[

i
(

ωzµ(−ω) + vµk · z(−ω)
)

ca

+ vµ(ψ†T aΨ(−ω)+Ψ †(ω)T aψ)
]

+O
(

(z,Ψ)2
)

where we keep the interaction to linear order in worldline
fluctuations. The Feynman rules of the worldline-gluon

vertices can be directly read off from (20),

Aa
µ

k = igeik·bδ−(k · v)vµca (21)

zρ

Aa
µ

ω

k = −geik·bδ−(k·v + ω)

× (ωηµρ + vµkρ)ca
(22)

Ψ †

Aa
µ

ω

k = igeik·bδ−(k · v + ω)vµ(T aψ) (23)

Ψ

Aa
µ

ω

k = igeik·bδ−(k · v − ω)vµ(ψ†T a). (24)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

∫

dτφaã(x(τ))Ca(τ)C ã(τ) (25)

=
y

m

∫

k
eik·bφaã(−k)δ−(k · v)cacã

  graviton propagator:⇒

Perturbative (quantum) gravity: 
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Pµ⌫;⇢� = ⌘µ(⇢⌘�)⌫ � 1

2
⌘µ⌫⌘⇢�

Let us now establish the Feynman rules for the in-in WQFT. As we argued in

the last section if one is interested in tree-level one-point functions (as we are) we

only need the retarded propagators. We then have for the graviton

k

!µ⌫ ⇢�

� +
= i

Pµ⌫;⇢�

(k0 + i0)2 � k2
, (2.31)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1

D�2
⌘µ⌫⌘⇢�. The retarded worldline propagators for the

fluctuations zµ
i
(!) and anti-commuting vectors  0µ

i
(!) are respectively

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)2
,

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)
. (2.32)

Note that now the direction of the arrow above the propagators indicates the causality

flow. The retarded propagators were already used in [47–51].

For the in-in WQFT vertices at linear order in minus fields the vertex structure

is particularly simple — generalizing the scalar field discussion of eq. (2.27):

S
WQFT

in-in, int

���
lin �

= h
µ⌫

�

 
�S

WQFT

int
[h, z, 0]

�hµ⌫

!

+

+
2X

i=1

z
µ

i�

 
�S

WQFT

int
[h, z, 0]

�z
µ

i

!

+

+
2X

i=1

 
0µ
i�

 
�S

WQFT

int
[h, z, 0]

� 
0µ
i

!

+

. (2.33)

We find precisely the same Feynman rules (including symmetry factors) as in the

in-out formalism, with the distinction that these are extended by dressing each leg

successively by a minus label and all others by a plus label. Importantly, starting

with the one-point functions connected to the background trajectories the connecting

graviton field always carries a minus label:

hµ⌫(k)

�

, (2.34)

while the tensorial structure remains as before [47–51]. Again, the outgoing leg

relevant for the one-point functions hhµ⌫

+ (k)i, hzµ
i+
(!)i or h 0µ

i+
(!)i is strictly plus by

virtue of (2.23).

This leads to the following causality structure for the WQFT in the in-in for-

malism: for the graviton emission

hh
µ⌫(k)i =

� � �

� � �

k

+�
µ⌫

+
+
+

+
+
+

(2.35)
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N.B. need to take 
retarded propagator

(in-in formalism)
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WORLD LINE VERTICES
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Worldline vertices: 1-graviton & m world-line deflections

Energy conservation on worldline

4.2 Recursive properties

The Feynman rules (4.18), (4.20) and (4.21) satisfy recursive properties:

hµ⌫(k)

z
⇢(0)

=
@

@b⇢

hµ⌫(k)

, (4.23a)

hµ⌫(k)

 
0⇢(0)

=
@

@ ⇢

hµ⌫(k)

. (4.23b)

In ref. [1] (the non-spinning case) the first relationship was generalized to n points:

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)
z
⇢n+1(0)

=
@

@b⇢n+1

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)

. (4.24)

In words: a vertex with (n + 1) external zµ particles, and !n+1 = 0, is given by

a derivative with respect to the impact parameter b
µ of the corresponding n-point

vertex. We claim this continues to hold when spin is included, and that eq. (4.23b)

generalizes similarly, regardless of what other external lines are present on the vertex.

In the non-spinning case we confirmed this recursive property using an analytic

expression for the worldline vertices:

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)

= i
n�1

m e
ik·b
�
�
✓
k · v +

nX

i=1

!i

◆
⇥ (4.25)

 
1

2

 
nY

i=1

k⇢i

!
v
µ
v
⌫ +

nX

i=1

!i

 
nY

j 6=i

k⇢j

!
v
(µ
�
⌫)

⇢i
+

nX

i<j

!i!j

 
nY

l 6=i,j

k⇢l

!
�
(µ

⇢i
�
⌫)

⇢j

!
.

With the inclusion of spin, however, we no longer have such a compact expression

and therefore argue di↵erently.

At the Lagrangian level these properties follow straightforwardly from

@L
(i)(⌧)

@b
µ

i

=
@L

(i)(⌧)

@z
µ

i
(⌧)

,
@L

(i)(⌧)

@ µ

i

=
@L

(i)(⌧)

@ 
0µ
i
(⌧)

, (4.26)

where S
(i) + S

(i)

E
=
R
d⌧ L(i)(⌧) (we are now ignoring the ghosts). The former is true

simply because the Lagrangian L
(i) depends on b

µ

i
and z

µ

i
only implicitly via x

µ

i
(⌧) =
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This term gives rise to the stress-energy tensor T µ⌫(k) = meik·b��(k · v)vµv⌫ (see e.g.

ref. [85]) which we interpret as a classical source for hµ⌫ . The Feynman rule is

hµ⌫(k)

= �i
m

2mPl

eik·b��(k · v)vµv⌫ , (4.12)

with k outgoing. It is a tadpole: the dotted line represents the worldline, and is

intended only as a visual aid. The linear terms in zµ are

Sint

pm

��
z
= �i

m

2mPl

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
�
2!v(µ�⌫)⇢ + vµv⌫k⇢

�
, (4.13)

from which we read o↵ the two-point vertex:

hµ⌫(k)

z⇢(!)
=

m

2mPl

eik·b��(k · v + !)
�
2!v(µ�⌫)⇢ + vµv⌫k⇢

�
. (4.14)

The energy ! is also taken as outgoing. Finally, to quadratic order in zµ:

Sint

pm

��
z2

=
m

2mPl

Z

k,!1,!2

eik·b��(k · v + !1 + !2)hµ⌫(�k)z⇢1(�!1)z
⇢2(�!2)⇥

✓
1

2
k⇢1k⇢2v

µv⌫ + !1k⇢2v
(µ�⌫)⇢1 + !2k⇢1v

(µ�⌫)⇢2 + !1!2�
(µ
⇢1�

⌫)
⇢2

◆
.

(4.15)

The associated trivalent Feynman vertex is

hµ⌫(k)

z⇢1(!1)
z⇢2(!2)

= i
m

mPl

eik·b��(k · v + !1 + !2)⇥ (4.16)
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k⇢1k⇢2v
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(µ
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⇢2

◆
.

While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl

, it might seem odd that

each of these z-vertices carries only a single power of m�1

Pl
. To rectify this we might

try rescaling zµ ! m�1

Pl
zµ, similar to how we write gµ⌫ = ⌘µ⌫ + m�1

Pl
hµ⌫ for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2

Pl
. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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= i
m

mPl

eik·b��(k · v + !1 + !2)⇥ (4.16)

✓
1

2
k⇢1k⇢2v

µv⌫ + !1k⇢2v
(µ�⌫)⇢1 + !2k⇢1v

(µ�⌫)⇢2 + !1!2�
(µ
⇢1�

⌫)
⇢2

◆
.

While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl

, it might seem odd that

each of these z-vertices carries only a single power of m�1

Pl
. To rectify this we might

try rescaling zµ ! m�1

Pl
zµ, similar to how we write gµ⌫ = ⌘µ⌫ + m�1

Pl
hµ⌫ for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2

Pl
. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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4.2 Recursive properties

The Feynman rules (4.18), (4.20) and (4.21) satisfy recursive properties:

hµ⌫(k)

z
⇢(0)

=
@

@b⇢

hµ⌫(k)

, (4.23a)

hµ⌫(k)

 
0⇢(0)

=
@

@ ⇢

hµ⌫(k)

. (4.23b)

In ref. [1] (the non-spinning case) the first relationship was generalized to n points:

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)
z
⇢n+1(0)

=
@

@b⇢n+1

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)

. (4.24)

In words: a vertex with (n + 1) external zµ particles, and !n+1 = 0, is given by

a derivative with respect to the impact parameter b
µ of the corresponding n-point

vertex. We claim this continues to hold when spin is included, and that eq. (4.23b)

generalizes similarly, regardless of what other external lines are present on the vertex.

In the non-spinning case we confirmed this recursive property using an analytic

expression for the worldline vertices:

hµ⌫(k)

z
⇢1(!1)

...

z
⇢n(!n)

= i
n�1

m e
ik·b
�
�
✓
k · v +

nX

i=1

!i

◆
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With the inclusion of spin, however, we no longer have such a compact expression

and therefore argue di↵erently.

At the Lagrangian level these properties follow straightforwardly from

@L
(i)(⌧)

@b
µ

i

=
@L

(i)(⌧)

@z
µ

i
(⌧)

,
@L

(i)(⌧)

@ µ

i

=
@L

(i)(⌧)

@ 
0µ
i
(⌧)

, (4.26)

where S
(i) + S

(i)

E
=
R
d⌧ L(i)(⌧) (we are now ignoring the ghosts). The former is true

simply because the Lagrangian L
(i) depends on b

µ

i
and z

µ

i
only implicitly via x

µ

i
(⌧) =
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b, v

2

the non-spinning case [? ? ? ? ].
In this Letter we provide the conservative, spin-orbit

contributions to the impulse and spin kick at 4PM ac-
curacy, together with the total scattering angle. These
results provide the basis to refine e↵ective one-body
Hamiltonians and resummed scattering prescriptions for
high-precision gravitational wave physics. Our worldline
quantum field theory (WQFT) hinges on three innova-
tions to the EFT approach for gravitational scattering:
(i) quantizing both the worldline degrees of freedom and
the gravitational field allows for a diagrammatic formula-
tion of the classical perturbation theory yielding the ob-
servables as one-point functions of the worldline or gravi-
tational fields [? ], (ii) capturing the spin of the compact
objects through a supersymmetric worldline theory [? ],
(iii) the Schwinger-Keldysh (in-in) initial value formula-
tion of WQFT that induces the use of retarded propaga-
tors and a causality flow in the diagrammatic expansion
[? ].

Supersymmetric in-in WQFT formalism. — The ef-
fective worldline theory of spinning bodies (Kerr BHs or
NSs) with masses mi and space-time coordinates xµ

i (⌧)
on a general D-dimensional space-time with metric gµ⌫
is described up to quadratic order in spin by an N = 2
supersymmetric worldline theory [? ]. As we are focus-
ing on the spin-orbit (linear-in-spin) dynamics here, the
N = 1 incarnation of this theory will su�ce:

S = �

2X

i=1

mi

Z
d⌧


1

2
gµ⌫ ẋ

µ
i ẋ

⌫
i +i i,a

D a
i

D⌧

�
+ SEH . (1)

The real anti-commuting vectors  a
i (⌧) are defined in

a flat tangent space using the vierbein eµa and D a
i

D⌧ =

 ̇a
i + ẋµ!µ

ab i,b with the spin-connection !µ
ab (our met-

ric is mostly minus). We work in D = 4� 2✏ dimensions
with SEH the bulk Einstein-Hilbert action including a
gauge-fixing term; the process of dimensional regularisa-
tion, wherein we ultimately send ✏! 0, is aided by only
this part of the full action needing to be lifted to D di-
mensions. The  a

i (⌧) carry the spin degrees of freedom
with the spin tensors Sµ⌫

i = �imi 
µ
i  

⌫
i and the Pauli-

Lubanski vectors Sµ
i = mia

µ
i = 1

2
✏µ⌫⇢�v

⌫
i S

⇢�
i .

We expand the fields around their respective back-
grounds: the metric gµ⌫ = ⌘µ⌫ +hµ⌫ , with  =

p
32⇡G,

and the worldlines

xµ
i (⌧) = bµi +vµi ⌧+zµi (⌧) ,  µ

i (⌧) =  
µ
i + 

0µ
i (⌧) , (2)

where {bµi , v
µ
i , 

µ
i } are the initial (background) param-

eters of the two bodies. Using background symmetries
we set b · vi =  i · vi = 0 where bµ = |b| b̂µ = bµ

2
� bµ

1

is the covariant impact parameter. We also introduce
the Lorentz factor � = v1 · v2 and the relative velocity
v =

p
�2 � 1/�.

Causal observables including radiative e↵ects arise
from the Schwinger-Keldysh (in-in) formalism applied
to WQFT [? ] where one doubles the fields: hµ⌫ !

(h(1)

µ⌫ , h
(2)

µ⌫ ) and Zµ
i ! (Z(1)µ

i , Z(2)µ
i ) introducing the

worldline “super-fields” Zi = {zi, 0
i}. Causal one-point

functions follow from the in-in path integral

hOi :=

Z
D[h(1,2)

µ⌫ , Z(1,2)µ
i ]ei(S[{ }(1)

]�S[{ }(2)
]
⇤
)
O , (3)

normalized such that h1i = 1 and with { }
(n) denoting the

(n)’th copy of the doubled fields. The key property we
exploit is that the WQFT tree-level one-point functions

hZ(n)
i i solve the classical equations of motion. Moreover,

the computation of one-point functions of in-in WQFT
reduces to the use of retarded propagators combined with
the standard in-out WQFT Feynman rules [? ]. This
formalism yields an e�cient QFT-based scheme to solve
the classical equations perturbatively.
Conservative observable can in turn be defined by ne-

glecting all interactions between h(1)

µ⌫ and h(2)

µ⌫ . This may
be achieved by using the in-in formalism only for the
worldlines while keeping the in-out formalism for the
gravitons and projecting on the real part of observables [?
? ]. This separation of conservative e↵ects at 4PM has
proven its e�ciency for the non-spinning results [? ? ].
WQFT Feynman rules. — The graviton propagator

in de Donder gauge with Feynman prescription reads

k

µ⌫ ⇢�
=

iPµ⌫;⇢�

k2 + i0+
, (4)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1

D�2
⌘µ⌫⌘⇢� while the worldline

propagators associated with zµi and  0µ
i read, respectively

!, n
!µ ⌫ =

�i⌘µ⌫

mi(! + i0+)n

(
n = 2 for zµi ,

n = 1 for  0µ
i .

(5)

The arrow on the propagators indicates the momentum
or energy flow on the retarded propagators. Importantly,
the Feynman graviton propagators reflect our focus on
conservative observables. Full dissipative results may be
obtained by using retarded propagators instead. The
Feynman vertices of the spinning WQFT to lower multi-
plicities have been exposed in [? ]. The generic worldline
vertex couples n gravitons to m worldline fields and reads

Vn|m =

k

!1

...

!m

⇠

mn eik·b�

✓
k · v +

nX

i=1

!i

◆
⇥

⇥

✓
polynomial in !i, kj
of degree 2n+m

◆
(6)

where kµ =
Pn

i=1
kµi is the total outflowing four-

momentum and the dotted outgoing line symbolizes the
background parameters {bµ, vµ, µ

} of Eq. (2). We see
that only energy is conserved on the worldline. The bulk
graviton vertices are generic. At 4PM order we need
the worldline vertices Vn|m above for {n = 1, . . . , 4;m =
0, . . . , 5� n}, and the 3-,4-,5-graviton vertices.
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Figure 5. The six diagrams contributing to the m1m3
2 component of ∆p(3)µ1 in the absence of

tidal corrections. The upper worldline is one continuous fluctuation and hence we have test-body
motion.
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2 components of ∆p(3)µ1
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Figure 7. The 14 types of diagrams contributing to the m2
1m

2
2 components of the 3PM gravitational

impulse ∆p(3)µ1 without tidal corrections. All diagrams except the last, (n), are associated with
the comparable-mass family I(σ1;σ2;σ3)

n1,n2,...,n7 (3.1); diagrams (l)–(n) are associated with K(σ1;σ2;σ3)
n1,n2,...,n5

family (3.25).
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• Feynman rules

𝒪(G) 𝒪(G2)

𝒪(G)

𝒪(G2) 𝒪(G2)

𝒪(G)

PM Corrections / QFT(EFT) Worldlines formalism

>> [in-in formalims]

Driesse, Mogull, Plefka, Jakobsen, Sauer, Steinhoff, Usovitsch
Dlapa, Kallin, Liu, Porto
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• Pushed to 5PM !!!
Driesse, Mogull, Plefka, Jakobsen, Sauer, Steinhoff, Usovitsch



GR EFT for PN corrections / Diagrammatic approach

 Bound system of Inspiraling of Black Holes

m1

m2

S1

S2r

v1

v2
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1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)

1.6

r? << r << �GW (1.20)
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>> r

∼ r

>> rs

∼ rs Black hole / Neutron star

Point particle + internal structure

Binary + Near zone + Far zone

GW emission + Multipoles 

Scales Hierarchies

rs

[credit: Patil]
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>> rs

rs

Point particle modelling

compact object as a point particle with internal structure parametrised Wilson coefficients

BHs

A compact object could be approximated by a point particle with 
internal structure (Wilson coefficients) at large scales as compared to  Rs
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1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant
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...
. . .

...
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In the case of Master integrals
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�1
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G mk(x̄, ȳ)
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X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations
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(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE
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[d] = A(d, z) M[d] (1.19)
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‣Weak field expansion:
gμν = ημν + hμνv ≪ 1 hμν = Hμν + h̄μν

• Potential gravitons     

•  Radiation gravitons   

Hμν : (k0, k) ∼ ( v
r

,
1
r )

h̄μν : (k0, k) ∼ ( v
r

,
v
r )

•  Worldline/BH      xa :

[Beneke Smirnov]‣Non-relativistic approximation [method of regions]:          
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Hμν

h̄μν

eiSeff[xa] = ∫ Dh̄ ∫ DH eiStot[xa,H,h̄]

‣Effective action by integrating out gravitons:
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‣Double Hierarchy



38 CHAPTER �. EFT OF A COALESCING BINARY SYSTEM IN GENERAL RELATIVITY

2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

Spot[xa, g] = SGR[g] + Sma
[xa, g] gμν = ημν + Hμν
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‣Far zone ( ) λrad

Spot[xa, g] = SGR[g] + Sma
[xa, g]

Srad[g, {Qi}] = SGR[g] + Smult[g, {Qi}]

gμν = ημν + Hμν

gμν = ημν + h̄μν
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= ∫ Dh̄ e{iSbulk[h̄] +
eiSeff[xa] = ∫ Dh̄ ∫ DH eiStot[xa,H,h̄]
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+  ...

GREFT Action / Near & Far zones

‣Near zone ( )  r

35

Smult[h̄, {Qi}] = ∫ dt[ 1
2

Eh̄00 −
1
2

ϵijkLih̄0j,k −
1
2

Qijℰij −
1
6

Oijkℰij,k −
2
3

JijBij + . . . ]
  are the electric and magnetic components of the Riemann tensor 

 multipole moments 
ℰij, Bij

{Qi} : E, Li, Qij, Oijk, Jij

‣Multipole Action EFT matching Far zone
Binary system as a linear source  of size  emitting : Tμν r h̄μν Smult = −

1
2 ∫ d4xTμνh̄μν

Tμν

ℰij = R0i0j ≈ −
1
2 (h̄00,ij +

··̄
hij −

·̄
h0i, j −

·̄
h0j,i + 𝒪(h̄2))

Bij =
1
2

ϵiklR0jkl ≈
1
4

ϵikl( ·̄
hjk,l −

·̄
hjl,k + h̄0l, jk − h̄0k, jl + 𝒪(h̄2))
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Spot[xa, g] = SGR[g] + Sma
[xa, g] Sma

[xa, g] = Spp[xa, g] + δSma
[xa, g]

‣Kaluza-Klein parametrization:   

gμν = e2ϕ/Λ(
−1 Aj /Λ

Ai/Λ e−cd
ϕ
Λ γij − AiAj /Λ2)γij = δij +

σij

Λ
cd = 2

d − 1
d − 2

σijgμν ⇒ ϕ Ai

Graviton = Scalar + Vector + Sym. Tensor
10 1 + 3 + 6

‣Feynman rules for: 

Propagating fields 

ϕ
Ai

σij

σijϕ Aixa

Static / non-propagating source

xa

[Kol Smolkin] [Blanchet Damour]

[Goldberger, Rothstein]

[Foffa, Sturani]
[Gilmore, Ross]

PN-GREFT Diagrammar

‣Action
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Spot[xa, g] = SGR[g] + Sma
[xa, g] Sma

[xa, g] = Spp[xa, g] + δSma
[xa, g]

‣Kaluza-Klein parametrization:   

gμν = e2ϕ/Λ(
−1 Aj /Λ

Ai/Λ e−cd
ϕ
Λ γij − AiAj /Λ2)γij = δij +

σij

Λ
cd = 2

d − 1
d − 2

σijgμν ⇒ ϕ Ai

Graviton = Scalar + Vector + Sym. Tensor
10 1 + 3 + 6

‣Feynman rules for: 

Propagating fields 

ϕ
Ai

σijStatic / non-propagating source

xa

[Kol Smolkin] [Blanchet Damour]

[Goldberger, Rothstein]

[Foffa, Sturani]
[Gilmore, Ross]

‣Fourier transform: from amplitude to the effective action: ℒ0PN = − i lim
d→3 ∫

ddp
(2π)d

eip(x1−x2)( ) =
GNm1m2

r

=
im1m2

2cdΛ2

1
p2ℳ0PN =‣Newton Potential

PN-GREFT Diagrammar

‣Action

σijϕ Aixa
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GR EFT for PN corrections / near zone spineless

 Bound system of Inspiraling of Black Holes

m1

m2

r

v1

v2
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‣1PN corrections: 

‣2PN corrections: 

Einstein, Infeld, Hoffman (1938)

⇥

(a) (b)

⇥

(c)

⇥⇥

(d) (e)

⇥

‣3PN corrections: 

‣4PN: corrections: ‣5PN: corrections: 

Jaranowski,Schaefer (1997); Damour, 
Jaranowski, Schaefer (1997); Blachę, Faye 
(2000); Damour, Jaranowski Schaefer (2001); 
Foffa Sturani (2011)

Damour, Jaranowski, Schaefer (2014);  
Bernard, Blanchet, Bohe, Faye, Marsa (2016);  
Foffa, Sturani, Sturm & P.M. (2016);  
Foffa, Porto, Rothstein, Sturani (2019) 
Blumlein, Maier, Marquard,Schaefer (2020)

Bini, Damour, Geralico (2019);  
Foffa, Sturani, Sturm, Torres Bobadilla  & P.M. (2019);  
Blumlein, Maier, Marquard, Schaefer (2020,2021)

 Ohta-Okamura-Kimura-Hiida (1974) 
  Gilmore, Ross (2008)

(b)
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PN-Corrections / GREFT Potential
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2PN:  3 + 14 = 17 graphs
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‣From Effective diagrams to QFT Amplitudes: 
  
‣World-lines are not propagating 

‣EFTGravity Amplitudes of order   
mapped into  —loop 2-point functions  
with massless internal lines: 

‣Amplitudes evaluation with QFT multi-loop techniques 
    

‣From QFT Amplitudes to Effective Lagrangians: 

Gℓ
N

(ℓ − 1) ℳ = ∑
i

ci IMI
i

⇔

Computational techniques: 

ℒeff[xa] = − i lim
d→3 ∫

ddp
(2π)d

eip⋅r( )

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ

Foffa, Sturani, Sturm, & P.M. (2016)

GREFT Diagrams vs 2-point QFT Integrals / a key observation
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‣From Effective diagrams to QFT Amplitudes: 
  
‣World-lines are not propagating 

‣EFTGravity Amplitudes of order   
mapped into  —loop 2-point functions  
with massless internal lines: 

‣Amplitudes evaluation with QFT multi-loop techniques 
    

‣From QFT Amplitudes to Effective Lagrangians: 

Gℓ
N
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ci IMI
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⇔
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Figure 2. Four-loop 2-point topologies corresponding to the diagrams in fig.1.

3 Amplitudes and Feynman Integrals

In general, within the EFT approach, since the sources (black lines) are static and do not
propagate, any gravity-amplitude of order G`

N
can be mapped into an (`� 1)-loop 2-point

function with massless internal lines and external momentum p, where p2 ⌘ s 6= 0,

= . (3.1)

Accordingly, the 50 diagrams in fig.1 can be mapped onto the 29 topologies of fig.2, where
the sets T1 = {1, 2, 3, 4, 5, 6}, T2 = {7, 8, 10, 11, 14, 16, 17, 20, 21, 25}, T3 = {9, 12, 13, 22},
T4 = {15, 18, 19, 23, 24}, collect the diagrams that share the same topology. For instance,
the diagrams 1 to 6 of fig.1 correspond to integrals which have the same five denominators
of the graph indicated by T1 in fig.2, but different numerators, due to the different terms
associated to 1,2,3 or 4 � emission or absorption from the massive particle.

The representation of the gravity-amplitudes as 4-loop 2-point integrals yields the pos-
sibility of evaluating the latter by means of by-now standard multi-loop techniques based
on integration-by-parts identities (IBPs) [27, 28].

Accordingly, we collect the 50 amplitudes of fig.1 in two sets, AI = {1 : 28, 31, 32, 35 :

37, 39, 41, 45 : 47} and AII = {29, 30, 33, 34, 38, 40, 42, 43, 44, 48, 49, 50}, and address their
computation separately.
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Figure 3. The master integrals which appear in the calculation of the amplitudes in the set AII .
The name of the diagrams follow Refs. [37–39].

The set AI contains diagrams with a simpler internal structure, and they have been
computed by using the kite rule [27, 28]

(4� d)

2
= � , (3.2)

where the dots stand for squared denominators, and by using the standard identity holding
for 2-point 1-loop graphs,

Z
ddk

(2⇡)d
1

k2a(p� k)2b
=

a

b

=

�
p2
�
d/2�a�b

(4⇡)d/2
�(d/2� a)�(d/2� b)�(a+ b� d/2)

�(a)�(b)�(d� a� b)
, (3.3)

where a and b are generic denominators’ powers. Alternatively, we also performed an IBP-
reduction using the program Reduze [35, 36], identifying 5 master integrals (MIs), namely
M0,1, M1,1, M1,2, M1,3, M1,4 of fig. 3.

The amplitudes AII , instead, have a less trivial internal structure. By means of IBPs,
they have been systematically reduced to linear combinations of 7 MIs, all shown in fig. 3.
In this case, the reduction to MIs has been performed in two ways, by an in-house imple-
mentation of Laporta’s algorithm which is based on Form [40–42], as well as by means of
Reduze.

The 4-loop MIs in fig. 3 can be considered as a complete set of independent integrals,
such that any amplitude of the sets AI and AII can be written as a linear combination
of them. The results of the 4-loop MIs are well-known in d = 4 + " euclidean space-
time dimensions since long [37, 38], while their values around d = 3 + " became available
more recently [39]. In particular, M0,1, M1,1, M1,2, M1,3, M1,4 can be computed in a
straightforward way by means of eq. (3.3), and admit closed analytic expressions, exact in
d, which can be expanded in Laurent series in " around d = 3. On the other side, the series
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In this case, the reduction to MIs has been performed in two ways, by an in-house imple-
mentation of Laporta’s algorithm which is based on Form [40–42], as well as by means of
Reduze.

The 4-loop MIs in fig. 3 can be considered as a complete set of independent integrals,
such that any amplitude of the sets AI and AII can be written as a linear combination
of them. The results of the 4-loop MIs are well-known in d = 4 + " euclidean space-
time dimensions since long [37, 38], while their values around d = 3 + " became available
more recently [39]. In particular, M0,1, M1,1, M1,2, M1,3, M1,4 can be computed in a
straightforward way by means of eq. (3.3), and admit closed analytic expressions, exact in
d, which can be expanded in Laurent series in " around d = 3. On the other side, the series
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Figure 1. Examples of a prime 4PN-graph (left) and of a
factorizable 5PN-graph (right): the latter, can be obtained
by sewing the former and the Newton potential diagram.

of �ij ’s; the latter cannot however be attached to any
particle, see eq.(5), so they can just propagate between
bulk vertices. This observation is crucial to prove an
important property of prime graphs, which constitute
the first novel result of this communication:

Theorem: Static prime graphs exist only at even 2n-
PN orders. Equivalently, static graphs at odd (2n+1)-PN
orders are factorizable.

Proof: This statement can be proven by showing that
any prime static graph must have an even number of �
fields attached to the particles.

For the Newtonian graph, it is trivially true by con-
struction. Graphs generated by PN-corrections, O(G2

N ),
necessarily contain bulk vertices ���k (with k � 1), com-
ing from the expansions of the graviton self-interaction
terms. For these diagrams, two cases may occur: i) each
internal � propagator is contracted on the one side with
a matter-� vertex, and, on the other side, with a ���k

vertex, therefore it contributes with one power of mi to
the mass-dimensions of the graph; ii) a � propagator, not
coupled with matter, must necessarily connect two ���k

vertices, therefore it does not contribute to the mass-
dimensions of the graph. Since the bulk vertices between
� and � fields (���, ����, . . . ) are quadratic in �, and
because prime graphs are characterized by either (i) or
(ii) , we can conclude that the total number of � fields
that depart from the bulk vertices and couple to matter
(either m1 or m2) is an even number.

This implies that, being ni the number of � fields cou-
pled to the matter mi (i = 1, 2), the total mass-like power
of static prime graphs is mn1

1
mn2

2
, with n1 + n2 = 2n

and n 2 N+. On the other side, they correspond
to static classical contributions, therefore, they must

consequently scale as G(2n�1)

N mn1
1

mn2
2

/r(2n�1) (classical
diagrams do not contain loops in the dynamical fields),
finally implying that they belong to an even-PN order. ⇤

Due to the factorization theorem, the general struc-
ture of the contribution to the potential of a given n-PN
factorizable diagram, in terms of the product of lower
PN-order graphs, reads

V
factorizable

n =
⇣
VL,n1 ⇥ VR,n2

⌘
⇥K ⇥ C , (10)

where: i) the PN-orders, n1 of the left graph VL and
n2 of the right graph VR, are such that n1 + n2 + 1 =

n; ii) K accounts for the new matter-�k vertex of Vn

(emerging from the sewing) out of the ones included in
the lower order contributions, VL,n1 and VR,n2 ; and iii)
C = Cfactorizable

n /(CL,n1 ⇥ CR,n2) where the C’s are the
combinatoric factors associated with each graph.

GRAVITY AND FIELD THEORY DIAGRAMS

In a quantum field theory approach, any EFT-gravity
graph can be interpreted as four-particle scattering am-
plitude [24]. The contribution of each amplitude to
the two-body potential V can be obtained by taking its
Fourier transform,

V = i lim
d!3

Z

p
eip·r

1

2 3

4

(11)

where,
R
p ⌘

R
ddp/(2⇡)d, the box diagram stands for

a generic EFT-gravity diagram, and p is the momentum
transfer of the source (assuming momentum conservation
p1 + p2 = p3 + p4, then p = p3 � p2 = p1 � p4). Since
the sources, represented by black lines, are static and
do not propagate, any EFT-gravity amplitude at order
G`

N can be mapped into an (`� 1)-loop 2-point function
with massless internal lines and external momentum p
(p2

6= 0) [24]. This observation was crucial to perform the
4PN static calculation, by employing computational tech-
niques developed for the evaluation of multi-loop Feyn-
man integrals in high-energy particle physics. Moreover,
in the current work, we observe that the integration on
p can be seen as an additional loop integration, hence
it can be represented by an `-loop vacuum diagram, ob-
tained by joining the external legs into a propagator-like
line (indicated by an inner black line), as

Z

p
eip·r

⌘ ! . (12)

In the last step, we introduce a suggestive diagrammatic
representation of the Fourier integral as an `-loop vac-
uum graph by pinching the internal black line. The pres-
ence of the dot “•” indicates the residual r-dependence
of the contribution (not to be confused by fully massless,
hence scaleless vacuum diagrams that vanish in dimen-
sional regularization). For instance, Newton’s potential
can be represented as a one-loop vacuum graph:

Z

p
eip·r =

Z

p
eip·r

⌘ ! . (13)

In the case of factorizable EFT-diagrams, the pinch-
ing generates the product of factorized vacuum diagrams.

2. EFT

r? << r << �GW (2.1)

Ai-propagator

! i
�rt

2k2
(2.2)

r t

O
�
Gk

N , v2m
�
, n = k + 2m� 1 (2.3)

= �i
mavi
⇤

+O(v2) +O(v3) +O(v4) (2.4)

GN
m

r
⇠ v2 << 1 (2.5)

2.1 Diagrammatica for Newton potential

Z
ddp eip·r

=
1

p2
(2.6)

=

Z
ddp

eip·r

p2

=

Z
ddp eip·r

Z
ddk

1

(p� k)2 k2

=

Z
ddp

Z
ddk ei(p�k)·r+ik·r 1

(p� k)2 k2

=

Z
ddp

ei(p�k)·r

(p� k)2
⇥

Z
ddk

ei(k·r

k2

(2.7)

– 4 –

2. EFT

r? << r << �GW (2.1)

Ai-propagator

! i
�rt

2k2
(2.2)

r t

O
�
Gk

N , v2m
�
, n = k + 2m� 1 (2.3)

= �i
mavi
⇤

+O(v2) +O(v3) +O(v4) (2.4)

GN
m

r
⇠ v2 << 1 (2.5)

2.1 Diagrammatica for Newton potential

Z
ddp eip·r

=
1

p2
(2.6)

=

Z
ddp

eip·r

p2

=

Z
ddp eip·r

Z
ddk

1

(p� k)2 k2

=

Z
ddp

Z
ddk ei(p�k)·r+ik·r 1

(p� k)2 k2

=

Z
ddp

ei(p�k)·r

(p� k)2
⇥

Z
ddk

ei(k·r

k2

(2.7)

– 4 –

n2
+1

n1

2. EFT

r? << r << �GW (2.1)

Ai-propagator

! i
�rt

2k2
(2.2)

r t

O
�
Gk

N , v2m
�
, n = k + 2m� 1 (2.3)

= �i
mavi
⇤

+O(v2) +O(v3) +O(v4) (2.4)

GN
m

r
⇠ v2 << 1 (2.5)

2.1 Diagrammatica for Newton potential

Z
ddp eip·r

=
1

p2
(2.6)

=

Z
ddp

eip·r

p2

=

Z
ddp eip·r

Z
ddk

1

(p� k)2 k2

=

Z
ddp

Z
ddk ei(p�k)·r+ik·r 1

(p� k)2 k2

=

Z
ddp

ei(p�k)·r

(p� k)2
⇥

Z
ddk

ei(k·r

k2

(2.7)

– 4 –

2. EFT

r? << r << �GW (2.1)

Ai-propagator

! i
�rt

2k2
(2.2)

r t

O
�
Gk

N , v2m
�
, n = k + 2m� 1 (2.3)

= �i
mavi
⇤

+O(v2) +O(v3) +O(v4) (2.4)

GN
m

r
⇠ v2 << 1 (2.5)

2.1 Diagrammatica for Newton potential

Z
ddp eip·r

=
1

p2
(2.6)

=

Z
ddp

eip·r

p2

=

Z
ddp eip·r

Z
ddk

1

(p� k)2 k2

=

Z
ddp

Z
ddk ei(p�k)·r+ik·r 1

(p� k)2 k2

=

Z
ddp

ei(p�k)·r

(p� k)2
⇥

Z
ddk

ei(k·r

k2

(2.7)

– 4 –

2n

+1

2n + 1 = n1 + n2 + 1

5

1. There are 11 diagrams composed of 6 Newtonian fac-
tors, combined in di↵erent ways, and schematically rep-
resented as

 !6

. (24)

The contribution to the 5PN potential coming from this
set of diagrams is:

VN6 =
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+ (m1 $ m2) . (25)

2. One can build static factorizable diagrams as prod-
ucts of 3 Newtonian graphs, and either of the 2PN prime
graphs, schematically represented as:

 !3

⇥

0

@

1

A . (26)

This set contains 49 diagrams, 9 of which are vanishing,
because one of the 2PN-factors is indeed zero. The com-
bined contribution of the remaining diagrams is:

VN3⇥2PN =
1
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1
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+
229
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2

r6
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3. In this class, we consider 5PN diagrams schematically
represented by the product of one Newtonian graph with
each of the 25 static prime 4PN diagrams studied in [24],
(the cardinal number attached to each graph is the same
as in [24], for ease of comparison)
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This set contains 79 diagrams, 16 of which are vanish-
ing (due to vanishing 4PN-factors). The remaining 63
diagrams give:

VN⇥4PN =
1
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2
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Interestingly, let us observe that although this set con-
tains contributions which are individually divergent in
the d ! 3 limit, as well as factors of ⇡2, within their sum

all poles and irrational factors cancel, and the result is
indeed finite and rational.

4. Finally, we consider static 5PN diagram formed by the
product of two 2PN-graphs, schematically represented as
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@
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A
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. (30)

This term contains 15 5PN graphs, 5 of which are mani-
festly vanishing, while the contribution of the remaining
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Interestingly, let us observe that although this set con-
tains contributions which are individually divergent in
the d ! 3 limit, as well as factors of ⇡2, within their sum

all poles and irrational factors cancel, and the result is
indeed finite and rational.
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product of two 2PN-graphs, schematically represented as
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This term contains 15 5PN graphs, 5 of which are mani-
festly vanishing, while the contribution of the remaining
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2. One can build static factorizable diagrams as prod-
ucts of 3 Newtonian graphs, and either of the 2PN prime
graphs, schematically represented as:
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This set contains 49 diagrams, 9 of which are vanishing,
because one of the 2PN-factors is indeed zero. The com-
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3. In this class, we consider 5PN diagrams schematically
represented by the product of one Newtonian graph with
each of the 25 static prime 4PN diagrams studied in [24],
(the cardinal number attached to each graph is the same
as in [24], for ease of comparison)
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Total 5PN static potential. By combining all the pre-
vious results, the expression for the static sector of the
5PN potential finally reads,

V
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This expression contains the genuine G6

N contribution
coming from graphs, without contributions generated
from lower-GN terms when using the equations of mo-
tion to eliminate terms quadratic at least in the accel-
erations. Together with the factorization theorem, the
above result constitutes the second important result of
this manuscript.

Check: test-particle limit. It is possible to verify that
the coe�cient of the term m6

1
m2 agrees with what can

be expected from the extreme mass ratio limit m2 ⌧

m1. In this limit, where only the graphs displayed in
fig. 3 contribute, it is possible to consider the body with
mass m2 as a test particle in the Schwarzschild metric
generated by the body with mass m1.

Figure 3. 5PN-graphs contributing to the test-particle limit.
The last graph (bottom-right) does not contribute to the 5PN
potential, because its 4PN subdiagram vanishes.

The action describing the dynamics of the test body
has still the form Spp described in eq.(2), but with gµ⌫
given by the Schwarzschild metric in harmonic coordi-
nates (which is obtained from the traditional form by the
simple radial coordinate shift r ! r + GNm1) instead of
the Minkowski one.

In the static limit, v2 = 0, only the term g00 survives,
and the e↵ective Lagrangian reads

L
m2⌧m1
static

= �m2

p
�g00 = �m2

s
1 �

GNm1
r

1 + GNm1
r

. (33)

By expanding this expression in GNm1
r , one obtains the

sequence
(1,� 1

2
, 1

2
,� 3

8
, 3

8
,� 5

16
, 5

16
,� 35

128
, 35

121
,� 63

256
, . . . ) of all the

coe�cients of the nPN static terms Gn
Nmn

1
m2/rn, in-

cluding the �
5

16
of the 5PN term reported in eq.(32)

(where the potential is correctly reported with opposite
sign w.r.t. to the lagrangian term).

CONCLUSION

We studied the two-body conservative dynamics at
fifth post-Newtonian order (5PN) in the static limit
within the e↵ective field theory (EFT) approach to Gen-
eral Relativity. We determined an essential contribu-
tion of the complete 5PN potential at O(G6

N ), coming
from 154 Feynman diagrams. We proved a factorization
property of the static diagrams at odd-PN order, and
exploited it to show that their contribution can be de-
termined recursively, from lower PN-orders. The result
of the static potential at order G6

N is found to be finite
and rational - a property clearly inherited from the static
G5

N sector - and exhibits the expected Schwarzschild-like
behaviour in the extreme mass ratio limit.
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(2n+1)-PN corrections: Type-A

(2n+1)-PN corrections: Type-B

 

‣static (2n+1)-PN Potential as product of lower-PN Potential terms

‣Factorization Th'm: NO 5-loop diagram explicitly computed

‣Results confirmed and completed by explicit evaluation of 2pt-QFT 5-loop 
Integrals

5PN static O(G^6): 154 5-loop GREFT diagrams

Blümelein, Maier, Marquard, Schäfer (2019-21)  

5PN O(G^5 v^2): 1220 4-loop GREFT diagrams

Foffa, Sturani, Sturm, Torres-Bobadilla & P.M. (2019)

Foffa, Sturani, Sturm, Torres-Bobadilla & P.M. 

Foffa, Sturani,, Torres-Bobadilla (2020) 
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GREFT Diagrams vs 2-point QFT Integrals / Factorization Theorem
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GR EFT for PN corrections / near zone spinning

 Bound system of Inspiraling of Black Holes
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Spot[xa, g] = SGR[g] + Sma
[xa, g]

Sma
[xa, g]

Levi, Steinhoff (2015)

uμ
(a) ≡ ·xμ

a

Sma
[xa, g] = Spp[xa, g] + δSma

[xa, g]

…… 
Kim, Levi, Yin (2022) 

Mandal, Patil, Steinhoff & P.M. (2022) 
Levi, Morales, Yin (2022) 

Levi, Yin (2022)

Porto (2013)

STF = Symmetrized Trace-Free

the electric component of the Riemann tensor as

Eµν ≡ Rµανβu
αuβ , (4.10)

and the magnetic component of the Riemann tensor as

Bµν ≡
1

2
ϵαβγµR

αβ
δνu

γuδ, (4.11)

where here the dual of the Riemann tensor ∗Rγµδν ≡ 1
2ϵαβγµR

αβ
δν is used. In the current

work, we consider only couplings linear in Riemann, that is as we noted we are not con-

cerned with the tidal response to external gravitational fields, which does not contribute

at the PN orders of interest.

From the definitions in eqs. (4.10), (4.11), one obtains that both the electric and

magnetic components of the Riemann tensor are symmetric, traceless, and orthogonal to

the 4-velocity, using the symmetries of the Riemann tensor, the first Bianchi identity, and

their being a vacuum field solution. These SO(3) tensors are then also considered in the

body-fixed frame, where only their projection on the spatial triad is non-vanishing due to

the covariant gauge of the tetrad. It follows then that they are symmetric and traceless

also with respect to their internal spatial indices.

Next, we also consider the covariant derivatives of the electric and magnetic tensors.

These are also projected to the body-fixed frame, i.e. D[i] = eµ[i]Dµ, where we clarify

that the covariant derivative shall not act on the 4-velocity, contained in Eµν and Bµν ,

since it is a function of the worldline parameter σ only. As for the time derivative

D[0] = uµDµ ≡ D/Dσ, it is just the covariant derivative along the worldline. Now, at

linear order in the curvature time derivatives of the curvature can be integrated by parts

to time derivatives of the particle variables. Terms including such higher order time deriva-

tives of the worldline variables can be removed via variable redefinitions with a shift of,

e.g. the worldline coordinate, using lower order EOM, and get absorbed into other Rie-

mann dependent finite size operators without higher order time derivatives of the worldline

variables, namely into their Wilson coefficients. Therefore, we can consider here only the

spatial derivatives, projected orthogonally to uµ.

The indices of the covariant derivatives are also symmetrized among themselves, and

with respect to the indices of the electric and magnetic tensors. The first symmetrization

follows since the commutation of covariant derivatives leads to further curvature terms, and

as only terms linear in the curvature are considered here, such contributions can be taken

to vanish. The second symmetrization with indices from the covariant derivatives, and

from the electric and magnetic components, follows from the differential Bianchi identity

of the Weyl tensor in vacuum, which leads to equations analogous to Maxwell’s:

ϵ[ikl]D[k]E[lj] =Ḃ[ij], (4.12)

ϵ[ikl]D[k]B[lj] =− Ė[ij]. (4.13)

Notice that the left hand side contains the commutator of derivative and curvature com-

ponents indices. Since as was explained time derivatives of the curvature can be ignored at
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work, we consider only couplings linear in Riemann, that is as we noted we are not con-

cerned with the tidal response to external gravitational fields, which does not contribute

at the PN orders of interest.

From the definitions in eqs. (4.10), (4.11), one obtains that both the electric and

magnetic components of the Riemann tensor are symmetric, traceless, and orthogonal to

the 4-velocity, using the symmetries of the Riemann tensor, the first Bianchi identity, and

their being a vacuum field solution. These SO(3) tensors are then also considered in the

body-fixed frame, where only their projection on the spatial triad is non-vanishing due to

the covariant gauge of the tetrad. It follows then that they are symmetric and traceless

also with respect to their internal spatial indices.

Next, we also consider the covariant derivatives of the electric and magnetic tensors.

These are also projected to the body-fixed frame, i.e. D[i] = eµ[i]Dµ, where we clarify

that the covariant derivative shall not act on the 4-velocity, contained in Eµν and Bµν ,

since it is a function of the worldline parameter σ only. As for the time derivative

D[0] = uµDµ ≡ D/Dσ, it is just the covariant derivative along the worldline. Now, at

linear order in the curvature time derivatives of the curvature can be integrated by parts

to time derivatives of the particle variables. Terms including such higher order time deriva-

tives of the worldline variables can be removed via variable redefinitions with a shift of,

e.g. the worldline coordinate, using lower order EOM, and get absorbed into other Rie-

mann dependent finite size operators without higher order time derivatives of the worldline

variables, namely into their Wilson coefficients. Therefore, we can consider here only the

spatial derivatives, projected orthogonally to uµ.

The indices of the covariant derivatives are also symmetrized among themselves, and

with respect to the indices of the electric and magnetic tensors. The first symmetrization

follows since the commutation of covariant derivatives leads to further curvature terms, and

as only terms linear in the curvature are considered here, such contributions can be taken

to vanish. The second symmetrization with indices from the covariant derivatives, and

from the electric and magnetic components, follows from the differential Bianchi identity

of the Weyl tensor in vacuum, which leads to equations analogous to Maxwell’s:

ϵ[ikl]D[k]E[lj] =Ḃ[ij], (4.12)

ϵ[ikl]D[k]B[lj] =− Ė[ij]. (4.13)

Notice that the left hand side contains the commutator of derivative and curvature com-

ponents indices. Since as was explained time derivatives of the curvature can be ignored at

– 18 –

Electric and Magnetic  
components of Riemann tensor

Wilson coefficients that describe the internal structure
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‣Mapping to 2-point Functions

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ

GREFT Diagrams vs 2-point QFT Integrals
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‣Mapping to 2-point Functions

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ

PN orders 1.5 2.5 3.5 4.5 5.5 …

0 1 2 3 4 5 6

Point 
particle Newtonian 1PN 2PN 3PN 4PN 

+ LO (Her)
5PN 

+ NLO (Her)
6PN

Spin-orbit LO-SO NLO-SO NNLO-SO N^3LO-SO N^4LO-SO 
+ LO (Her)

Spin^2 LO-S^2 NLO-S^2 NNLO-S^2 N^3LO-S^2 N^4LO-S^2 
+ LO (Her)

Spin^3 LO-S^3 NLO-S^3 NNLO-S^3

Spin^4 LO-S^4 NLO-S^4 NNLO-S^4

Spin^5 LO-S^5

Tree
1 Loop
2 Loop
3 Loop
4 Loop
5 Loop

Spin-orbit coupling at 4.5PN:    (S(a) ⋅ L)
➡ Analogous to fine structure correction to Hydrogen atom 
➡ 894 Feynman diagrams up to 3 loops

arXiv:2209.00611 [Mandal, Mastrolia, RP, Steinhoff (2022)]
∫ dt {m gL

μνuμuν − 1
2 SμνΩμν + ⋯}

Quadratic-in-spin coupling at 5PN:  (S2
(a)), (S(1) ⋅ S(2))

➡ Analogous to hyperfine structure correction to Hydrogen atom 
➡ 723 Feynman diagrams up to 3 loops

arXiv:2210.09176 [Mandal, Mastrolia, RP, Steinhoff (2022)]

L(R,S2) = − 1
2mc (C(0)

ES2)
Eμν

u [SμSν]STF + ⋯

L(R2,S0) = 1
2 (C(2)

E2 ) G2
Nm
c5

EμνEμν

u3 S2 + ⋯

L(R2,S2) = 1
2 (C(0)

E2S2) G2
Nm
c5

EμαE α
ν

u3 [SμSν]STF + ⋯

Wilson  
coefficients

➡  for Kerr BHs.  

 and  are yet unknown for Kerr BHs

C(0)
ES2 = 1

C(2)
E2 C(0)

E2S2

Results also computed by [Kim, Levi, Yin (2022)] using EFTs, and
      [Antonelli, Kavanagh, Khalil, Steinhoff, Vines (2020)] using self-force
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State-of-the-art results - NNNLO spinHamiltonians - NNNLO spin
GREFT Diagrams vs 2-point QFT Integrals
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GR EFT for PN corrections / far zone spinning

 Bound system of Inspiraling of Black Holes

m1

m2

S1

S2r

v1

v2
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‣Far zone contributions to the conservative 
dynamics are needed, starting at  order4PN

Smult[h̄, {Qi}] = ∫ dt[ 1
2

Eh̄00 −
1
2

ϵijkLih̄0j,k −
1
2

Qijℰij −
1
6

Oijkℰij,k −
2
3

JijBij + . . . ]
{Qi} {Qi} {Qi}

Thorne (1980) 
Goldberger, Rothstein (2005)  

Goldberger, Ross (2009) 
Galley, Tiglio (2009,2012)  

Foffa, Sturani (2012); Ross (2012) 
Galley, Leibovich, Porto, Ross (2015) 

Leibovich, Maia, Rothstein, Yang (2019) 
Blanchet et al.(2021) 

…….

Multipole source emitting 
gravitons

{Qi}

r ≪ λrad

Srad[g, {Qi}] = SGR[g] + Smult[g, {Qi}]

{Qi}

38 CHAPTER �. EFT OF A COALESCING BINARY SYSTEM IN GENERAL RELATIVITY

2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

=
EFT matching

‣Far zone long-wavelength EFT: 

‣Multipole Action EFT matched to the Far zone 
Binary system as a linear source  of size  emitting : Tμν r h̄μν Smult = −

1
2 ∫ d4xTμνh̄μν

Tμν

Far Zone / GREFT diagrammar
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‣Far zone contributions to the conservative 
dynamics are needed, starting at  order4PN

Thorne (1980) 
Goldberger, Rothstein (2005)  

Goldberger, Ross (2009) 
Galley, Tiglio (2009,2012)  

Foffa, Sturani (2012); Ross (2012) 
Galley, Leibovich, Porto, Ross (2015) 

Leibovich, Maia, Rothstein, Yang (2019) 
Blanchet et al.(2021) 

…….

Multipole source emitting 
gravitons

{Qi}

r ≪ λrad

Srad[g, {Qi}] = SGR[g] + Smult[g, {Qi}]

‣Mapping to 2-point function

⇔

No radiation

⇔

With radiation

JHEP10(2022)128
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μν h̄μν
k→0

ℳ = ∑
i

ci IMI
i

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ

Far Zone / GREFT diagrammar

Mandal, Patil, Steinhoff & P.M. (2024)

{Qi}
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2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

=
EFT matching

‣Far zone long-wavelength EFT:  

‣Multipole Action EFT matched to the Far zone 

50



PN orders 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 …

Point Particle LO NLO LO (Her) NNLO NLO (Her) N^3LO 
+NNLO (Her) N^3LO (Her) N^4LO 

+N^4LO (Her)
N^5LO 
(Her)

Spin-orbiit LO NLO LO (Her) NNLO NLO 
(Her)

N^3LO 
+NNLO (Her)

Spin^2 LO NLO LO (Her) NNLO NLO 
(Her)

Spin^3 LO NLO

Spin^4 LO

Tree

1 Loop

2 Loop

3 Loop

Disconnected 

[Blanchet, Faye, Henry, Larrouturou, Trestini (2023)]

x = (GM ωorb)2/3

ℱpp
cir

State-of-the-art - Flux

[credit: Patil]

Far Zone / Flux
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PN orders 0 0.5 1 1.5 2 2.5 3

LO NLO LO (Her) NNLO NLO (Her) N^3LO 
+NNLO (Her)

LO NLO LO (Her) NNLO

LO NLO

LO

EμνEμν

BμνBμν

∇α Eμν ∇α Eμν

·Eμν
·Eμν
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Far Zone / Flux

[credit: Patil]
52

Mandal, Patil, Steinhoff, & PM



In-house Mathematica code

Very flexible to add more degrees of freedom 
(spin, tides, beyond GR, . . . )

Scattering Amplitude

Mandal, Patil, Steinhoff, & PMPN-GREFT Diagammar & Multi-Loop Automation
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Novel Perspective on (Feynman) Calculus

54



f(x, z)
∂Γ

= 0 ∫Γ
df(x, z) = 0 = ∫∂Γ

f(x, z)

I(n, x) ≡ ∫Γ
dnz f(x, z)

What does a (twisted) integral represent?

vanishing condition  
at the boundary of the integration domain

[Stokes’ theorem]
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrals  
and their (linear and quadratic) relations

What does a (twisted) integral represent?
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrands  
that differ by a total differential  

g = f + dfSpace of Integrals  
and their (linear and quadratic) relations

What does a (twisted) integral represent?
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrands  
that differ by a total differential  

g = f + df

Space of Integration Contours  
that differ by boundary terms  

Σ = Γ + ∂Γ

Space of Integrals  
and their (linear and quadratic) relations

What does a (twisted) integral represent?
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrands  
that differ by a total differential  

g = f + df

Space of Integration Contours  
that differ by boundary terms  

Σ = Γ + ∂Γ

Space of (partial) Differential Operators  
w.r.t. to  variables 

that annihilate the integral 
 

z

Lz f(x, z) = 0

Space of Integrals  
and their (linear and quadratic) relations

What does a (twisted) integral represent?
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrands  
that differ by a total differential  

g = f + df

Space of Integration Contours  
that differ by boundary terms  

Σ = Γ + ∂Γ

Space of (partial) Differential Operators  
w.r.t. to  variable  

that annihilate the integral 
 

x

Dx I(n, x) = 0

Space of (partial) Differential Operators  
w.r.t. to  variables 

that annihilate the integral 
 

z

Lz f(x, z) = 0

Space of Integrals  
and their (linear and quadratic) relations

What does a (twisted) integral represent?
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I(n, x) ≡ ∫Γ
dnz f(x, z)

Space of Integrands  
that differ by a total differential  

g = f + df

Space of Integration Contours  
that differ by boundary terms  

Σ = Γ + ∂Γ

Space of Integrals  
and their (linear and quadratic) relations

Space of (partial) Differential Operators  
w.r.t. to  variable  

that annihilate the integral 
 

x

Dx I(n, x) = 0

Space of (partial) Differential Operators  
w.r.t. to  variables 

that annihilate the integral 
 

z

Lz f(x, z) = 0

De-Rham Cohomology Group

De-Rham Homology Group

Integrals Vector Space

D-Module  
(external variables)

What does a (twisted) integral represent?
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D-Module  
(internal variables)

[see Gaia Fontana’s talk]



Space Generators / basis dimensions = # of basis elements

Space of Integrals  
and their (linear and quadratic) relations

Integrals Vector Space

Master Integrals (MIs)
# of MIs

Space of Integrands  
that differ by a total differential  

g = f + df

De-Rham Cohomology Group Hn
dR

Differential forms
# of independent formsdim Hn

dR =

Space of Integration Contours  
that differ by boundary terms  

Σ = Γ + ∂Γ

De-Rham Homology Group Hn,dR

Cycles / n-chains
# of independent cyclesdim Hn,dR =

Space of (partial) Differential Operators  
w.r.t. to  variable  

that annihilate the integral 
 

x

Dx I(n, x) = 0

D-Module  
(external variables)

Standard (Std) monomials
# of independent Stdrank =

ν

What are the properties of these “spaces” ?
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What we have found
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2.7 Vector Space Decomposition

⌫ = dimension of the vector space of Feynman integrals

I =
⌫X

i=1

ci Ji (2.45)

Projection

if Ji · Jj = �ij ,

I·Ji = ci , (2.46)

if Ji · Jj = Cij 6= �ij (metric matrix)

X

i,j

I · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Jk · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Ckj(C
�1)ji =

⌫X

i,k=1

ck �ki = ci

Completeness

Plugging back in

I =
X

i,j

I · Jj(C
�1)ji Ji ()

X

i,j

Jj (C
�1)ji Ji = I⌫⇥⌫ (2.47)

The two questions:

1) what is the vector space dimension ⌫ ?

2) what is the scalar product “·” between integrals ?
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Vector decomposition

Projections

Completeness

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)
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Master Integral = basis

Vector Space Structure of Feynman [- Euler-Mellin - GKZ - A-hypegeometric] Integrals
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Basics of Intersection Theory
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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⌘
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⇣
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u
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C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)
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m
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups
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 Hypergeometric2F1

Gamma function

 and many morepFq

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.

– 7 –

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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d

⇣
u 'm�1

⌘
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⌘
=
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C
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⌘
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Z

C
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r! ⌘ d+ !^ , ! = dlogu (2.37)
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u
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⌘
(2.38)
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m
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m
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Z

C
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C
u
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)
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| {z }
twisted
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'm(z)| {z }
twisted
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(2.36)

There could exist many forms 'm that upon integration give the same result I
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Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)

– 8 –

Equivalence Classes of DIFFERENTIAL FORMS 

The dawn of Integration by parts identities:

Equivalence Classes of INTEGRATION CONTOURS 

4.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (4.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)
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There could exist many forms 'm that upon integration give the same result I

There could exist many contours C that do not alter the the result of I

Consider the (m� 1)-di↵erential form 'm�1,
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
j,i he

(n�1)
i |

◆
|'

(n)
R i (2.103)
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups

u → u−1

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.35)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
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Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.40)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.41)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.42)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.43)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.44)

r�! ⌘ d� !^ (2.45)
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Dual Covariant Derivative

∫C
u φ = ∫C

u (φ + ∇ω ϕ) = ∫C+∂Γ
u φ0 = ∫C

d(u φ) = ∫∂C
u φ

0 = ∫C
d(u−1 φ) = ∫∂C

u−1 φ ∫C
u−1 φ = ∫C

u−1 (φ + ∇−ω ϕ) = ∫C+∂Γ
u−1 φ

Integral invariance from the vanishing of total differential

Stokes’ theorem relating the invariance upon shifting the differential forms to the invariance upon contour deformation!
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Vector Space Dimensions / counting “holes”

De Rahm  
Co-Homology 

ν = dimH

Number of Master Integrals
Chetyrkin, Tkachov (1981);  Remiddi, Laporta (1996);  Laporta (2000)

Number of Critical Points Lee, Pomeranski (2013)

Relation with χE

Bitoun, Bogner, Klausen, Panzer (2018)

Aluffi, Marcolli (2008)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)  

Primo, Tancredi (2017)Bosma, Sogaard, Zhang (2017)

Number of Independent Contours

Number of Independent Forms
Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

Ideal saturation / dimension of quotient space
  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2020)

Mixed volume of Newton Polyhedra
  Bernstein-Khobaskii-Kushnirenko

  Saito Sturmfels Takayama

Holonomic rank of GKZ systems
  Gelfand Kapranov Zelevinski

Maximum likelihood degree
  Agostini, Brysiewicz, Fevola, Sturmfels, Tellen (2021)

Betti numbers

… … … … …
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Identity Resolution

Metric matrix for Forms 
PoS(MA2019)015

From Diagrammar to Diagrammalgebra

can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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Cohomology Space Cohomology basis Dual Cohomology basis

Identity resolution

5.1 Change of bases

u = B
� (5.23)

dimH
n

±! = dimH
±!
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hei| 2 H
n

! , |hii 2 H
n
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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2

where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.

6

Linear Relations / IBPs identity
PoS(MA2019)015

From Diagrammar to Diagrammalgebra

can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
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28 h48 | , with 28 =
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8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
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H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.32)

H
m
�! , r�! = d� ! ^ (2.33)

|CR] ⌘

Z

CR
u(z) (2.34)

[CL| ⌘

Z

CL
u(z)�1 (2.35)

h'L| ⌘ 'L(z) 2 H
m
! (2.36)

|'Ri ⌘ 'R(z) 2 H
m
�! (2.37)

! ⌘ d log(u) (2.38)

h 'L | CR ] ⌘

Z

CR
u(z) 'L(z) = I (2.39)

[ CR | 'L i ⌘

Z

CL
u(z)�1

'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,i | CR,j
⇤�1 ⇥

CL,i | 'R i (2.43)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL,i | 'R,j i h 'L,i | 'R,j i

�1
h 'L | CR

⇤
(2.44)
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The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
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8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,
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08 |W8] , with 08 =
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
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with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,
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for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
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! . We denote

its elements by h'| 2 H
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! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
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proceeds along three steps:

1. Determination of the number ⌫ of MIs.
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3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
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±! are

trivial, which means that ' can only be n-forms [33]. In
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Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define
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then the number of critical points is given by the number
of solutions of the system of equations
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with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner
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Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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From Diagrammar to Diagrammalgebra

The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].

Master Integrals from Master Forms
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Riemann Bilinear Relations
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where the product between generally non commuting matrices is understood.

Following a similar approach, in the homology space, hence using I⌘, it is possible to derive
di�erential equations for (dual) master cycles, |W8] and [[8 |, and the secondary equations
obeyed the corresponding H intersection matrix.

2.1.3 Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) di�erentials forms,
q! and q', see [44] reads as,

hq! |q'i =
π
⌃
q! ^ q' =

6’
8=1

⇣ π
08

q!

π
18

q' �
π
18

q!

π
08

q'

⌘
, (27)

where ⌃ is an oriented Riemann surface of genus 6 > 0, built out of a 46-gon with edgesŒ6
8=1 08180

�1
8 1�1

8 (where the exponent ±1 stands for clock/anticlockwise orientation) and gluing
each edge with its inverse. The integration contours 08 and 18 , for 8 = 1, . . . 6, are a canoni-
cal bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are:
08 · 0 9 = 18 · 1 9 = 0 , and 08 · 1 9 = �1 9 · 08 = X8 9 . Riemann bilinear relation can be cast as,

hq! |q'i =
26’
8, 9

π
W8

q! (H�1)8 9
π
W 9

q' , (28)

where {W8}8=1,...,6 = 08 and {W8}8=6+1,...,26 = 18 , and H8 9 = [W8 |W 9] , namely

H =

 
0 I6⇥6

�I6⇥6 0

!
, yielding H

�1 =

 
0 �I6⇥6
I6⇥6 0

!
, (29)

and I6⇥6 is the identity matrix in the (6 ⇥ 6)-space.

Bilinear relations can be derived also for the cases of twisted co-cycles. The operators I2 and
I⌘ can be inserted in the pairing between twisted (co)cyles, to obtain the following identities:

• Twisted Riemann Periods Relations.

hi! |i'i = hi! |I⌘ |i'i =
a’

8, 9=1

hi! |W8]
⇣
H

�1
⌘
8 9
[[ 9 |q'i (30)

[C! |C'] = [C! |I2 |C'] =
a’

8, 9=1

[C! |⌘8i
⇣
C
�1

⌘
8 9
h4 9 |C'] , (31)

which are the Twisted Riemann Period Relations (TRPR) [50]. TRPR relates intersection
numbers for (co)-homologies to products of integrals and dual integrals.

2.1.4 Trilinear Identies

Multiple insertions of the identity resolutions I⌘ and I2 can generate multilinear relations.
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54 2 Differential Geometry of Riemann Surfaces

Corollary 2.4.2 Every compact Riemann surface of the form H/Γ has a
non-abelian fundamental group. ⊓⊔

Fig. 2.4.10.

Exercises for § 2.4

1) Let H/Γ be a compact Riemann surface. Show that each nontrivial
abelian subgroup of Γ is infinite cyclic.

2) Provide the details of the construction of a metric fundamental polygon
for a group of Euclidean motions.

2.4.A The Topological Classification of Compact
Riemann Surfaces

We start with

Definition 2.4.A.1 A differentiable manifold M is called orientable if it
possesses an atlas whose chart transitions all have positive functional deter-
minant. An orientation of M consists in the choice of such an atlas.

Corollary 2.4.A.1 Any Riemann surface is orientable, and a conformal
atlas provides an orientation.

Proof. All transition maps of a conformal atlas are holomorphic and there-
fore have positive functional determinant. ⊓⊔
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where the product between generally non commuting matrices is understood.

Following a similar approach, in the homology space, hence using I⌘, it is possible to derive
di�erential equations for (dual) master cycles, |W8] and [[8 |, and the secondary equations
obeyed the corresponding H intersection matrix.

2.1.3 Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) di�erentials forms,
q! and q', see [44] reads as,

hq! |q'i =
π
⌃
q! ^ q' =

6’
8=1

⇣ π
08

q!

π
18

q' �
π
18

q!

π
08

q'

⌘
, (27)

where ⌃ is an oriented Riemann surface of genus 6 > 0, built out of a 46-gon with edgesŒ6
8=1 08180

�1
8 1�1

8 (where the exponent ±1 stands for clock/anticlockwise orientation) and gluing
each edge with its inverse. The integration contours 08 and 18 , for 8 = 1, . . . 6, are a canoni-
cal bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are:
08 · 0 9 = 18 · 1 9 = 0 , and 08 · 1 9 = �1 9 · 08 = X8 9 . Riemann bilinear relation can be cast as,
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26’
8, 9

π
W8

q! (H�1)8 9
π
W 9

q' , (28)

where {W8}8=1,...,6 = 08 and {W8}8=6+1,...,26 = 18 , and H8 9 = [W8 |W 9] , namely

H =

 
0 I6⇥6

�I6⇥6 0

!
, yielding H

�1 =

 
0 �I6⇥6
I6⇥6 0

!
, (29)

and I6⇥6 is the identity matrix in the (6 ⇥ 6)-space.

Bilinear relations can be derived also for the cases of twisted co-cycles. The operators I2 and
I⌘ can be inserted in the pairing between twisted (co)cyles, to obtain the following identities:

• Twisted Riemann Periods Relations.

hi! |i'i = hi! |I⌘ |i'i =
a’

8, 9=1

hi! |W8]
⇣
H

�1
⌘
8 9
[[ 9 |q'i (30)

[C! |C'] = [C! |I2 |C'] =
a’

8, 9=1

[C! |⌘8i
⇣
C
�1

⌘
8 9
h4 9 |C'] , (31)

which are the Twisted Riemann Period Relations (TRPR) [50]. TRPR relates intersection
numbers for (co)-homologies to products of integrals and dual integrals.

2.1.4 Trilinear Identies

Multiple insertions of the identity resolutions I⌘ and I2 can generate multilinear relations.
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Generalising Riemann Bilinear Relations

=
ν

∑
i,j

∫γi

u φL (H−1)ij ∫ηj

u−1 φR

=
ν

∑
i,j

∫CL

u−1 hi (C−1)ij ∫CR

u ej
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[(dual) Integrals]

[(dual) Integrals]
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Linear Relations

Integration by parts identities (Feynman Integrals)

Differential Equations

Dimension-shift relations (Feynman Integrals)

Quadratic Relations

Riemann Twisted Periods Relations

KLT relations (Gravity vs Gauge-theory Amplitudes)

Relations for Closed- vs Open-String Theory Amplitudes

Gauss contiguity relations (Twisted Period Integrals)

A unique framework for:

Finite difference Equations (Twisted Period Integrals)

…& more
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Parametric Representation(s)
Upon a change of integration variables

2.2 Feynman
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2.3 Parametric
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C
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(2)
i (i = 1, 2)

c1 is the same as found in Cut1,3,4,5

r�⌦(n)
~ 
(n) = ~'

(n)
R (2.89)

@znhei
(n�1)

| = ⌦(n)
ij hei

(n�1)
| (2.90)

r�⌦(n) 
(n)
imim�1

= ĥ
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Feynman Integrals :: Baikov Representation
Denominators as integration variables
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Vector Space of Feynman Integrals
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PoS(MA2019)015
From Diagrammar to Diagrammalgebra

The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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From Diagrammar to Diagrammalgebra

for any generic (= � 1)-form i=�1.
Aomoto-Gel’fand integrals represent rather a wide class of integrals, such as Gauss hypergeo-

metric functions, Lauricella functions, and their generalizations, Euler-type integrals, and Feynman
integrals [27]. The considered class of integrals are invariant, under the following transformations:

• either shifting the di�erential =-form, by a term containing a covariant derivative, i.e. i= !
i= + rl i=�1;

• or shifting the integration domain, by a pure boundary term (containing no holes), i.e.
�= ! �= + m�=+1;

namely,
π
�=

D i= =
π
�=

D (i= + rl i=�1) =
π
�=+m�=+1

D i= , (4)

Similar results are obtained also for the so called dual integrals, obtained from the integrals defined
above by replacing D ! D�1 (and correspondingly l ! �l, in the definition of the covariant
derivative).

In the case of Feynman integrals, according to the chosen parametric representation, the factors
⌫8 that appear in D are identified with (or built out of) the graph polynomial(s) and the denominators.
For these set of functions, analyticity, unitarity, and algebraic structure are related to the geometry
captured by the Morse function ⌘ ⌘ '4(log(D)).

The multivalued twist D carries informations on the regularization: for dimensionally regulated
Feynman integrals, it depends on the integration variables as well as on external scales, such as
Mandelstam invariants and masses (all appearing in the polynomials ⌫8), and on the space time 3

(appearing in the U8). The topological information of integrals and dual integrals are contained in
l that is a di�erential form with zeroes and poles, collected in the respective sets,

Zl = {zeroes of l} , and Pl = {poles of l} [ {1} . (5)

The invariance of integrals and dual integrals under the two types of transformation mentioned
above can be exploited to expose the algebraic structure of Aomoto-Gel’fand integrals. Let us
introduce four vector spaces, for twisted cycles and cocycles: the de Rham =-th homology group,

�l
= =

Ker(m : �=+1 ! �=)
Im(m : �= ! �=�1)

, (6)

and the de Rham =-th co-homology group,

�=
l =

Ker(rl : i= ! i=+1)
Im(rl : i=�1 ! i=)

, (7)

which is the quotient space of closed =-forms, (i= | rli= = 0) modulo exact forms (i= | i= =
rli=�1); and their dual spaces, (�l

= )⇤ = ��l
= , and (�=

l)⇤ = �=
�l , respectively. These spaces are

isomorphic, and their dimension a,

a ⌘ dim(�=
±l) = dim(�±l

= ) , (8)
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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discus its solution locally around each intersection point. Section 3 contains application of our new
approach to integrals and functions of interests for physics and mathematics. In Section 4 we give
a closed, algebraic expression for each residue, contributing to the multivariate intersection number.
Section 5 contains our concluding remarks. The paper includes four appendices: Appendix A contains
the link of our new approach to Matsumoto’s algorithm, explicitly shown in the simple case of 2-forms;
Appendix B contains further details of the examples discussed in Section 3; Appendix C contains the
derivation of the algebraic expression given in Section 4.

2 Intersection numbers for twisted n-forms

2.1 Twisted cohomology

Let Bi, with i = 1, . . . ,m , be complex polynomials in the variables z = (z1, . . . , zn). We introduce an
oriented manifold X = CPn

�
Sm

i=1 Si, where the hypersurfaces Si are identified by the equations:

Si :=
�
z | Bi(z) = 0

 
, (2.1)

and the variables z are recognized as local coordinates of the projective space. We introduce the
Aomoto-Gel’fand integrals, defined as twisted period integrals,

Z

�(n)

u '
(n)

⌘

Z

�(n)

u '̂
(n) dnz , with dnz := dz1 ^ . . . ^ dzn , (2.2)

where: u is a multivalued function called the twist, which regulates the integral; �(n) is a regularised
cycle called twisted or loaded cycle, i.e. a n-chain with empty boundary on X (usually �(n) is denoted
as �(n)

⌘ �(n)
⌦ u to separate the integration domain �(n) and a specific choice of the branch of

multivalued u along it); '(n) is a meromorphic di↵erential n-form defined on X, called the twisted
cocycle. In general u is a multivalued function that “vanishes” on the integration boundary: u(@�(n)) =
0. The latter property ensures that for any generic (n� 1)-form '

(n�1) the integral of the total
di↵erential is zero:

0 =

Z

�(n)

d(u'(n�1)) =

Z

�(n)

ur! '
(n�1)

, (2.3)

where we introduced the covariant derivative:

r! := d + !^ = u
�1

· d · u , with ! ⌘

nX

i=1

!̂i dzi = d log(u) , (2.4)

with d =
Pn

i=i dzi , where dzi = @zidzi , and !̂i = u
�1

@ziu , using the short hand notation @zi ⌘

@/@zi. When dealing with individual integration variables, it might be convenient to consider the
decomposition of the full covariant derivative:

r! =
nX

i=1

r!i , (2.5)

with the partial covariant derivatives defined as:

r!i := r̂!idzi , and r̂!i = @zi + !̂i . (2.6)

Aomoto-Gel’fand integrals represent a wide class of special functions, such as Gauss hypergeo-
metric functions, Lauricella functions, and their generalizations, Euler-type integrals, and Feynman
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is well-behaved at infinity (if this were not true, then the whole integral I would not
converge), we can connect at infinity the m paths one can draw around the m cuts. The
resulting closed path is actually contractible in a single point; hence, only m � 1 paths are
independent (Figure 1).

Qualitatively, notice that if m is the order of the polynomial B(z1), then m � 1 is the
order of the polynomial ∂z1 B, and hence it is related to the number of zeros of ∂z1 B. Getting
back to the notation

I =
Z

C
uf , (26)

where u = Bg, it is equivalent to the number of solutions of

w = d log u = g(∂z1 B/B)dz1 = 0 , (27)

called the number of proper zeros. Equation (27) suggests a deep connection between the
number n of MIs and the number of critical points of B.Version August 26, 2021 submitted to Universe 10 of 74

Im(z)Im(z)Im(z)

Re(z)Re(z)Re(z)

Figure 1. Complex plane with m = 5 cuts (undulate blue curves). Each cut is encircled by a path going
to infinity while never crossing any cut. Dashed green lines connect at infinity the full green lines and
overall create a closed path which is clearly contractible in 0.

As shown more extensively in [53], this connection is actually much more general: given an
integral of the form (26), in which f is a holomorphic M-form and u is a multivalued function such
that u(∂C) = 0 , then the number of Master Integrals is

n = number of solutions of the system

8
>><

>>:

w1 = 0
...

wn = 0

, (28)

where

w = d log u(~z) =
n

Â
i=1

∂zi log u(~z)dzi =
n

Â
i=1

widzi. (29)

Summing up, the number n of MIs, which is the dimension of both the cohomology and homology
groups thanks to the Poincaré duality, is equivalent to the number of proper critical points of B, which
solve w = 0. We mention that n is also related to another geometrical object: the Euler characteristic c

[53][87]. It is found that is linked to c(Pw), where Pw is a projective variety defined as the set of poles
of w, through the relation [63]

n = dim Hn
±w = (�1)n (n + 1 � c(Pw)) . (30)

While we do not delve into the details of this particular result, we highlight how, once again, n relates245

the physical problem of solving a Feynman integral into a geometrical one.246

Figure 1. Complex plane with m = 5 cuts (undulating blue curves). Each cut is encircled by a path
going to infinity while never crossing any cut. Dashed green lines connect at infinity the full green
lines and overall create a closed path that is clearly contractible in 0.

As shown more extensively in [53], this connection is actually much more general:
given an integral of the form (26), in which f is a holomorphic M-form and u is a multival-
ued function such that u(∂C) = 0 , then the number of Master Integrals is

n = number of solutions of the system

8
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wn = 0

, (28)

where

w = d log u(~z) =
n

Â
i=1

∂zi log u(~z)dzi =
n

Â
i=1

widzi. (29)

Summing up, the number n of MIs, which is the dimension of both the cohomology
and homology groups thanks to the Poincaré duality, is equivalent to the number of proper
critical points of B, which solve as w = 0. We mention that n is also related to another
geometrical object: the Euler characteristic c [53,87]. It is found that is linked to c(Pw),
where Pw is a projective variety defined as the set of poles of w, through the relation [63]

n = dim Hn
±w = (�1)n(n + 1 � c(Pw)). (30)
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5.1 Change of bases

u = B
� (5.23)

dimH
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±!
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
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scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
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related to any internal line of the graph.
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Calculus and Differential Forms

1 Introduction

Feynman integrals constitute the basic mathematical entities in computational Field Theory.
Feynman diagrams were introduced in the context of quantum interacting field theory, as
they offer a graphical representation of the solution of systems of first order differential
equations expressed in Dyson series, which can be used to describe the evolution of physical
systems controlled by Volterra-type model in several contexts, within quantum as well as
classical physics. Therefore the predictive power of a theoretical model, aiming at describing
the interactions among the elementary objects that compose the system under study (being
them as small as elementary particles or as big as black-holes) strongly depends on the
developments of mathematical methods for evaluating the Feynman integrals that occur in
the evaluation of scattering amplitudes. "Perturbation theory means Feynman diagram"
[? ]. "perturbation theory is a very useful device to discover very useful equations and
properties that may hold true even if the perturbation expansion fails" [? ].

Dimensional regularization played a crucial role in the formal mathematical developments
of gauge theories and of Feynman integrals. Exploiting the analytic continuation in the
space-time dimensions d of the interacting fields, it is possible to modify the number of
integration variables in order to stabilize otherwise ill-defined (mathematically non existing)
integrals emerging in the evaluation of quantities which ultimately have to be compared
with numbers coming from (physically existing) experiments.

Feynman integrals, within the dimensional regularization scheme, obey contiguity
relations known as integration-by-parts (IBP) identities [], which play a crucial role in the
evaluation of scattering amplitudes beyond the tree-level approximation. IBP identities
yield the identification of an elementary set of integrals, the so-called master integrals (MIs),
which can be used as a basis for the decomposition of multi-loop amplitudes. At the same
time, IBP relations can be used to derive differential equations [], finite difference equations
[], and dimensional recurrence relations [] obeyed by MIs. The solutions of those equations
are valuable methods for the evaluation of MIs, as alternatives to their direct integration.

In [? ], Feynman integrals have been classified as Aomoto-Gel’fand integrals, and it
has been proposed to study that their algebraic properties within the intersection theory
for twisted deRham co-homology, which is a branch of differential geometry and algebraic
topology focusing on hypergeometric integrals and their generalisation []. Later studies []
have enhanced and completed the basic ideas proposed earlier, demonstrating the existence
of a vector space structure for Feynman integrals controlled by intersection numbers.

2 Intersection Numbers for 1-forms

Consider the wedge product of two closed forms '1 ^ '2, and assume it can be written as
d⌦. Then, their intersection number can be computed via Stokes’ theorem.

Z

X
'1 ^ '2 =

Z

X
d⌦ =

Z

@X
⌦ . (2.1)

Indeed, if we introduce the potential  1, such that

d 1 = '1 (2.2)
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then, we can define

⌦ ⌘  1 '2 . (2.3)

In fact, d⌦ = d 1^'2+ 1 d'2 = '1^'2+0, as we need (the second term vanishes because
of the closure).
Finally, if the integration boundary @X contains poles, then the integration along the
boundary @X can be substituted by a sum of contour integrals around each pole, and the
intersection number can be evaluated by Cauchy’s residue theorem, yielding

Z

X
'1 ^ '2 =

X

p2Poles
Resz=p

⇣
⌦
⌘
. (2.4)

For Aomoto-Gel’Fand/Feynman integrals, we need to consider the twisted (and dual-
twisted) forms

'1 ⌘ u'L , '2 ⌘ u�1 'R . (2.5)

In this case, to look for the the potential that obeys eq. (2.2), we choose a solution written
as,

 1 ⌘ u L , (2.6)

(namely, explicitly factoring u), so that the differential equation d 1 = '1 becomes,

d(u L) = u'L (2.7)
(du) L + u d L = u'L (2.8)

ur! L = u'L (2.9)
r! L = 'L . (2.10)

where we introduced the covariant derivative

r! ⌘ d+ !^ , with ! ⌘ d log u . (2.11)

Equation (2.10) is the differential equation proposed by Matsumoto. Therefore one has,

⌦ =  1 '2 = u L u�1 'R =  L 'R (2.12)

and
Z

X
(u'L) ^ (u�1'R) =

Z

X
'L ^ 'R =

X

p2Poles
Resz=p

⇣
 L 'R

⌘
. (2.13)
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2. Regularized Forms

Logarithmic twisted cocycles 'L can have simple poles only at zi’s. To construct '
c
L with

compact support, we must find a cocycle in the sme cohomology class, which vanishes in a

small tubular neighborhood around each zi.

Let’s divide the space X = CP1
\ [

k
i=1{z = zi}, into regions:

where Vi and Ui are discs centered in zi with small radii 0 < ✏V < ✏U . For convenience, let

us define the annulus Di = Ui \ Vi.

We introduce the regulating function

hi = hi(z, z̄) ⌘

8
><

>:

0, on Ui

0 < hi < 1, on Di = Ui \ Vi

1, on Vi

(2.1)

and define

'
c
L ⌘ 'L �

X

zi2P!

r!(hi i) (2.2)

For notation ease, we omit the sum over the poles of !, and restore it at the end. Observe

that,

r!(hi i) = (d+ !)(hi i) =  i(dhi) + hi(d i) + hi! i =  i(dhi) + hir! i (2.3)

Therefore,

'
c
L = 'L � ( i(dhi) + hir! i) (2.4)

I↵

r! i = 'L , for z ! zi, namely on Ui \ {zi} (2.5)

then

'
c
L ⌘

8
><

>:

0, on Vi

'L � ( i(dhi) + hi'L) , on Di = Ui \ Vi

'L , on X \ Ui

(2.6)

hence '
c
L has compact support, because 'c

L = 0 on [
k
i=1Vi.

Let us consider the following two identities:

1. Since '
c
L = 'L , on X \ Ui,

Z

X\Ui

'
c
L ^ 'R = 0 (2.7)
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ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

⌫ = number of critical points 2 Z(!) (4.178)

P (!) = {poles of !, including 1} (4.179)

X = C� P (!) (4.180)

for z ! zi 2 P (!)
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�1 �2 �3 �4 e1 e2 e3 e4 (4.175)

P (t� t0) = e
H(t�t0)

Z
t2

t1

dt P (t1 � t)V P (t� t2) (4.176)

X

FeynmanGraphs

(4.177)

B(@C) = 0 (4.178)

h'L|'Ri =
1

2⇡i

Z

X

(u'L) ^ (u�1
'R) =

1

2⇡i

X

zi2P (!)

I

�i

 i 'R (4.179)

ai = [�i|�] , [�i|�j ] = �ij (4.180)

ci = h'|eii , hei|eji = �ij (4.181)

ci = I · Ji , Ji · Jj = �ij (4.182)
X

i

Ji Ji = I⌫⇥⌫ (4.183)

⌫ = number of critical points 2 Z(!) (4.184)

P (!) = {poles of !, including 1} (4.185)

X = C� P (!) (4.186)

for z ! zi 2 P (!)

=

Z

C+@�
u'm (4.187)

=

Z

C+@�
u
�1
�m (4.188)

(4.189)
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⇣
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then, we can define

⌦ ⌘  1 '2 . (2.3)

In fact, d⌦ = d 1^'2+ 1 d'2 = '1^'2+0, as we need (the second term vanishes because
of the closure).
Finally, if the integration boundary @X contains poles, then the integration along the
boundary @X can be substituted by a sum of contour integrals around each pole, and the
intersection number can be evaluated by Cauchy’s residue theorem, yielding

Z

X
'1 ^ '2 =

X

p2Poles
Resz=p

⇣
⌦
⌘
. (2.4)

For Aomoto-Gel’Fand/Feynman integrals, we need to consider the twisted (and dual-
twisted) forms

'1 ⌘ u'L , '2 ⌘ u�1 'R . (2.5)

In this case, to look for the the potential that obeys eq. (2.2), we choose a solution written
as,

 1 ⌘ u L , (2.6)

(namely, explicitly factoring u), so that the differential equation d 1 = '1 becomes,

d(u L) = u'L (2.7)
(du) L + u d L = u'L (2.8)

ur! L = u'L (2.9)
r! L = 'L . (2.10)

where we introduced the covariant derivative

r! ⌘ d+ !^ , with ! ⌘ d log u . (2.11)

Equation (2.10) is the differential equation proposed by Matsumoto. Therefore one has,

⌦ =  1 '2 = u L u�1 'R =  L 'R (2.12)

and
Z

X
(u'L) ^ (u�1'R) =

Z

X
'L ^ 'R =

X

p2Poles
Resz=p

⇣
 L 'R

⌘
. (2.13)
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⟨φ1 |φ2⟩ =
1

2πi ∫X
φ1 ∧ φ2 =

1
2πi ∫X

dΩ =
1

2πi ∫∂X
dΩ

φ1 , φ2

φ1 , φ2 ∈ Hn
dR
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Intersection Numbers for n-forms :: Recursive Formula

I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L,i | (C(n�1))ij = h'

(n)
L |h

(n�1)
j i

(C(n�1))ij |'
(n)
R,ji = he

(n�1)
i |'

(n)
R i (2.103)

h'
(n)
L |'

(n)
R i =

X

i,j

h'
(n)
L |h

(n�1)
j i(C(n�1))

�1
ji he

(n�1)
i |'

(n)
R i

=
X

i,j

h'
(n)
L,i |(C(n�1))ij '

(n)
R,ji (2.104)
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Intersection Numbers for n-forms (I)
Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019) 

Ohara (1998) Mizera (2019)
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Fontana Peraro (2023)+ Global Residue Thm Weinzierl (2020) + Polynomial Division

+ Relative cohomology CaronHuot Pokraka (2019-2021) Fontana Peraro (2023) Brunello, Chestnov, Crisanti, Frellesvig, Mandal & P.M. (2023)  

+ special cohomology basis Crisanti, Smith (2024)  

Chestnov, Frellesvig, Gasparotto, Mandal & P.M. (2022) 

Matsumoto (1998)

Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):

h'
(n)
L | '

(n)
R i = (2⇡i)�n

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Resz=p( '
(n)
R ) , (2.19)

where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),

@
n

@z1 @z2 . . . @zn
(u ) = u '̂

(n)
L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)

– 6 –

so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:

dz1 . . . dzn⌘ =
⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
u 

�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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Intersection Numbers for n-forms (II)

Brunello, Chestnov, & P.M. (2024)  

Rescursive formula + Companion Tensor Algebra

Intersection Numbers for n-forms (III)
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1-Loop 6-point

1-Loop 7-point

Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (2023) 
Complete decomposition @ 1- & 2-Loop

2-loop 4-point

 planar diagram  non-planar diagram  planar diagram  non-planar diagram

2-loop 5-point

 planar diagram
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Complete decomposition @ 1- & 2-Loop

2-loop 5-point Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (2023) 

Brunello, Chestnov, & P.M.  (2024)

4 Decomposition of two-loop five-point massless planar integrals
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Figure 1. The 47 sectors of the 62 master integrals defined in eq. (4.5), corresponding to the
massless two-loop five-points integral family (symmetry relations have not been applied).

The goal of this section, is to apply the algorithm described in Section 3 for the decomposition
of massless two-loop five-point functions in terms of master integrals. The integral family is
defined in terms of 11 generalised denominators:

z1 = k
2
1 , z2 = (k1+p1)2

, z3 = (k1+p1+p2)2
, z4 = (k2+p1+p2)2

,

z5 = (k2+p1+p2+p3)2
, z6 = (k2≠p5)2

, z7 = k
2
2, z8 = (k1≠k2)2

,

z9 = (k2+p1)2
, z10 = (k1+p1+p2+p3)2

, z11 = (k1≠p5)2
, (4.1)
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Figure 1. The 47 sectors of the 62 master integrals defined in eq. (4.5), corresponding to the
massless two-loop five-points integral family (symmetry relations have not been applied).

The goal of this section, is to apply the algorithm described in Section 3 for the decomposition
of massless two-loop five-point functions in terms of master integrals. The integral family is
defined in terms of 11 generalised denominators:

z1 = k
2
1 , z2 = (k1+p1)2

, z3 = (k1+p1+p2)2
, z4 = (k2+p1+p2)2

,

z5 = (k2+p1+p2+p3)2
, z6 = (k2≠p5)2

, z7 = k
2
2, z8 = (k1≠k2)2

,
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62 MIs and 47 sectors

as:
Ia1a2a3a4a5a6a7a8a9a10a11 =

⁄
d11

z u(z) z
≠a9
9 z

≠a10
10 z

≠a11
11

z
a1
1 z

a2
2 z

a3
3 z

a4
4 z

a5
5 z

a6
6 z

a7
7 z

a8
8

(4.2)

z9, z10, z11 are irreducible scalar products, and hence the set of relative boundaries is given
by:

D
‚ = V (

8Ÿ

i=1
zi) . (4.3)

The kinematics is such that:

p
2
i = 0 , s12 = (p1+p2)2

, s23 = (p2+p3)2
,

s34 = (p3+p4)2
, s45 = (p4+p5)2

, s51 = (p5+p1)2
. (4.4)

This integral family has (before application of the symmetry relations) ‹ = 62 master
integrals, which we may pick as depicted in Figure 1, as:

J1 = I10010001000, J2 = I00100011000, J3 = I01001001000, J4 = I00100101000,

J5 = I10001001000, J6 = I01000101000, J7 = I10110010000, J8 = I10110100000,

J9 = I10101010000, J10 = I01010011000, J11 = I10100101000, J12 = I10010101000,

J13 = I10101001000, J14 = I00101011000, J15 = I01001011000, J16 = I01010101000,

J17 = I10110101000, J18 = I10101011000, J19 = I11001101000, J20 = I01100111000,

J21 = I11011001000, J22 = I01101101000, J23 = I10011101000, J24 = I00101111000,

J25 = I01001111000, J26 = I11100101000, J27 = I11101001000, J28 = I01011101000,

J29 = I01010111000, J30 = I01011011000, J31 = I10101101000, J32 = I101011≠11000,

J33 = I11010101000, J34 = I110101≠11000, J35 = I01101011000, J36 = I01101011≠100,

J37 = I10111110000, J38 = I10111101000, J39 = I10101111000, J40 = I11110101000,

J41 = I11101011000, J42 = I11101101000, J43 = I111011≠11000, J44 = I11011101000,

J45 = I11011101≠100, J46 = I01101111000, J47 = I01101111≠100, J48 = I01011111000,

J49 = I01011111≠100, J50 = I11110111000, J51 = I11110111≠100, J52 = I11111011000,

J53 = I11111011≠100, J54 = I11101111000, J55 = I111≠11111000, J56 = I11101111≠100,

J57 = I11111101000, J58 = I111111≠11000, J59 = I11111101≠100, J60 = I11111111000,

J61 = I11111111≠100, J62 = I111111110≠10 . (4.5)

We are interested in decomposing the target integral:

I =
⁄

d11
z u(z) z

2
9

z1z2z3z4z5z6z7z8
= I11111111≠200 (4.6)

in terms of master integrals of eq. (4.5) via a complete set of spanning cuts, as:

I =
62ÿ

i=1
ci Ji . (4.7)

– 19 –

(Numerical) decomposition up to degree-20
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Intersections Numbers beyond Feynman Integrals
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Intersections Numbers @ QM and QFT
Cacciatori & P.M. (2022) 

Mapping integrals to Twisted Period Integrals

Applying Intersection Theory
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Orthogonal Polynomials and Matrix Elements in QM

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
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the context of Quantum Mechanics, elsewhere.
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result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
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the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,
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where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
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with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
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and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
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the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,
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where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
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for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,

4/11

(one master integral)

Laguerre, Legendre, Tchebishev, Gegenbauer, Hermite 

Harmonic oscillator, H-atom

Orthogonality-like integrals and matrix elements in QM belong to a finite dimensional vector space
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Green’s Function and Kontsevich-Witten tau-function

Master Decomposition formula

Case iii)

Case iv)

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)
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Toy models univariate integrals

Cacciatori & P.M.(2022)

Gasparotto, Weinzierl (2022)

“Path integrals” belong to a finite dimensional vector space

Green’s functions and correlators in QFT are determined by intersection numbers
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Fourier integrals from Intersection Theory

Fourier integrals in Baikov representation as twisted periods

Brunello, Crisanti, Giroux, Smith & P.M. (2023)  
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satisfied by the basis of master integrals in any external
variable x

@xJi = [⌦x]ijJj . (14)

To see this, we note that in the language of twisted coho-
mology, eq. (14) translates to

@x hei| = h@x(uei)/u| = [⌦x]ij hej | , (15)

which implies

[⌦x]ij = h@x(uei)/u, qeki [C�1]kj . (16)

We reiterate that the derivations of eqs. (11) and (16) do
not involve solving (potentially large) systems of linear
equations but instead exclusively rely on the computation
of intersection numbers.

Fourier integrals in Baikov representation We
consider a generic D-dimensional Fourier integral, which
takes the form

f̃({xi}) =

Z
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LY

j=1

eiqj ·xj d̄Dqj , (17a)

with measure: d̄Dqj =
dDqj

(2⇡)D/2
. (17b)

Eq. (17) is the Fourier transform of the func-
tion/distribution f performed over L internal vectors
{qi}. The result is a function of E external vectors {xi}.
We denote the set of n = L

2
(L+1)+LE internal scalar

products as

Si = {q
2

1
, q1 · q2, . . . , q

2

L, q1 · x1, q1 · x2, . . . , qL · xE} . (18)

To reinterpret the Fourier transform in eq. (17) as a
twisted period, we propose to change variables to the
Baikov variables [36, 48]: the procedure involves a first
change of variables from the internal vectors qi to the
internal scalar products Si, followed by a second change
of variables,

zi = Aij Sj +Bj , (19)

where Aij is an n⇥ n matrix and Bj is an n-dimensional
vector. Both operations only depend on the external
scalar products {Si}. Once the dust settles, the result
reads

f̃ =
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u(z)'L(z) , (20)

where

CR =
L\

i=1

⇢
detG{qi,...,qL,y1,...,yE}

detG{qi+1,...,qL,y1,...,yE}
> 0

�
, (21)

is the contour of integration. The di↵erential form
'L(z) = f(z) dnz contains the function/distribution f we
would like to Fourier transform and

u(z) =  eig(z)B(z)
D�L�E�1

2 , (22)

is the twist. Here, g(z) is always linear in z and we define

G({x}) = det[xi · xj ] , (23a)

B(z) = G(q1, . . . , qL, y1, . . . , yE) , (23b)

 =
⇡

L(1�L�2E)
4 G(y1, . . . , yE)
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LD
2 detA

QL
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⇣

D�L�E+j
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⌘ . (23c)

Note that B � 0 on CR. Complementary details regarding
the derivation of eq. (20) can be found in app. A.

Representing a Fourier integral as the twisted period in
eq. (20) enables the use of intersection theory for the
construction of di↵erential equation (c.f., eq. (14)). Thus,
the master Fourier integrals Ji can be evaluated by solv-
ing the system of di↵erential equations, analogously to
Feynman integrals.

III. APPLICATIONS

In this section, we apply the formalism described above
to three families of Fourier integrals arising in various
corners of particle physics. An ancillary Mathematica
file (ancillary.m) containing complementary details for
each example is attached to the preprint version of this
letter.

Below, M = 1,D�1 denotes the Minkowski spacetime
manifold. Unless specified otherwise, we work in the
mostly plus Lorentzian signature (�,+,+, ...,+).

A. Fourier transform of a scalar propagator

As a first example, we consider the Fourier transform of
a massive scalar Feynman propagator,

In =

Z

M
d̄Dq

eiq·x

(q2 +m2 � i")n
. (24)

We work with dimensionless integrals Kn, defined
by

In = m
D�2n

Kn , Kn =

Z

M
d̄Dk

eik·v

(k2+1�i")n
, (25)

where v = mx and k = q/m are both dimensionless
vectors. For Kn, we have L = 1 internal vector {k}

and E = 1 external vector {v}. We define the n =
2 integration variables as z1 = k

2 + 1 and z2 = k · v.
Thus, in the Baikov representation, this integral takes the
form

Kn =

Z
dz

z
n
1

u(z) , (26)

where the twist is given by

u(z1, z2) =
eiz2⌧

2�D
2

2
D
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p
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Application-1: Feynman propagator in position-space
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eq. (20) enables the use of intersection theory for the
construction of di↵erential equation (c.f., eq. (14)). Thus,
the master Fourier integrals Ji can be evaluated by solv-
ing the system of di↵erential equations, analogously to
Feynman integrals.

III. APPLICATIONS

In this section, we apply the formalism described above
to three families of Fourier integrals arising in various
corners of particle physics. An ancillary Mathematica
file (ancillary.m) containing complementary details for
each example is attached to the preprint version of this
letter.

Below, M = 1,D�1 denotes the Minkowski spacetime
manifold. Unless specified otherwise, we work in the
mostly plus Lorentzian signature (�,+,+, ...,+).

A. Fourier transform of a scalar propagator

As a first example, we consider the Fourier transform of
a massive scalar Feynman propagator,

In =

Z

M
d̄Dq

eiq·x

(q2 +m2 � i")n
. (24)

We work with dimensionless integrals Kn, defined
by

In = m
D�2n

Kn , Kn =

Z

M
d̄Dk

eik·v

(k2+1�i")n
, (25)

where v = mx and k = q/m are both dimensionless
vectors. For Kn, we have L = 1 internal vector {k}

and E = 1 external vector {v}. We define the n =
2 integration variables as z1 = k

2 + 1 and z2 = k · v.
Thus, in the Baikov representation, this integral takes the
form

Kn =

Z
dz

z
n
1

u(z) , (26)

where the twist is given by

u(z1, z2) =
eiz2⌧

2�D
2

2
D
2
p
⇡�((D� 1)/2)

((z1�1)⌧�z
2

2
)

D�3
2 , (27)
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Figure 1. The KMOC momentum space waveform as the
expectation value of measuring a graviton (labelled by 3) in
the background of two Schwarzschild black holes/heavy scalars
(labelled by 1 and 2). The prime decorations on 10 and 20

emphasize that the scattering is non forward (no in and out
states are exactly collinear). To obtain, e.g., the spectral
waveform, one needs to Fourier transform this observable to
impact parameter.

holes (modeled here as heavy scalars) scattering o↵ each
other, from and back to the far past (see Fig. 1).

To establish the connection with scattering amplitudes
more precisely, it is useful to first introduce the generators
a, a

†
, b and b

† for the algebra of asymptotic measurements.
Its existence is physically motivated by the naive expec-
tation that finite energy excitations in the “bulk” should
decay into a set of stable and free particles at asymptotic
times. This means that the asymptotic states are assumed
to be free of any external forces/fields, so that they do
not radiate nor decay.4

The annihilation and creation operators in the far past are
denoted, respectively, by a and a

†, while those in the far
future are similarly denoted by b and b

†. In what follows,
the key property is that a and b are conjugated to each
other with respect to unitary time evolution : b = S

†
aS

(and, similarly, b† = S
†
a
†
S), where SS

† = . We refer
the reader to [59] for complementary details.

The background in which the scattering occurs is defined
by perturbations of the time-invariant vacuum |0i in the
far past

|12i = a
†
2
a
†
1
|0i and |1020i = a

†
20a

†
10 |0i . (38)

As these two-particle states evolve over time, they can
interact non-trivially with each other (i.e., create and
absorb particles). Then, Exp3 is defined as

Exp3 = inh2
010|b3|12iin . (39)

4
In the context of collider physics, particles encountered near the

detectors are, of course, generally not free (their motion is most

likely a↵ected by background fields). In such cases, it is essential

to also consider the scattering of unstable particles (which can

decay and radiate). Recent literature on this subtle subject

includes [61–63].

The connection between Exp3 and amplitudes is made
manifest in two steps. First, using the relation b = S

†
aS

and inserting a complete basis of states5 =
PR

X |XihX|

in eq. (39), we obtain

Exp3 = inh2
010|S†

a3S|12iin

=
XZ

X

inh2
010|S†

|XihX3|S|12iin . (40)

Next, plugging the decomposition formula S = + iT of
the 4-point S-matrix (where T is the connected part) into
eq. (40), we obtain

Exp3 = inh32
010|iT |12iin

+
XZ

X

inh2
010|T †

|XihX3|T |12iin . (41)

The first term is a (conventional) time-ordered 3  2
amplitude, while the second term is a product of two
time-ordered amplitudes glued together by a s1020 =
�(p10+p20)2 channel cut. In practice, we can therefore
compute Exp3 perturbatively, directly from conventional
time-ordered Feynman rules. (Alternatively, it was re-
cently explained in [64] how to obtain such observables
from analytic continuations of time-ordered scattering
amplitudes.)

To eventually streamline comparison with experimental
data, one may opt to work with waveforms expressed as
functions of variables other than momenta. Such quan-
tities can be derived from Exp3 after performing addi-
tional Fourier transforms. For example, obtaining the
spectral waveform requires to Fourier transform Exp3 to
impact parameter space. Similarly, to obtain the time
domain waveform, an additional Fourier transform in the
frequency of the outgoing graviton is needed.

It was recently demonstrated in [55] (see also [53]) that
to obtain the leading-order (tree-level) spectral waveform
in pure general relativity and N = 8 supergravity, one
must perform Fourier transforms of the form6

I
⌫2m
�1�2

=

Z

M
d̄Dq

�(u1·q)�(u2·(q�k))q⌫1 . . .q
⌫2me�iq·b

[q2 � i"]�1 [(q�k)2 � i"]�2
, (42)

where the ui s denote the (dimensionless) classical ve-
locities of the heavy external objects, k is the (on-shell:
k
2 = 0) graviton momentum and b the impact parame-

ter.

5
The symbol

PR
X formally denotes an integral-sum over the on-shell

phase space of the inserted state |Xi (see [59, eq. (3.5)]).
6
Note that the exponential has the non-standard sign. This is due

to our use of a signature convention opposite to that in [53, 55].
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Figure 2. The bare color dipole cross-section discussed in the
main text. The eikonal quark and anti-quark are represented
by (red) Wilson lines. The color potential, which appears as a
static two-dimensional pancake in the laboratory rest frame,
models the highly boosted target nucleus and is represented
by the blue region.

Using these results, and by computing the b ! 0 limit of
eq. (52), c1 is fixed to

c1 =
1

4
csc

✓
⇡D

2

◆
. (58)

Putting everything together, the final expressions for the
dimensionful master integrals read

I1 =

�
b
2
/w

2
2

� 4�D
4

2⇡ (y2�1)
D�2

4

K 4�D
2

 p
b2w2p
y2�1

!
, (59a)

I2 =

�
b
2
/w

2
2

� 6�D
4

4⇡ (y2�1)
D�4

4

K 6�D
2

 p
b2w2p
y2 � 1

!
. (59b)

where K⌫(z) stands for the modified Bessel function of
the second kind. The D ! 4 limit of eq. (59a) is smooth
and agrees with [53, eq. (C16)], once convention di↵er-
ences are taken into account. The D-dimensional analytic
expressions in eq. (59) are new and constitute one of the
main results of this work.

C. QCD color dipole scattering

A central objective of future electron-ion collision experi-
ments [65] is to gather data on how the density of partons
inside hadrons changes as a function of energy. It is
theorized that, as energy increases, this density becomes
larger and larger until it reaches the so-called satura-
tion regime of QCD, where non-linear e↵ects from gluon
recombination (gg ! g) take over soft bremsstrahlung.
This prediction arises in the color glass condensate inter-
pretation of deep inelastic scattering (DIS) [66, 67]. In
this framework, the incoming lepton emits a high-energy
virtual photon scattering from the color potential of the
proton. This interaction is then modeled in the frame
where the virtual photon fluctuates into a color dipole
(quarkonia) that scatters eikonally from the color potential
(see Fig. 2).

At leading order, the total cross-section for the photon
polarization states is obtained by applying the optical the-

orem to the color dipole forward amplitude T [68]

�
�⇤p
LO

= 2

Z
d2bqd

2bq̄dz| (�?, q
2
, z)|2T (bq,bq̄, Y ) . (60)

Here,  =  �⇤"qq̄ denotes the lightcone wavefunction
of the virtual photon of momentum q in the frame
where it decays into a quarkonia dipole of transverse
size �?=|bq�bq̄| carrying a fraction z of the photon’s
longitudinal momentum. The forward amplitude T is
related to the correlator of Wilson lines

Ũ(bq,bq̄, Y ) =
1

Nc

tr[U(bq, Y )U†(bq̄, Y )] , (61)

via T = 1�Ũ . Here, Nc denotes the number of colors and
each Wilson line U(bp, Y ) represents a parton p traversing
the target at transverse position/impact parameter bp

and rapidity Y = Y (z) (see Fig. 2).

The rapidity evolution of the target color field is de-
scribed by the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (JIMWLK) equation [69]. An approxi-
mate, yet more tractable, large-Nc/mean-field description
is given by the Balitsky–Kovchegov (BK) equation [70–72],
which is to leading order accuracy given by

@Ũ(bq,bq̄, Y )

@Y
=

Z
d2bg K

LO

BK
(bq,bq̄,bg)

⇥ [Ũ(bq,bg, Y )Ũ(bg,bq̄, Y )� Ũ(bq,bq̄, Y )] ,

(62)

where K
LO

BK
(bq,bq̄,bg) =

↵sNc
2⇡2

(bq̄�bq)
2

(bq̄�bg)
2(bq�bg)

2 and ↵s is

the strong coupling constant.7

The solution to the BK equation predicts an interesting
feature of the DIS total cross-section known as geometrical
scaling [76]. This scaling is indicative of gluon saturation
within the hadron in the Regge limit.

Over the past decade, significant e↵orts have been made
to refine the BK equation by including next-to-leading or-
der corrections and beyond (see, e.g., [73, 77–79]). These
refinements involve calculating higher-order corrections
in the strong coupling constant, which can be quite cum-
bersome. In particular, as intermediate steps, it is often
necessary to trade the transverse-momentum dependence
in expressions in favor of transverse position. This step
necessarily leads to complicated Fourier integrals.

As illustrative examples, we consider two D-dimensional
families of integrals relevant to deep inelastic scattering

7
When considering high energy QCD in situations involving dilute

targets and projectiles, the partonic Wilson lines in eq. (62) tend

to stay close to unity such that Ũ ! 1
�

[73]. In such scenarios, T
is a small parameter and the relevant physics is governed by the

linearized version eq. (62) known as the 1-loop Balitsky–Fadin–

Kuraev–Lipatov (BFKL) equation (see [74, 75] and [68] for a

recent review).
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Figure 3. A small sample of NLO diagrams relevant to the
rapidity evolution of a color dipole in lightcone coordinates
(the transverse direction is left implicit). The first diagram
exemplifies a cut self-energy correction, while the subsequent
ones illustrate cut vertices. The Fourier integrals discussed in
the main text emerge as intermediate steps in the computation
of NLO BK observables in D-dimensions.

in the saturation regime

I
ij =

Z

2D

d̄Dq1d̄
D
q2

N
ij
I (q1, q2)ei(q1·x1+q2·x2)

q
2
1
(q2

1
⌧+q

2
2
)

, (63a)

G
ij =

Z

2D

d̄Dq1d̄
D
q2

N
ij
G (q1, q2)ei(q1·x1+q2·x2)

(q1 + q2)2(q21⌧ + q
2
2
)

, (63b)

where the qi ⌘ q?
i s are Euclidean, 1 � ⌧ > 0 and

N
ij
I = q

i
1
q
j
2
,

N
ij
G = �

ij(q2
1
�q

2

2
)�

2qi
1
(q1+q2)j

u
+
2(q1+q2)iq

j
2

u⌧
.

(64)

In particular, in D = 2, eqs. (63a) and (63b) appear in
the derivation of the NLO BK equation [77, eq. (42)]. A
small subset of diagrams leading to their appearance is
shown in Fig. 3.

In the following, we present new closed-form formulae for
eqs. (63a) and (63b) in D dimensions. We anticipate these
results to be useful considering that the O(✏) correction
to the NLO BK equation yields non-trivial contributions
to the NNLO BK equation in the critical dimension.8

Tensor decomposition We first perform the tensor
decomposition of Iij and G

ij , namely

I
ij =

5X

a=1

Iat
ij
a and G

ij =
5X

a=1

Gat
ij
a , (65)

8
More precisely, as prescribed by the “spacelike-timelike corre-

spondence” [79–81], at any fixed order in ↵s, the non-global log

Hamiltonian is independent of ✏ in dimensional regularization and

equals the BK Hamiltonian in the critical dimension (recall that

non-global observables (e.g., jet shapes) involve incomplete/“non-

global” integrals over final states phase space. These phase-space

cuts lead soft radiation to not be integrated over all angles, result-
ing in “non-global” large logarithms that need to be resummed).

Concretely,

if H
(2)
BK = H

(2,0)
BK +✏H

(2,1)
BK +... then H

(3)
BK�H

(3)
NGL = H

(2,1)
BK .

This situation bears similarity to the relation between the soft

anomalous dimension �s, which is independent of ✏, and the

rapidity anomalous dimension, as mentioned in [82, eq. (6.21)].

with basis

t
ij
1
= x

i
1
x
j
1
, t

ij
2
= x

i
1
x
j
2
, t

ij
3
= x

i
2
x
j
1
,

t
ij
4
= x

i
2
x
j
2
, t

ij
5
= �

ij
.

(66)

Here, Ia and Ga are respectively given by

{Ia, Ga} =
5X

b=1

(T�1)ab{K
(I)
a ,K

(G)

a } , (67)

where we have defined

K
(I)
a = t

ij
a I

ij
, K

(G)

a = t
ij
a I

ij
, Tab = t

ij
a t

ij
b . (68)

Therefore, in order to find the tensor decompsoition of
these integrals, our first task is to compute the scalar

integrals K(I)
a and K

(G)

a for a = 1, . . . , 5.

Change of variables For K(I)
a , we make the change of

variables

q1 =
1

p
⌧ |x2|

and q2 =
2

|x2|
, (69)

while for K(G)

a , we instead consider

q1 =
1 �

p
⌧2

p
⌧ |x2 � x1|

and q2 =

p
⌧1 + 2

|x2 � x1|
. (70)

From there, we define the dimensionless vectors

⇠1 =
x1

p
⌧ |x2|

, ⇠2 =
x2

|x2|
, (71a)

⇣1 =
x1 + ⌧x2

p
⌧ |x2 � x1|

, ⇣2 =
x2 � x1

|x2 � x1|
, (71b)

such that both integrals take the universal form

K
(I)
a = (

p
⌧x

2

2
)2�D

I

⇣
⇠1, ⇠2;N

(I)
a

⌘
, (72a)

K
(G)

a =
(1 + ⌧)D�3

(
p
⌧(x2 � x1)2)D�2

I

⇣
⇣1, ⇣2;N

(G)

a

⌘
, (72b)

where

I (⌘1, ⌘2;N ) =

Z

2D

d̄D1d̄
D
2

N ei(1·⌘1+2·⌘2)


2
1
(2

1
+ 

2
2
)

, (73)

and ⌘
2
2
= 1. The numerators are respectively given by

N
(I)
a = t

ij
a N

ij
I

✓
1

p
⌧ |x2|

,
2

|x2|

◆
, (74a)

N
(G)

a = t
ij
a N

ij
G

✓
1 �

p
⌧2

p
⌧ |x2 � x1|

,

p
⌧1 + 2

|x2 � x1|

◆
. (74b)

8

x
+

x
�

x
+

x
�

x
+

x
�

x
+

x
�

Figure 3. A small sample of NLO diagrams relevant to the
rapidity evolution of a color dipole in lightcone coordinates
(the transverse direction is left implicit). The first diagram
exemplifies a cut self-energy correction, while the subsequent
ones illustrate cut vertices. The Fourier integrals discussed in
the main text emerge as intermediate steps in the computation
of NLO BK observables in D-dimensions.

in the saturation regime

I
ij =

Z

2D

d̄Dq1d̄
D
q2

N
ij
I (q1, q2)ei(q1·x1+q2·x2)

q
2
1
(q2

1
⌧+q

2
2
)

, (63a)

G
ij =

Z

2D

d̄Dq1d̄
D
q2

N
ij
G (q1, q2)ei(q1·x1+q2·x2)

(q1 + q2)2(q21⌧ + q
2
2
)

, (63b)

where the qi ⌘ q?
i s are Euclidean, 1 � ⌧ > 0 and

N
ij
I = q

i
1
q
j
2
,

N
ij
G = �

ij(q2
1
�q

2

2
)�

2qi
1
(q1+q2)j

u
+
2(q1+q2)iq

j
2

u⌧
.

(64)

In particular, in D = 2, eqs. (63a) and (63b) appear in
the derivation of the NLO BK equation [77, eq. (42)]. A
small subset of diagrams leading to their appearance is
shown in Fig. 3.

In the following, we present new closed-form formulae for
eqs. (63a) and (63b) in D dimensions. We anticipate these
results to be useful considering that the O(✏) correction
to the NLO BK equation yields non-trivial contributions
to the NNLO BK equation in the critical dimension.8

Tensor decomposition We first perform the tensor
decomposition of Iij and G

ij , namely

I
ij =

5X

a=1

Iat
ij
a and G

ij =
5X

a=1

Gat
ij
a , (65)

8
More precisely, as prescribed by the “spacelike-timelike corre-

spondence” [79–81], at any fixed order in ↵s, the non-global log

Hamiltonian is independent of ✏ in dimensional regularization and

equals the BK Hamiltonian in the critical dimension (recall that

non-global observables (e.g., jet shapes) involve incomplete/“non-

global” integrals over final states phase space. These phase-space

cuts lead soft radiation to not be integrated over all angles, result-
ing in “non-global” large logarithms that need to be resummed).

Concretely,

if H
(2)
BK = H

(2,0)
BK +✏H

(2,1)
BK +... then H

(3)
BK�H

(3)
NGL = H

(2,1)
BK .

This situation bears similarity to the relation between the soft

anomalous dimension �s, which is independent of ✏, and the

rapidity anomalous dimension, as mentioned in [82, eq. (6.21)].

with basis

t
ij
1
= x

i
1
x
j
1
, t

ij
2
= x

i
1
x
j
2
, t

ij
3
= x

i
2
x
j
1
,

t
ij
4
= x

i
2
x
j
2
, t

ij
5
= �

ij
.

(66)

Here, Ia and Ga are respectively given by

{Ia, Ga} =
5X

b=1

(T�1)ab{K
(I)
a ,K

(G)

a } , (67)

where we have defined

K
(I)
a = t

ij
a I

ij
, K

(G)

a = t
ij
a I

ij
, Tab = t

ij
a t

ij
b . (68)

Therefore, in order to find the tensor decompsoition of
these integrals, our first task is to compute the scalar

integrals K(I)
a and K

(G)

a for a = 1, . . . , 5.

Change of variables For K(I)
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From there, we define the dimensionless vectors
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such that both integrals take the universal form
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Figure 3. A small sample of NLO diagrams relevant to the
rapidity evolution of a color dipole in lightcone coordinates
(the transverse direction is left implicit). The first diagram
exemplifies a cut self-energy correction, while the subsequent
ones illustrate cut vertices. The Fourier integrals discussed in
the main text emerge as intermediate steps in the computation
of NLO BK observables in D-dimensions.
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In particular, in D = 2, eqs. (63a) and (63b) appear in
the derivation of the NLO BK equation [77, eq. (42)]. A
small subset of diagrams leading to their appearance is
shown in Fig. 3.

In the following, we present new closed-form formulae for
eqs. (63a) and (63b) in D dimensions. We anticipate these
results to be useful considering that the O(✏) correction
to the NLO BK equation yields non-trivial contributions
to the NNLO BK equation in the critical dimension.8

Tensor decomposition We first perform the tensor
decomposition of Iij and G

ij , namely

I
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5X
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a , (65)

8
More precisely, as prescribed by the “spacelike-timelike corre-

spondence” [79–81], at any fixed order in ↵s, the non-global log

Hamiltonian is independent of ✏ in dimensional regularization and

equals the BK Hamiltonian in the critical dimension (recall that

non-global observables (e.g., jet shapes) involve incomplete/“non-

global” integrals over final states phase space. These phase-space

cuts lead soft radiation to not be integrated over all angles, result-
ing in “non-global” large logarithms that need to be resummed).

Concretely,
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(2,1)
BK +... then H

(3)
BK�H

(3)
NGL = H

(2,1)
BK .

This situation bears similarity to the relation between the soft

anomalous dimension �s, which is independent of ✏, and the

rapidity anomalous dimension, as mentioned in [82, eq. (6.21)].
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Higher-point functions in N = 4 super Yang-Mills theory can be constructed using integrability by
triangulating the surfaces on which Feynman graphs would be drawn. It remains hard to analytically
compute the necessary re-gluing of the tiles by virtual particles.

We propose a new approach to study a series of residues encountered in the two-particle gluing
of the planar one-loop five-point function of stress tensor multiplets. After exposing the twisted
period nature of the integral functions, we employ intersection theory to derive canonical di↵erential
equations and present a solution.

I. INTRODUCTION

The maximally supersymmetric non-Abelian gauge
theory in four dimensions, N = 4 super Yang-Mills
(SYM) theory, is conformally invariant even at the
quantum level [1–6]. Therefore, natural observables
are correlation functions of gauge invariant compos-
ite operators. The latter are classified by their spin,
flavour, and scaling dimension.

The planar Feynman graphs causing quantum cor-
rections to the dimension label can be viewed as a
spin chain Hamiltonian [7–10]. Bethe ansatz tech-
niques have led to spectacular progress on the planar
spectrum problem: e.g. systematic weak- and strong-
coupling expansions can be derived for the planar
cusp anomalous dimensions and numerical interpola-
tion between these two extremes is possible [11–13].
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Figure 1. The left part shows one possible triangulation
of the correlation function of five stress tensor multiplets
by six hexagons. In the right panel a double gluing of
the tessellated graph is depicted in which the front side is
dressed by virtual particles.
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These methods can be used to study higher-point
quantities as well. The first such application con-
cerned planar on-shell scattering amplitudes [14–16].
In the weak-coupling regime, series of residues ob-
tained from this integrable system could be matched
with ansätze of special functions up to very high loop
order, outmanoeuvring Feynman graph and even uni-
tarity based computations. We emphasize that an
analytic evaluation of the resulting sum-integrals has
been achieved only in very few cases, cf. [17–19]
where hypergeometric functions were obtained and
evaluated in terms of generalised polylogarithms.

Secondly, higher-point functions of gauge-invariant
composite operators can be built from hexagonal
patches [20–22] defined by elements of the Bethe
ansatz for the anomalous dimensions. In a similar
manner to the cusp anomalous dimensions, integra-
bility works best in special limits. For instance, a
certain four-point function has been determined to
all orders in the Yang-Mills coupling and the rank of
the gauge group [23–25].

In order to exactly reproduce quantum field theory,
the hexagon tiles must be glued by virtual particles.
Each of these comes with a Mellin-like integral and
two counters akin to a radial and a magnetic quan-
tum number. They scatter on a hexagon by the
bound state S matrix [26] dressed with a scalar fac-
tor [11, 12, 27]. The lowest generic process of this
type contributes to the one-loop five-point function
of stress-tensor multiplets [28, 29] sketched in Fig-
ure 1. Away from any limit, the analytic evaluation
of such processes remains an open problem.

In this letter, we employ the recently developed meth-
ods of intersection theory for twisted de Rham coho-
mology [30–32] to leverage the period integral struc-
tures underpinning the entire bound state scattering,
to help overcome the computational challenges in the
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Cosmological Correlations

The fundamental observable quantities in cosmology are statistical

Inflation Reheating CMB LSS

time
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evolution of correlations tells us about dynamics and contents of 
the universe

[credit: Joyce]

Cosmological Correlators and Wavefunctions

• Initial conditions for structures in our universe

• Physics of Inflation

• Quantum Field Theory in Curved Spacetime
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Toy-model: 
Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel 

Arkani-Hamed, Benincasa, Postnikov

Benincasa, Vazao

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,
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viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.
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We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7

Goal:

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7

1 Introduction

There are many indications that the spacetime concept must be replaced by deeper principles as

part of the next upheavals in fundamental physics. Nowhere is the need for an understanding of

emergent space-time more pressing than in cosmology, where the birth of spacetime and the Uni-

verse itself are intimately connected at the Big Bang singularity. Moreover, actual observations

of the Universe are static, correlating structures at di↵erent spatial locations, but fixed moments

in time. We invoke a cosmological history to explain these spatial patterns, but ultimately “cos-

mological time” is an auxiliary concept, not present in the observables themselves. This calls

for a new “timeless” understanding of cosmology, reproducing the approximate notion of time

evolution where appropriate, but deforming away from it when the need becomes exigent.

Descending from these perhaps dangerously lofty conceptual heights, there is also a more prac-

tical reason to seek such a timeless description of cosmology. The conventional textbook methods

for computing cosmological correlators1 (and also the underlying cosmological wavefunction) are

very complicated. One of the main reasons is that all Feynman diagram calculations involve

time integrals from past infinity to the present for all interaction vertices. This leads to tremen-

dous complexity in intermediate stages of the computations, mirroring a similar explosion of

complexity familiar in the study of scattering amplitudes in asymptotically flat space. And yet,

as in the case of scattering amplitudes, the final expressions are vastly simpler. This provides

a much more down-to-earth motivation for finding a new understanding of time evolution, one

purely formulated in terms of spatial variables defining the kinematic dependence of the cosmo-

logical correlators, without a trace of integration over time coordinates. Echoing developments

in scattering amplitudes over the past decade, we can hope to find entirely new sorts of mathe-

matical questions in kinematic space, to which cosmological correlators are the answers, with the

interpretation in terms of time evolution arising only as a derived concept.

In this paper, we will give the first complete example of such a description of the cosmolog-

ical wavefunction for a simple class of toy models, working at tree level. We will consider the

wavefunction for conformally coupled scalars with general polynomial interactions, evolving in an

FRW cosmology with scale factor a(⌘) = (⌘/⌘0)�(1+"). Equivalently, after a conformal rescaling,

we have a theory of a massless scalar field in flat space, with time-dependent interactions.

As a first step, we will consider the contributions to the wavefunction associated with individual

Feynman diagrams. Representing the time-dependent couplings in the frequency domain allows

all time integrations to be performed, determining the cosmological wavefunction in terms of the

flat-space wavefunction as

 FRW(Ev, EI) =

Z 1

0

Y

v

d!v

 
Y

v

!v

!
"

 flat(Ev + !v, EI) , (1.1)

where Ev and EI are the “energies” associated with the vertices and the internal edges of the

graph, respectively. The flat-space wavefunction is a rational function of the energies Ev and EI ,

1In recent years, there has been remarkable progress in understanding features of the quantum field theory
wavefunctionals of various theories, both in flat space and in cosmology [1–22], and of correlation functions di-
rectly [23–56]. In many cases, these correlations are most naturally studied in momentum space, and there has
been commensurate progress in the study of momentum-space conformal field theory [57–65].
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Twisted period integrals

with simple poles when the sum of the energies entering any subgraph vanishes. The cosmological

wavefunction (1.1) is then an integral over the deformed flat-space wavefunction, weighted by a

“twist factor” (
Q

v
!v)

". Already this integral gives a formula for the wavefunction with no explicit

reference to integrations over time, but this is clearly only a cosmetic di↵erence—we have simply

gone to Fourier space, with the integrals over vertex energies being conjugate to those over the

vertex times.

However, there is a much more interesting way in which this integral representation opens

the door to a “timeless” description of cosmological correlators. Our cosmological integrals are

special cases of a wide class of integrals of the form

I(C,D;n; ") =

Z 1

0
dx1 · · · dxm P (x)

Y

I

(CIjxj +DI)
�nI+"I , (1.2)

where P (x) is some polynomial in the x variables, and the singularities of the integrand are pow-

ers of linear factors, raised to integer powers nI possibly “twisted” by fractional parameters "I .

There are naively an infinite number of these integrals parameterized by the general integers nI .

However, there are also an infinite number of linear relations between these integrals generated

by integration-by-parts identities. A complete understanding of the vector space of all indepen-

dent integrals of this type is o↵ered by the study of the so-called “twisted cohomology” of the

“hyperplane arrangement” attached to the linear half-spaces (C · x+D) > 0. Quite beautifully,

there is a finite-dimensional space of linearly independent integrals, whose dimension is given by

the number of bounded regions carved out by the hyperplanes. We can therefore choose a basis

Ia of these integrals, and every other integral with arbitrary powers nI can be written as a linear

combination of these basis integrals, with coe�cients that are rational functions of the parameters

(C,D, n, "). This in turn implies that the total di↵erential of any of the basis functions Ia with

respect to the parameters (C,D) must satisfy a di↵erential equation. The reason is simply that

the total di↵erential of any integral in this class must be a linear combination of basis integrals,

so that

dIa = AabIb , (1.3)

where Aab is a matrix of one-forms depending on the data (C,D).

When applied to the cosmological wavefunction (1.1), we learn a first important fact:

The cosmological wavefunction satisfies a di↵erential equation,

which governs how it changes as the external kinematics are varied.

We will see that the particular solution of this linear system of di↵erential equations is com-

pletely fixed by a natural set of boundary conditions, enforcing the absence of unphysical “folded

singularities” in the wavefunction, as dictated by the choice of the adiabatic vacuum in the far

past, together with a single “factorization” condition near certain singularities in energy space.

The factorization limit distinguishes the wavefunction from the actual correlation function (which

satisfies the same di↵erential equation).
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( )

• V (⌘s) is the vertex function at the site s, which can depend on the warp factor

of the metric – here and in what follows we consider processes that occur in

conformally flat backgrounds,

ds21+d
= a

2(⌘)
⇥
� d⌘2 + dx2

⇤
, ⌘ 2 R� . (1.25)

The vertex function can further depend on scalar products of momenta (in the

case of derivative interactions – for simplicity we will restrict to the case of

polynomial interactions, unless otherwise specified).

• �0(�Ej⌘s) is the classical solution stripped out of the boundary value �(p),

e.g.,

�cl(p, ⌘) = �(p)�0(�Ej⌘s). (1.26)

Hence, �0(�Ej⌘s) is taken to normalize to 1, that is, �0(�Ej⌘ = 0) = 1.

• G(ye; ⌘se , ⌘s0e) is the propagator that connects two sites se and s
0
e
, with momen-

tum pe flowing through it, and ye ⌘ |pe|.

Because the fluctuations have to vanish at the boundary ⌘ = 0, the propaga-

tor has a three-term structure: two of them are the usual retarded and advanced

contributions while the third one is purely a boundary term that manifestly breaks

time-translation invariance:

G(ye; ⌘se , ⌘s0e) =
1

2Re
�
 2(ye)

 
h
�̄0(�ye⌘se)�0(�ye⌘s0e)⇥(⌘se � ⌘s0e) (1.27)

+ �0(�ye⌘se)�0(�ye⌘s0e)⇥(⌘s0e � ⌘se)� �0(�ye⌘se)�0(�ye⌘s0e)
i
,

where Re
�
 2(ye)

 
is the real part of the free two-point wavefunction.

1.5 The wavefunction and its analytic properties

Despite the fact that so far the discussion has been very general, it is nevertheless

possible to extract important information on the expected analytic structure of the

wavefunction.

First, consider a graph G that contributes to  (`)
n . Following the Feynman rules

discussed earlier, its contribution  G can be written as

 G =

Z 0

�1

Y

s2V

[d⌘sV (⌘s)]
Y

j2s

�0(�Ej⌘s)
Y

e2E

G(ye; ⌘se , ⌘s0e) (1.28)

=

p1 p2 pn

(1.29)
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Cosmological correlator example
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)
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1

Number of MIs = dimH and bases choice

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then Omega, obtaining, after the limit � ! 0:

⌦z1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦z2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)
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Intersection Matrix

2 MIs in the internal layer

4 MIs in the external layer

Brunello & P.M. (2023) 
[unpublished]  

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
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• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)
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We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0
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w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve
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w.r.t z2 obtaining
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1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,
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Cosmological correlator example

April 2023

1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)

1

System of Differential Equations

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = lim
�!0

FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then ⌦, obtaining, after taking the limit � ! 0:

⌦y1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦y2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)
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Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then Omega, obtaining, after the limit � ! 0:

⌦z1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦z2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)

2

Master Decomposition Formula

Canonical system

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
�(�+1)✏(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

3�2+2�✏
1
�2

� �+✏
�(�+1)✏(3�+2✏)

1
3�2+2�✏

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

� 1
�2✏+�✏

1
�2

1
�2

3
�2

1

CCCCA
(2.30)
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In order to obtain the systems di↵erential equations with respect to each variable y1, y2, we need to

compute the matrices ⌦y1 ,⌦y2 ,and then to take the limit � ! 0 at the end of the computation, as:

⌦y1 = lim
�!0

hr�y1
ei|ejiC�1

kj , (2.31)

where r�y1
= (@y1 + �y1), with �y1 = @y1 log(u), and analogously for y2.

The 1-forms �y1 and �y2 are given by:

�y1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.32)

�y2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.33)

and the matrices ⌦y1 ,⌦y2 are found to be:

⌦y1 =

0

BBB@

2✏
y1+y2+1 0 0 0

� ✏
y1+1

✏
y1+1 0 0

✏
y1

0
✏
y1

0

✏
y1(y1+1) 0

✏
y1(y1+1)

✏
y1+1

1

CCCA
(2.34)

and

⌦y2 =

0

BBB@

2✏
y1+y2+1 0 0 0

✏
y2

✏
y2

0 0

� ✏
y2+1 0

✏
y2+1 0

✏
y2(y2+1)

✏
y2(y2+1) 0

✏
y2+1

1

CCCA
(2.35)

which are in canonical form.
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Pokraka et al. (2023)Cohomology-based methods for cosmological correlations @ tree level

Differential Equations for cosmological correlations @ tree level Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel (2023)

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7
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where exactly 1 master integral per sector appears. In-
tegration by parts identities will shift powers of denom-
inators by integer units, relating integrals on di�erent
sub-sectors. Rewriting equation (31) in Baikov variables,
one obtains a family of one-loop n-points Feynman inte-
grals with variables raised to half-integer powers:

I
(ns, 1; 0)
{1} = Ÿ0

2n

⁄
Ÿ

eœE(1)

dy2
e

Ÿ

eœE(1)

#
y2

e

$1/2
#
Ÿ(y2

e)
$‘

, (33)

which in momentum space correspond to:

I
(ns, 1; 0)
{1} = 1

2n

⁄

Rn

d̨l
1

---̨l
---
---̨l + P̨1

--- · · ·

------
l̨ +

ns≠1ÿ

j=1
P̨j

------

. (34)

In general, such integral belongs to the integral fam-
ily:

I
(ns, 1; 0)
{·g} :=

⁄
Ÿ

eœE(1)

dy2
e

Ÿ

eœE(1)

!
y2

e

"·e

#
Ÿ(y2)

$‘ (35)

=
⁄

Rns

d̨l
1

[(̨l)2]·12 · · · [(̨l + P̨1 + . . . + P̨ns≠1)2]·ns,1

(36)

with ·e œ Z + 1/2, e œ E
(1). Integrals of the type of

equation (33) cannot be related to subsectors where some
denominators do not appear, and for each master Feyn-
man integral appearing with k external legs, we have a
sector with ‹(FI)

k master cosmological integrals. The total
number of master integral of the zero sector is:

‹(CI)
ns

=
nsÿ

k=2

ns!
k!(ns ≠ k)! ‹(FI)

k , (37)

where the various subsectors are appearing in the with
di�erential equations blocks of dimension ‹(FI)

k . Summing
the series, we obtain:

‹(CI)
ns

= 3ns ≠ 2ns≠1(2 + ns) . (38)

V. ONE-LOOP TWO-SITE GRAPH

In this section, we discuss how all the technology outlined
in the previous sections manifests itself in the simplest
case of the one-loop two-site integral and allows us to get
insights on the integrated function, – see Figure 2.
Let us consider the following representation for this inte-
gral:

I(2, 1) =
⁄

R2
+

Ÿ

sœV

5
dxs

xs
x–

s

6
I

(2, 1)
{1} , (39)

x1 x2

y12

y21

Figure 2. One-loop two-site diagram. The corresponding inte-
grand has 5 denominators, each corresponding to a connected
subgraph of the above graph. Two subgraphs enclose each
of the two sites, then two subgraphs enclose both sites and
cut one edge twice and finally there is the full graph which
corresponds to the total energy pole.

I
(2, 1)
{1} = Ÿ0

⁄

�

Ÿ

eœE(1)

[dye ye] Ÿ‰

qGqg1qg2

3
1

qG12

+ 1
qG21

4
(40)

where E
(1) := {e12, e21} is the set of the two edges connect-

ing the sites s1 and s2, and Ÿ, Ÿ¶ and ‰ can be obtained
from (14) by setting L = 1, n(1)

e = ns = 2, while gj

identifies the subgraph containing just the site sj (whose
weight is xj + Xj) and Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge between the sites si

and sj – in this simple case where there are only two sites,
the two edges are indicated by reversing the order of the
labels of the sites they connect. The linear polynomials
associated to these subgraphs are given by 9, which can
be explicitly written as,

qG = x̃1 + x̃2,

qg1 = x̃1 + y12 + y21,

qg2 = x̃2 + y12 + y21,

qG12 = x̃1 + x̃2 + 2y12,

qG21 = x̃1 + x̃2 + 2y21.

(41)

where for simplicity we denoted x̃i = xi + Xi.
Loop edge weight integration – Upon exploiting the
invariance of the integrand under the y112 ¡ y21 ex-
change, and the partial fraction relations emerging from
the identity:

qg1 ≠ qg2 = x̃1 ≠ x̃2 , (42)

the integral I
(2, 1)
{1} , appearing in (40), can be recast as a

combination of twisted period integrals (13), correspond-
ing to two sets of two denominators, namely {qg1 , qG12}

and {qg2 , qG21}. The latter set can be mapped onto the
former, by exchanging x̃1 ¡ x̃2. Therefore, the computa-
tional complexity of the problem reduces remarkably to
the evaluation of just one type of period integrals, defined
as:

I
(2, 1)
·g1 ·G12

:=
⁄

�
Ÿ‰ Ï·g1 ·G12

, Ï·g1 ·G12
:= dy12dy21

q
·g1
g1 q

·G12
G12

. (43)

From equation (17) it is possible to identify a number
‹ = 6 of master integrals, which can be chosen as: I =

10

+(≠1)–(X1 ≠ X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 ≠ X2

P + X1

2

+(X1 + X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 + X2

P + X1

26

≠fi5/24≠–≠1 csc(fi–) csc(2fi–)
�(≠– )�

!
– + 3

2
"

(P + X1)

5
(≠1)–(X1 ≠ X2)2–+2

3F2

1
1, 1, – + 2; 2, 2 – + 3; X1 ≠ X2

P + X1

2

+(X1 + X2)2–+2
3F2

1
1, 1, – + 2; 2, 2– + 3; X1 + X2

P + X1

26

+
fi5/22≠2–≠1 csc(fi–) csc(2fi –)

!
(≠1)– (X1 ≠ X2)2–+1 + (X1 + X2)2–+1"

� (≠–)�
!
– + 3

2
" log

1
P + X1

P

2

+(X1 ¡ X2). (50)

VI. ONE-LOOP THREE-SITE GRAPH

Let us move on to the next-to-simplest one-loop case,
constituted by the one-loop three-site integral – See Fig.
3. As we will show, it has some distinctive features
which were absent in the previous case. The easiest to
spot is the fact that now the volumes in the edge weight
measure are higher degree polynomials that no longer
factorizes in a product of linear polynomials. Actually,
such a factorization occurs for the one-loop two-site case
only.
In what follows, we restrict ourselves to the case in which
there is just one external state at each site, so that |P̨i| æ

Xi. Reducing the number of scales from six to three
simplifies the problem while still capturing all the essential
complexities.
The representation for the integrand coming from one
of the sign triangulations 11 of the underlying cosmo-
logical polytope, which corresponds to the choice G¶ =
{G, g1, g2, g3}, is given in terms of the sum of six sim-
plices. Interestingly, it is enough to focus on the study
of the di�erential equations for one of them, as the oth-
ers can be derived through permutations of integration
variables and external kinematics. Explicitly, such repre-
sentation for the integrand yields the following form for
the integral I

(3, 1)
{1} :

I
(3, 1)
{1} = Ÿ0

⁄

�

Ÿ

eœE(1)

[dye ye] Ÿ‰

qG

3Ÿ

j=1
qgj

◊

◊

5
1

qG12

3
1

qg23

+ 1
qg31

4
+

+ 1
qG23

3
1

qg31

+ 1
qg12

4
+ 1

qG31

3
1

qg12

+ 1
qg23

46

(51)

where Ÿ, ‰ and Ÿ¶ can be obtained from 14 by setting
L = 1 and ns = 3. Furthermore, for regularization pur-
poses, we can consider d = 3 + 2‘. The set of edges E

(1)

is given by E
(1) := {e12, e23, e31}. Finally, it is useful

x1

x2 x3

y12

y23

y31

Figure 3. One loop three-site diagram. The corresponding
integrand has 10 denominators, each corresponding to a con-
nected subgraph of the above graph. Three subgraphs which
enclose a single site, three which enclose two sites at a time,
three which enclose all three sites but cut each edge twice and
finally the full graph which corresponds to the total energy
singularity.

to write here the explicit expression for the linear poly-
nomials {qg, g ™ G}, whose associated subgraphs follow
the same conventions introduced in the previous section
with gs1...sñs

being the connected subgraph containing
the sites s1, . . . sñs , while Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge eij connecting the
sites si and sj :

qG =
3ÿ

i=1
Xi,

qgj = yj≠1,j + Xj + yj,j+1,

qGj,j+1 =
3ÿ

s=1
Xs + yj,j+1 ,

(52)

with j = 1, 2, 3.
Partial fraction identities allows focusing only on
subsets of three denominators: the evaluation can
then be split into two types of contributions, separat-
ing the calculation of the sectors with denominators
{qgj , j = 1, 2, 3} fi {qg23}, and of ones containing qG12
and the pairs {(qgj , qgj+1), (qgj , qg24); j = 1, 2, 3}.

Polylogarithmic sector – Let us begin with the sector
identified by {qgj , j = 1, 2, 3} fi {qg23}. The associated

Linear algebra from Algebraic Geometry and Syzygy equations

Linear algebra from Intersection Theory

(y-integration) Canonical Differential Equations for  MIs: polylog structureν = 6

Analytic solution: back of a envelope result

Linear algebra from Algebraic Geometry and Syzygy equations

Linear algebra from Intersection Theory

Site-weight x-integration: Mellin Transform and Method of Brackets

(y-integration) Analytic solution 
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{I00, I10, I01, I02, I≠11, I11} – since now on we suppress
the superscript for notational convenience.

As described in Section IV, the sector without denomina-
tors contains ‹(CI)

2 = 1 master integrals, which has been
chosen as I00, and in momentum space it can be rewritten
as a massless one-loop two point function with massive ex-
ternal momenta, belonging to the integral family I·g1·g2

,
with denominators raised to with half-integer exponents,
in Euclidean space:

I·g1·g2
:=

⁄
d˛̧

[(˛̧)2]·g1 [(˛̧ + P̨ )2]·g2
, ·gj œ Z + 1

2 . (44)

Using the algebraic geometry methods of section III, and
independently using intersection theory [58], as shown in
appendix A, it is possible to obtain the di�erential equa-
tions obeyed by the master integrals. With a change of
basis J = R.I , through the rotation matrix R described
in appendix B, it is possible to find a family of master
integrals:

J1 = (1 + 2‘)2

P 2 I00 ,

J2 = ‘(1 + 2‘)
P

I10 ,

J3 = 1
P

!
‘(1 + 4‘) I01 + ‘(x̃1 + x̃2) I02

"
,

J4 = ≠ ‘ I02 ,

J5 = ‘(1 + 2‘)
2P (x̃1 + x̃2)

!
I≠11 ≠ I00 + (x̃2 ≠ x̃1) I01

"
,

J6 = ‘2
I11 , (45)

obeying a canonical system of di�erential equations [76–
78], as defined in (27), where the total di�erential ma-
trix,

dA = Âx̃1dx̃1 + Âx̃2dx̃2 + ÂP dP

=
8ÿ

i=1
Mi d log(wi) , (46)

is in d log form: Mi are constant matrices whereas the
letters wi œ {P, x̃1 + x̃2, x̃1 + P, x̃2 + P, x̃1 + x̃2 + 2P, x̃1 ≠

P, x̃2 ≠P, x̃1 + x̃2 ≠ 2P} (the last three entries correspond
to spurious singularities) form a rational alphabet. The
system of di�erential equations admits a solution in terms
of iterated integrals, as shown in (28), which in this case
give rise to generalized polylogarithms [102, 103, 108, 109].
The analytic expression for our master integrals up to
order O(‘2) is obtained after fixing boundary conditions
either via direct integration or imposing regularity at the
spurious singularity - see appendix B, for details. Using
the results of the master integrals, I

(2, 1)
{1} reads as,
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Site weight integration – The integration over the
x-variables of equation (39) can be performed directly
in terms of known Mellin transforms [110], and via the
Method of Brackets [111, 112]. Such method is based
on Ramanujan’s master theorem which states that given
a complex valued function g(x), which can be Taylor
expanded around x æ 0 as:

g(x) =
Œÿ

k=0

G(k)
k! (≠x)k , (48)

then its Mellin transform is given by
⁄ Œ

0
xs≠1g(x)dx = �(s)G(≠s) . (49)

The final result, which is symmetric under the exchange
of X1 ¡ X2, can be expressed as a linear combination
of Hypergeometric functions 2F1 and 3F2 and logarithms,
and reads as:
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VI. ONE-LOOP THREE-SITE GRAPH

Let us move on to the next-to-simplest one-loop case,
constituted by the one-loop three-site integral – See Fig.
3. As we will show, it has some distinctive features
which were absent in the previous case. The easiest to
spot is the fact that now the volumes in the edge weight
measure are higher degree polynomials that no longer
factorizes in a product of linear polynomials. Actually,
such a factorization occurs for the one-loop two-site case
only.
In what follows, we restrict ourselves to the case in which
there is just one external state at each site, so that |P̨i| æ

Xi. Reducing the number of scales from six to three
simplifies the problem while still capturing all the essential
complexities.
The representation for the integrand coming from one
of the sign triangulations 11 of the underlying cosmo-
logical polytope, which corresponds to the choice G¶ =
{G, g1, g2, g3}, is given in terms of the sum of six sim-
plices. Interestingly, it is enough to focus on the study
of the di�erential equations for one of them, as the oth-
ers can be derived through permutations of integration
variables and external kinematics. Explicitly, such repre-
sentation for the integrand yields the following form for
the integral I

(3, 1)
{1} :

I
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{1} = Ÿ0
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(51)

where Ÿ, ‰ and Ÿ¶ can be obtained from 14 by setting
L = 1 and ns = 3. Furthermore, for regularization pur-
poses, we can consider d = 3 + 2‘. The set of edges E

(1)

is given by E
(1) := {e12, e23, e31}. Finally, it is useful

x1

x2 x3

y12

y23

y31

Figure 3. One loop three-site diagram. The corresponding
integrand has 10 denominators, each corresponding to a con-
nected subgraph of the above graph. Three subgraphs which
enclose a single site, three which enclose two sites at a time,
three which enclose all three sites but cut each edge twice and
finally the full graph which corresponds to the total energy
singularity.

to write here the explicit expression for the linear poly-
nomials {qg, g ™ G}, whose associated subgraphs follow
the same conventions introduced in the previous section
with gs1...sñs

being the connected subgraph containing
the sites s1, . . . sñs , while Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge eij connecting the
sites si and sj :

qG =
3ÿ

i=1
Xi,

qgj = yj≠1,j + Xj + yj,j+1,

qGj,j+1 =
3ÿ

s=1
Xs + yj,j+1 ,

(52)

with j = 1, 2, 3.
Partial fraction identities allows focusing only on
subsets of three denominators: the evaluation can
then be split into two types of contributions, separat-
ing the calculation of the sectors with denominators
{qgj , j = 1, 2, 3} fi {qg23}, and of ones containing qG12
and the pairs {(qgj , qgj+1), (qgj , qg24); j = 1, 2, 3}.

Polylogarithmic sector – Let us begin with the sector
identified by {qgj , j = 1, 2, 3} fi {qg23}. The associated

Two-site graph

Three-site graph

Mapping cosmological integrals to QFT-like integrals in momentum space, with semi-integer denominator powers

From momentum-space to Baikov representation to cast them as twisted period integrals

(y-integration) Differential Equations for  MIs: polylog and elliptic structureν = 41

11

Figure 4. Zero sector of the one-loop three-site-graph. The
first four integrals form a 4 ◊ 4 homogeneous diagonal block,
corresponding to the one-loop three point function with denom-
inator raised to half-integer powers, and each of the subsequent
three integrals form a 1 ◊ 1 diagonal block, and can be iden-
tified with one-loop two-point functions with denominators
raised to half integer powers.

integrals can be written as

I·g1 ·g2 ·g3 ·g23
=

⁄

�
µd Ï·g1 ·g2 ·g3 ·g23

,

Ï·g1 ·g2 ·g3 ·g23
=

Ÿ

eœE(1)

dye

q·g1
g1 q·g2

g2 q·g3
g3 q

·g23
g23

.

(53)

From the counting procedure prescribed by equation (17),
the integral family has 15 master integrals, whose master
forms can be chosen as:

e1 = Ï0000 , e2 = y2
12Ï0000 , e3 = y2

23Ï0000 ,

e4 = y2
31Ï0000 , e5 = y12Ï0000 , e6 = y23Ï0000 ,

e7 = y31Ï0000 , e8 = Ï1000 , e9 = Ï0100 ,

e10 = Ï0010 , e11 = y23Ï0001 , e12 = y31Ï0001 ,

e13 = y12Ï0001 , e14 = Ï0002 , e15 = Ï1110 .
(54)

As described in section IV, the sub-sector without de-
nominators contains ‹(CI)

3 = 7 master integrals, and its
di�erential equations are shown in figure 4. Heuristically,
this large number can be motivated by rewriting the mea-
sure of the integral in momentum space, which belongs
to the integral family:

I
(3, 1; 0)
·1·2·3 =

⁄

R3
d̨l

1
[(̨l)2]·1 [(̨l + P̨1)2]·2 [(̨l + P̨1 + P̨2)2]·3

,

(55)

where ·i œ Z + 1/2. The integral in equation (55) is the
one-loop three-point function with massive external mo-
menta of mass Pi and with massless denominator raised to
half-integer powers, in Euclidean spacetime. Integration
by parts in ye will mix integrals with denominators raised
to half-integer powers with those raised to integer ones, a
property that does not hold for momentum space integra-
tion by parts identities, and which e�ectively increases
the number of master integrals.
It is possible to find a ‘-factorized form for the di�erential
equation matrices obeyed by these integrals [77, 113–116].

Figure 5. Homogeneous sector of the one-loop three-site graph
with denominator qa. There are a total of 9 master integrals,
which decouple in blocks of dimensions 1 ◊ 1, 2 ◊ 2, 2 ◊ 2, 4 ◊ 4.
In the last block, the elliptic family appears.

Also in this case, the total di�erential can be written
in dlog form, indicating that the space of functions con-
sists of generalized polylogarithms, and the alphabet for
this sector, together with the equivalent sectors in the
remaining three similar integrals (obtained by replacing
qg23 with qj,j+1, j ”= 2), reads:

W = {X1, X2, X3, X1 + X2, X2 + X3, X1 + X3,

≠X3 + X1 ≠ X2, X3 + X1 ≠ X2,

≠X3 + X1 + X2, X3 + X1 + X2} . (56)

In the generic case of multiple external legs, in which
xi ”= Pi, the basis of this sector increases to 34. The
function space consists only of generalized polylogarithms,
but algebraic letters appear in the alphabet.

Elliptic sector – Let us now turn our attention to the
sectors containing the denominator qG12 :

I·g·gÕ ·G12
=

⁄

�
µd Ï·g·gÕ ·G12

,

Ï·g·gÕ ·G21
=

Ÿ

eœE(1)

dye

q
·g
g q

·gÕ

gÕ q
·G12
G12

,

(57)

where (g, gÕ) takes values in the set of pairs
{(gj , gj+1), (gj , g23)}.
The sub-sector containing only the denominator qG12 , has
9 master integrals, that can be chosen as follows:

e1 = y23y31Ï001 , e2 = y23Ï001 , e3 = y23Ï002 ,

e4 = y31Ï001 , e5 = y31Ï002 , e6 = Ï002 ,

e7 = Ï001 , e8 = y2
23Ï001 , e9 = y2

31Ï001 ,
(58)

and whose shape of the di�erential equation is shown in
Fig.5. Constructing the Picard-Fuchs operators for each
homogeneous block of the di�erential equation in d = 3 as
in equation (30), where we used the change of variables:
X1 æ a1⁄, X2 æ ⁄, X3 æ 1, we found a di�erential
operator of third order L3, corresponding to the sector
formed by the last 3 master integrals of equation (58),

DEQ: 
structure of the 
elliptic sector 
(4x4)-block
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Vector Space of  
Feynman Integrals De Rahm  

Co-Homology 
ν = dimH

Vector Space of 
integration contours 

(twisted cycles) 

Vector Space of 
differential n-forms 
(twisted cocycles) 

Ring of  
Differential operators  

(w.r.t. external variables) 
D-Modules Vector Space of  

Twisted Period Integrals

De Rham Thm & Vector Spaces Isomorphism  
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Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

Annihilators of Twisted Period Integral I

Differential Space of Twisted Period Integrals: Annihilators and D-modules

Ann(I) ∋ Ap : Ap ⋅ I = 0

107

Systems of Differential equations for twisted period integrals: 

- to detect/investigate their symmetries
- to compute them

p = order of the differential operator



Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

Annihilators of Twisted Period Integral I

Differential Space of Twisted Period Integrals: Annihilators and D-modules

Ann(I) ∋ Ap : Ap ⋅ I = 0

if I = (twisted) period integral, ∃ dγ(I) : ∫Γ
dγ(I) = 0(Twisted) Griffiths’ theorem Griffiths

(Vanhove, De La Cruz)
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Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

Annihilators of Twisted Period Integral I

Differential Space of Twisted Period Integrals: Annihilators and D-modules

Conjecture Annihilators as D-module Generators

Ann(I) ∋ Ap : Ap ⋅ I = 0

Ap ≡ Dp + Dp−1

if I = (twisted) period integral, ∃ dγ(I) : ∫Γ
dγ(I) = 0

Annihilators from Griffiths’ theorem

(Twisted) Griffiths’ theorem

Ap ⋅ I = ∫Γ
dγ(I) = 0

Ap ⋅ I = 0 ⇒ ∂(i1)
x1

⋯∂(in)
xn

(Ap ⋅ I) = 0 Macaulay system

D-module basis: Standard monomials (Std) form Macaulay system solving

Griffiths
(Vanhove, De La Cruz)

 rank = # of Std

A New Algorithm to build Annihilators:
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Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

        ==>     rank = dim(de Rham Co-homology groups) = # of master integrals = order of PF operator    <== 

Applications

Differential Space of Twisted Period Integrals: Annihilators and D-modules

D-module: ambient space to derive system of Pfaffian equations and Picard-Fuchs (PF )operators                            [exact dependence on dimensional/regulating parameters, and no surface-term involved]

4

APPLICATIONS

We apply our method to build the generators of

D-modules in paradigmatic cases of special functions,

like the 2F1 and 3F2 hypergeometric integrals, Feyn-

man integrals and Witten graphs. In the considered

cases, Euler homogeneity annihilators AE is among

the annihilators Ap that our algorithms builds. An-

nihilators are used to generate the Macaulay system,

which we solve to identify a basis of Std monomials,

derive the Pfa�an system they obey, and the complete
Picard-Fuchs operator APF w.r.t. one of the external

variables. In all applications, the holonomic rank r is

found to be equivalent to dim(H
n
dR), providing evidence

of a potential isomorphism between the D-module and

the twisted de Rham cohomology group. Additionally,

in the case of Feynman integrals, the singular locus

of the generated D-modules is verified to agree with

Landau singularities of the first and second type, and

the Picard-Fuchs operators are verified to agree with

those built by means of IBP identities, constituting

non-trivial tests of the generated D-modules.

Software. Our algorithm is implemented in Mathemat-
ica. The solution of syzygy equations, the holonomic

rank and the singular locus of the generated D-modules

are computed within the computer algebra system

Singular [29]. Euler characteristic of the zero locus of

a�ne varieties are computed with Macaulay2 [30].

Risa/Asir [31](Pp: add text).

Linear systems and Macaulay matrix equations are

solved with help of FiniteFlow [32].

Notation. In the following, for each application, we

define the Symanzik polynomials U and F, and their

exponents  and ⌘. Lengthier annihilators are given

in implicit form, as a combination of di↵erential op-

erators multiplied by generic polynomial coe�cients,

say p = p(d, s): while just their structure is relevant

to highlight the main results of this study, interested

readers may find their complete expressions in the

Supplementary Material.

a) One-loop massless 4-point integral

p1

p2 p3

p4

Figure 1. One-loop massless 4-point graph. Kinematic vari-
ables: p21 = . . . = p24 = 0 , s = 2p1 · p2 , t = 2p2 · p3.

• Symanzik polynomials:

U =

4X

i=1

↵i , and F = ↵1↵3s+ ↵2↵4t , (19)

with exponents  = 4� d and ⌘ = 4� d/2.

• Annihilators:

AE = s@s + t@t + (4� d/2) ,

A1 = p3,0 @
3
s + p2,1 @

2
s@t + p1,2 @s@

2
t + p0,2 @

2
t ,

(20)

• D-module r = 3.

• Singular locus:

sing(D) = st(s+ t) . (21)

• Picard-Fuchs operator:

APF = p3 @
3
s + p2 @

2
s + p1 @s + p0 . (22)

in agreement with [].

b) One-loop one-mass 4-point integral

p1

p2 p3

p4

Figure 2. One-loop 1-mass 4-point graph. Kinematic vari-
ables: p21 = p23 = p24 = 0 , p22 = m2 , 2p1 · p2 = (s�m2) , 2p2 ·
p3 = (t�m2) .

• Symanzik polynomials:

U =

4X

i=1

↵i , and F = ↵1↵3s+ ↵2↵4t+ ↵2↵3m
2
. (23)

with exponents  = 4� d , and ⌘ = 4� d/2.

• Annihilators:

AE = s@s + t@t +m
2
@m2 + (4� d/2) ,

A1 = s@s@t + (m
2 � t)@t@m2 + @t � @m2 ,

A2 = �s@
2
s + t@t@m2 +m

2
@
2
m2 + (4� d/2) (@m2 � @s)

(24)

• D-module rank r = 4

• Singular locus:

sing(D) = stm
2
(s�m

2
)(t�m

2
)(s+ t�m

2
) . (25)

• Picard-Fuchs operator:

APF =p4 @
4
s + p3 @

3
s + p2 @

2
s + p1 @s + p0 . (26)
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 @ Hypergeometric Integrals

 @ Feynman Integrals

 @ Witten Diagrams             (AdS4, dim.reg.)

2F1 , 3F2
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Proving the conjecture <==> D-module ~ De Rham Cohomology Group 
 

Extending Gel’Fand Kapranov Zelevinski’s theorem to restricted integrals



To Conclude:
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- 7 -

In perturbative quantum and effective field theories, interactions are computed as corrections to free dynamics, represented by Feynman or Witten diagrams. These
diagrams and the multivariate functions they involve admit iterated integral expressions, which are addressed using combinatorial, algebraic, and analytic
techniques. We propose a universal strategy based on  intersection theory in twisted de Rham cohomology to access the vector space structure of integrals,
applying it to various functions in physics and mathematics. Techniques for evaluating twisted period integrals can aid in progress across disciplines, from QFT and
string theory to statistical mechanics and general relativity.

From Geometry to Physics. In electromagnetism, Ampere’s theorem relates the circulation of the magnetic field to the current through a surface. This geometry
simplifies more complicated cases, reducing them to sums of simpler cases using the Gauss linking number. Stokes’ theorem unifies integrals as fluxes of closed
differential forms, invariant under deformations of the integrand or contour. Integrals form a vector space induced by cohomology groups, with relationships arising
from intersection numbers between forms or contours, generalizing Gauss’ linking number. Twisted period integrals satisfy equations linked to the dimension of the
cohomology group, and the operators annihilating these integrals form a D-module. These ideas originally applied to hypergeometric integrals, have been recently
extended and applied by the PI and collaborators to Feynman integrals, amplitudes, matrix elements and correlation functions, providing new perspectives in both
mathematics and physics.

Vision. INTHEMA stems from two key concepts: 1) scattering amplitudes in physics parallel twisted period integrals (TPI) in mathematics. Therefore, the
evaluation of TPI becomes a way to scan the structure of the universe at different scales: SA at the quantum scale,   IH at astrophysical distances, CF at
cosmological scales. 2) analytic properties of TPI are encoded in the geometry of their singularities and in the combinatorics of the emerging algebraic patterns,
accessible via integral representations and differential operators. 

  

Therefore, the evaluation of TPI becomes a universal way to explore the geometric essence of the laws of nature.

Innovative network. The intersection theory approach applies to particle scattering, effective field theory in general relativity, cosmology, and string theory.
INTHEMA aims to bring together physicists and mathematicians to explore twisted integrals, focusing on the algebraic and differential properties of these integrals
and the operators that annihilate them. By addressing problems from particle physics to gravity and string theory with a unified approach, the research will reveal
common solving strategies and foster collaboration across disciplines.

RESEARCH PROGRAMME 

Modules: INTHEMA builds on the discovery of a universal correspondence between mathematical and physical concepts:

The program develops along four main research modules (M1-M4) connecting the Amplitudes research to mathematical physics [1,2,3], to general relativity and
gravitational wave physics [4,5,6], to particle physics and computational field theory [7,8], and to strings and cosmology [9,10]; one module (M5) is dedicated to
outreach and trans-disciplinary dissemination [11,12]:

M1.  Using twisted period integrals and intersection theory to uncover the algebraic and differential properties of Feynman integrals and develop
computational tools: Intersection Numbers, Co-Homology Groups, Twisted Period Integrals and Special Functions, Differential operators & D-Modules;
M2. Applying Feynman integrals to coalescing gravitationally interacting binary systems and determining corrections in gravitational wave templates: Post-
Newtonian and Post-Minkowskian corrections in GR effective field theory, Classical GR and Special Functions;
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string theory to statistical mechanics and general relativity.

From Geometry to Physics. In electromagnetism, Ampere’s theorem relates the circulation of the magnetic field to the current through a surface. This geometry
simplifies more complicated cases, reducing them to sums of simpler cases using the Gauss linking number. Stokes’ theorem unifies integrals as fluxes of closed
differential forms, invariant under deformations of the integrand or contour. Integrals form a vector space induced by cohomology groups, with relationships arising
from intersection numbers between forms or contours, generalizing Gauss’ linking number. Twisted period integrals satisfy equations linked to the dimension of the
cohomology group, and the operators annihilating these integrals form a D-module. These ideas originally applied to hypergeometric integrals, have been recently
extended and applied by the PI and collaborators to Feynman integrals, amplitudes, matrix elements and correlation functions, providing new perspectives in both
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Vision. INTHEMA stems from two key concepts: 1) scattering amplitudes in physics parallel twisted period integrals (TPI) in mathematics. Therefore, the
evaluation of TPI becomes a way to scan the structure of the universe at different scales: SA at the quantum scale,   IH at astrophysical distances, CF at
cosmological scales. 2) analytic properties of TPI are encoded in the geometry of their singularities and in the combinatorics of the emerging algebraic patterns,
accessible via integral representations and differential operators. 

  

Therefore, the evaluation of TPI becomes a universal way to explore the geometric essence of the laws of nature.
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and the operators that annihilate them. By addressing problems from particle physics to gravity and string theory with a unified approach, the research will reveal
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RESEARCH PROGRAMME 
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Feynman 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Summary

Vector Space Structures 

Intersection Numbers ~ Scalar Product for Feynman (Twisted Period) Integrals

The ubiquitous De Rahm Theory

Vector-space dimensions = dimension of co-homology group = counting holes = number of independent Integrals  

key: Co-Homology Group Isomorphisms

Intersection Theory for Twisted de Rham co-homology

Analyticity & Unitarity vs Differential and Algebraic Geometry, Topology, Number Theory, Combinatorics, Statistics

General algorithm for Physics and Math applications

Triggering interdisciplinarity: interwinement between Fundamental Physics, Geometry and Statistics: fluxes ~ period integrals ~ statistical moments

Feynman Integrals Euler-Mellin Integrals

D-modules & GKZ theory

Orthogonal polynomials QM Matrix Elements

Green’s functions in QFT Correlator functions in Cosmology

Fourier integrals

Gluing methods in N=4 SYM … … …

Annihilators and D-Modules

Differential Space Structure

Isomorphism of D-Module vs de Rham cohomology group

Feynman Integrals and Scattering Amplitudes
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ABSTRACT

We propose a universal strategy, based on intersection theory, to access the vector space structure of generic classes of
integrals that are ubiquitous in scientific calculus. We show that the relations linking them can be derived by projections, where
the intersection number for differential forms acts as a scalar product. By elaborating on the recent progress made in the
area of Feynman integrals, de Rham’s intersection theory is applied to special functions appearing in Quantum Mechanics
and Quantum Field Theory. Our investigation suggests a novel approach, generally applicable to the study of higher-order
moments of probability distributions, which are interpreted as a basis of integrals. Our study offers additional evidence of the
intertwinement between fundamental physics, geometry, and statistics.

1 Introduction
In electromagnetism, Ampere’s theorem states that in presence of a circuit carrying an electric current I, the circulation of the
induced magnetic field along the boundary of an oriented surface is just µ0(±n)I, where µ0 is the magnetic permeability of
empty space, and n is the total number of times the wire crosses the surface, whereas the sign depends on the alignment of the
normal to the surface and of the direction of the current flow. In presence of several closed circuits gk, each carrying a current Ik,
computing the circulation of the induced magnetic field along a closed path g that wounds them, may look like a complicated
problem, depending on the shapes of g and gk. Nevertheless, the answer turns out to be simple, because it can be expressed as a
combination of elementary terms, as µ0 Âk(±nk)Ik, exploiting the geometric information carried by the intersection number of
gk and (the surface bounded by) g , i.e. nk = Link(gk,g), known as Gauss’ linking number. See Figure 1, for an illustration.

I3I3I3 g3g3g3

ggg

g1g1g1

I1I1I1

g2g2g2

I2I2I2

SSS

Figure 1. Circuits linked with the boundary g of a surface S. The central vector is the orientation of S. Link numbers:
Link(g1,g) = +2, Link(g2,g) =�1, and Link(g3,g) = 0.

Computing integrals is routine in any scientific ambit: expectation values in Quantum Mechanics, Feynman integrals in
Quantum Field Theory, Partition Functions in Statistical Mechanics, and higher momenta in Statistics are just a few paradigmatic
examples out of a plethora of cases. Stokes’ theorem represents a first step toward a unifying vision of integrals evaluation
as a whole: when it is possible to look at them as representing fluxes of closed differential forms through surfaces, it tells us
that such integrals are invariant upon deforming either the integrand, by exact forms, or the contour, by boundary terms. This
gives rise to the de Rham theory of cohomology, and its generalizations, as its twisted version, which allows to include singular
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Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova, Italy

INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

(Dated: February 16, 2023)

By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Integral decomposition by geometry

Master Contributions

Gauss’ Linking Number

Dual twisted cocycle �R: Without loss of generality, let us consider a non-regulated pole in the
point z = 0 2 Prel, and define the dual twisted cocycle,

�R := �(z) dz . (A.8)

The calculation of the intersection number h'L|�Ri using (1.11) gives,
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which receives contribution only from the (unregulated) pole at z = 0, because only in this case
'L uu

�1(0) is single valued, and, therefore, its Laurent expansion might contain a term proportional
to 1/z. Di↵erently, for Pall 3 p 6= 0, the term 'L uu

�1(0) remains multivalued, and its Laurent
expansion contains terms of the type (z� p)� , for � = �(↵i), generically non-integer, therefore having
no residue at z = p.

Twisted cocycle �L: With similar arguments, we can consider any non-regulated pole, say z = 0 2

Prel, and define the twisted cocycle

�L := �(z) dz . (A.10)

We can compute the intersection number h�L|'Ri using (1.10), as,
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which takes the contribution just from the pole at z = 0, for the same reason giving above.

We conclude this section by observing that the use of the �-basis [], the solution by ansatz of the mod-
ified di↵erential equation [], as well as the analytic integration [] provide three equivalent algorithms
for computeing intersection numbers in the case relative twisted de Rham cohomology.
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The unreasonable effectiveness of  mathematics
E. Wigner

© 1992 Nature  Publishing Group

of this work is what Wigner called "the 
unreasonable effectiveness of mathemat-
ics". Wigner was referring to the mys-
terious phenomenon in which areas of 
pure mathematics, originally constructed 
without regard to application. are sud-
denly discovered to be exactly what is 
required to describe the structure of the 
physical world . Thus , Riemann's general 
formulation of the geometry of curved 
spaces was essential to Einstein 's under-
standing of gravity; Heisenberg found 
that the symbolic arrays which in quan-
tum mechanics represent observable 
quantities we re the matrices that had 
been invented decades earlier ; and now 
recondite aspects of the distribution of 
prime numbers might well provide the 
link between quantum mechanics and 
newtonian chaos. 

Such connections raise many ques-
tions. Is mathematical truth inve nted by 
mathematicians. or does it already exist 
in the world , to be discovered when our 
minds become sophisticated enough? If 
discovered, where is it beforehand? 
What is its relation to the matter whose 
behaviour it describes so we ll ? Is there 
any inapplicable mathematics? 

Barrow does not answer these ques-
tions, but gives a careful and perceptive 
account of their background and the 
philosophies they have stimulated . He 
starts , appropriately enough, with an 
anthropological and historical analysis of 
counting and calculation , focusing on the 
tricky question of whether such skills are 
innate, and would inevitably develop in 
any human society , or whether they 
arose 'accidentally' in one (or several) 
societies, and diffused to the others. The 
latter is, he thinks, more plausible. Cen-
tral here are the inventions (discover-
ies?) of place values and of zero, by the 
Babylonians and Hindus 5,000 years 
ago , leading via the mediaeval Arabs to 
the decimal syste m we use today. 

Because mathematics is the most pre-
cise embodiment of systematic thought, 
it was natural to try to prove that it has a 
solid foundati on in logic and is perfectly 
consistent. The story of these attempts 
has often been told. How Frege, Russell 
and Whitehead tried to 'derive ' 
mathematics from logic almost a century 
ago, and how this attempt was compli-
cated by the irritating paradoxes of self-
referential sets ('If the barber shaves 
everyone who does not shave himself. 
wha shaves the barber?') . How Hilbert 
took up the challenge by trying to prove 
the consistency of mathematics from 
within, by formalizing its symbols and 
deductive steps. !low "all the noonday 
brightness of this confident picture of the 
fo rmalists' little mathematical wo1ld was 
suddenly extinguished" by Godel's proof 
in 1931 that the set-theory paradoxes 
make it impossible for a sufficiently 
complicated system to be proved consis-
NATURE · VOL 360 · 26 NOVEMBER 1992 

tent from within. These ideas are central 
to modern notions of randomness as the 
inability to compress informatio n, and 
may have implicati ons for our a ttempts 
(in my view doomed) to find a compact 
encoding of the physical universe as a 
' theory of everything'. Barrow's account 
of these matters is lucid and engaging. 

After pointing out that " formalism is 
lacking in two crucial respects" (it does 
not explain the usefulness of mathe-
matics and its relation to the minds of 
mathematicians), Barrow turns to inven-
tionism. This "amounts to the claim that 
mathematics is a branch of 
psycho logy". It makes "mathe matical 
truth dependent upon time and his-
tory" , and "one cannot help but fee l that 
humanity is not really clever enough to 
have 'invented' mathematics" . 

A chapter is devoted to Brouwer's 
programme of intuitionism. whe re the 
natural numbers are regarded as unargu-
ably "given ' , and the aim is to build the 
rest of mathematics "by step-by-step 
deductions using a finite number of 
steps" . This bro ught him into collision 
with Hilbert , who believed that such a 
philosophy, which disallowed infinite 
processes such as arguing by reductio ad 
absurdum, would fatally impoverish and 
weaken mathematics. Hilbert's attempt 
to enforce political correctness and to 
expel Brouwer from the editorial board 
of Marhematische Annalen provoked 
an absurd and bitter controversy that 
Einstein called the "war of the frogs 
and mice". 

Finally , Barrow explores the Platonic 
position that mathematical abstractions 
ex ist "in a rea lm of non-spati al, non-
mental , timeless entities" . He concludes, 
albeit somewhat uneasily: "Our ability to 
create and apprehend mathematical 
structures in the world is merely a con-
seque nce of our own oneness with the 
wo rld" . 

I admit to finding some of Barrow's 
arguments hard to follow not because of 
their content but because of his habit of 
using very long sentences unado rned by 
punctuation whose verbs are hard to find 
and whose meanings therefore hard to 
unravel. Worse, some sentences are in-
complete, and there are many spelling 
mistakes. Quota tions abound . Some are 
witty and apposite, but why propagate 
Spiro Agnew's abysmal "An intellectual 
is a man who doesn' t know how to park 
a bike ''? 

These arc, however, minor criticisms , 
and I warmly recommend Barrow's 
brave attempt to gather up the many 
loose threads of this elusive subject- a 
subject so central to our scie ntific culture 
- and to grasp the whole of it. 0 

Michael Berry is in the Department of 
Physics, University of Bristol, Bristol BSB 
1TL UK. 

AUTUMN BOOKS 

Einstein as 
lover 
Joseph Schwartz 

Albert Einstein and Mileva Marie: The 
Love Letters. Edited and with an intro-
duction by Jurgen Renn and Robert 
Schulmann. Translated by Shawn 
Smith. Princeton University Press: 
1992. Pp. 107. $14.95, £12.50. 

TillS elegantly published volume of let-
te rs between the young Einstein and the 
young Marie is a spin-off from the first 
two volumes of a planned 35 volumes 
containing some 43,000 documents lying 
in the Einstein archive. A lovely intro-
duction by Ji.irgen Renn and Ro bert 
Schulmann , coeditors of the project, 
draws our attention to the unique 
personality of Marie and her central 
contribution to the Einstein success 
sto ry. The meticulo us scholarship of the 
notes is wonderful , particularly the inclu-
sio n of the dates of virtually a ll the 
characters in this first act of the Einstein 
drama. And the letters themselves are a 
treat , a window into the early dev-
elopment of the man who became the 
most ce lebrated scientist in history. But 
what, when all is said and done , does 
this correspondence te ll us? 

The Einstein we see here is bubblingly 
optimistic, reassuring, high-spirited , con-
fident about life . For the first time we 
have an Einstein with sexuality: "Oh my! 
That Jo hnnie boy!/So crazy with desire/ 
Whil e thinking of his Dollie/His pillow 
catches fire " (letters 19); "How beautiful 
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natural way" (le tter 33) . Albert is happy 
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creasingly submerged by life . We meet 
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late entrant from the distant provinces of 
undeveloped Serbi a, is three-and-a-half 
yea rs his senior. He is youthful, exuber-
ant. No obstacle is too great. She , while 
available for emotional and sexual in-
vo lvement , is unhappy, feeling that her 
provincial backgro und has irreversibly 
limited her chance in physics. While 
E instein is absorbing with great fascina-
ti on the nuts and bolts of doing physics, 
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spectacle of he r university lecture rs: 
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have accomplished so much as I 
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case of the Heidelberg professors" 
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As we journey with these lovers over a 
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i) Orthogonal Polynomials

4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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4 Methods
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meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
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i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative
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literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.
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w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.
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relation (10) emerges from the decomposition formula, and amounts to c1 E1 .
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relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
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be cast in the form (6) as,
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, and j ⌘Wm(z)zk Wn(z)dz. (12)
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with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
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with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
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meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
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w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
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p
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be cast in the form (6) as,
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�•
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, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Position operator



ii) Matrix Elements in QM

Position operator

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
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The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as
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Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
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Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
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Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the

5/11



i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
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replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the
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in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.
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Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
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functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=
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n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as
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in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
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For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,
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Z
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Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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6

type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn,ℓ zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + ϵS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)

6

type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn,ℓ zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + ϵS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
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such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,
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of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =
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γ
. (58)
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B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
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upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + ϵS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)



ii) Kontsevich-Witten tau-function

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,
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R
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where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)
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theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,
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which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Univariate Model

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
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+O(e2) =

1
g

✓
1�12e 1

g2
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+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,
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L
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⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Itzykson-Zuber (1992)

Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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coupling limit, e ! 0, and expressed in terms of G(0)
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where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
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n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
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Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,
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which can be Taylor expanded in series50, as ZKW = Â•
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KW . The series coefficients are determined from the master formula,R
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e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1
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GKZ Hypergeometric Systems

,
dx

x
:=

dx1

x1
^ · · · ^

dxn

xn

g(z;x) =
NX

i=1

zi x
↵i x

↵i := x
↵i,1

1 · · ·x
↵i,n
n

�

Let us construct the (n+ 1)⇥N matrixA =
�
a1 . . . aN

�
as ai := (1,↵i), with the assumption that

. Moreover, we introduce the (left) kernel of A, defined as,

Ker(A) =
�
u = (u1, . . . , uN ) 2 Z

N
��

NX

j=1

uj aj = 0
 

whose columns ai are built from the monomial exponents ↵i as ai := (1,↵i), with the assumption that
Span{a1, . . . , aN} = Z

n+1. Moreover, we introduce the (left) kernel of A, defined as,

Ker(A) =
�
u = (u1, . . . , uN ) 2 Z

N
��

NX

j=1

uj aj = 0
 
. (2.5)

Then, by using A and � as input, we build the following set of di↵erential operators:

Ej =
NX

i=1

aj,i zi
@

@zi
� �j , j = 1, . . . , n+ 1 (2.6)

⇤u =
Y

ui>0

✓
@

@zi

◆ui

�

Y

ui<0

✓
@

@zi

◆�ui

, 8u 2 Ker(A) . (2.7)

The function f�(z), defined in (2.1), satisfies the system of partial di↵erential equations (PDE)

Ej f�(z) = 0 , (2.8)

⇤u f�(z) = 0 , (2.9)

therefore it is dubbed an A-hypergeometric function [60].

2.2 GKZ D-modules and de Rham cohomology

The operators in (2.6)-(2.7) can be regarded as elements of a Weyl algebra

DN = C[z1, . . . , zN ]h@1, . . . , @N i , [@i, @j ] = 0 , [@i, zj ] = �ij . (2.10)

In multivariate exponent notation, the elements of DN take the form
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Bernstein, Saito, Sturmfels, Takayama, Matsubara-Heo,  
Agostini, Fevola, Sattelberger, Tellen,  

De La Crux,…
Euler-Mellin Integral / A-Hypergeometric function

Gelfand-Kapranov-Zelevinsky (GKZ) system of PDEs

Generators

u(x) = g(z, x)�0 x
��1
1 · · · x

��n
n

Our presentation is organized as follows. In Section 2, we review basic notions of the GKZ hyper-
geometric systems and their Euler integral representation. In Section 3, we discuss Pfa�an systems
of di↵erential equations, which are intimately related to GKZ systems. We present the Macaulay
matrix algorithm, based only on linear algebra, to compute Pfa�an matrices in Section 4. We show
its application to examples of di↵erential equations for Feynman integrals in Section 5. In Section 6,
we show how Pfa�ans can be used to derive linear relations for GKZ systems, similar to IBP identities
for Feynman integrals. Finally, in Section 7, we present the integral decomposition via intersection
numbers, using Pfa�ans to compute the required intersection matrices.

All algorithms in this paper are implemented in the computer algebra system Risa/Asir [86],
Maple [87] and Mathematica [88] with FiniteFlow [89], while the calculations involving Feynman
integrals are checked with LiteRed [90, 91]. Programs used in this paper and machine readable data
can be obtainable from [92].

2 GKZ hypergeometric systems

In this section, we briefly review some basic properties of the GKZ-hypergeometric systems to fix
our notation. Section 2.1 introduces a particular integral representation related to the GKZ systems
we work with, and Section 2.2 covers its relation to the algebraic de Rham cohomology groups. In
Section 2.3, we describe how to represent a cohomology class by an element of Weyl algebra. Finally,
in Section 2.4, we discuss the homogeneity property of GKZ systems, which allows us to reduce the
number of independent variables.

2.1 Integral representation of GKZ-hypergeometric system

In this work, we consider Euler integrals of the form

f�(z) =

Z

�
g(z;x)�0 x

��1
1 · · ·x

��n
n

dx

x
,

dx

x
:=

dx1

x1
^ · · · ^

dxn

xn
. (2.1)

Here � is a twisted cycle2, � = (�0, . . . ,�n) 2 C
n+1 are complex parameters, and g(z;x) is a Laurent

polynomial in x

g(z;x) =
NX

i=1

zi x
↵i . (2.2)

The monomials above are written in multivariate exponent notation: given an integer vector ↵i 2 Z
n

we set

x
↵i := x

↵i,1

1 · · ·x
↵i,n
n , (2.3)

where ↵i,j stands for the j-th component of the vector ↵i. Crucially, in (2.2) we regard each coe�cient
zi as an independent variable of f�(z).

Let us construct the (n+ 1)⇥N matrix

A =
�
a1 . . . aN

�
, (2.4)

2A twisted cycle is an integration contour with no boundary, along which the branch of the integrand is specified.
For details, see [27, Chapter 3]
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Theorem 2.1 ([93]).

1. HA(�) is a holonomic ideal 3

2. When � is non-resonant, the holonomic rank r of HA(�) is given by the volume4

r = n! · vol(�A) . (2.12)

The holonomic rank equals the number of independent solutions to the system of PDEs (2.6)-(2.7) at
a generic point z 2 C

N . The first statement ensures that the rank is finite, while the second statement
gives an exact formula for computing it in terms of combinatorial data.

⇤ Next, letting Gm (resp. A) stand for the complex torus (resp. complex A�ne line) equipped with
the Zariski topology5 and

X :=
�
(z, x) 2 A

N
⇥ (Gm)n

�� g(z;x) 6= 0
 

, Y := A
N
, (2.13)

we denote by ⇡ : X ! Y the natural projection from the space of GKZ and integration variables to
the space of GKZ variables only.

Setting O(X) := C[z1, . . . , zN , x
±1
1 , . . . , x

±1
n ,

1
g ], we define an action of DN on f = f(z, x) 2 O(X)

by

@

@zi
• f =

@f

@zi
+ �0

✓
1

g(z;x)

@g(z;x)

@zi

◆
f , (2.14)

@

@xi
• f =

@f

@xi
+ �0

✓
1

g(z;x)

@g(z;x)

@xi

◆
f � �i

f

xi
. (2.15)

The symbol O(X) g�0x
��1
1 . . . x

��n
n denotes the left DN -module O(X) endowed with this action. For-

mally, we have the identities

@

@zi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@zi
• f

◆
, (2.16)

@

@xi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@xi
• f

◆
. (2.17)

The direct image D-module
R
⇡ O(X) g�0 x

��1
1 . . . x

��n
n is defined canonically as in Appendix B.

Theorem 2.2 ([61]). Suppose that � is non-resonant. Then there is a canonical isomorphism of left
DN -modules

DN/HA(�) '

Z

⇡
O(X) g�0 x

��1
1 . . . x

��n
n . (2.18)

Let us make this isomorphism explicit [96]. We let

⌦k
X/Y =

M

J⇢{1,...,n}, |J|=k

O(X) dxJ (2.19)

3For the definition of a holonomic ideal, see Appendix B or p. 31 of [94].
4vol stands for the Lebesgue measure and can be calculated with software such as Polymake [95]. The holonomic

rank is the number of standard monomials of RHA(�) (see Appendix B).
5As a set, the torus Gm (resp. the complex A�ne line A) is equivalent to C

⇤ := C \ {0} (resp. C).
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Standard Monomials found by Groebner basis Hibi, Nishiyama, Takayama (2017)

J
H
E
P
0
9
(
2
0
2
2
)
1
8
7

be a solution to a GKZ Pfaffian system given some monomial basis si = ∂ki , ki ∈ NN
0 , for

which si∂j = ∂jsi. The following relations hold true:

∂jF (β) = Pj(β)F (β) , (3.17)
∂jF (β) = F (β − aj) . (3.18)

Differentiating (3.17) w.r.t. zi, we get

∂i∂jF =
(
∂iPj

)
F + Pj

(
∂iF

)
(3.19)

=
(
∂iPj

)
F + PjPiF , (3.20)

where we omitted the argument β for clarity. On the other hand, differentiating (3.18)
we get

∂i∂jF (β) = ∂iF (β − aj) (3.21)
= F (β − aj − ai) (3.22)
= Pj(β − ai)Pi(β)F (β) , (3.23)

where we applied the identity Pk(β)F (β) = F (β−ak) twice in the last step. The proposition
follows upon equating (3.20) and (3.23) and isolating

(
∂iPj

)
(β).

Pfaffian systems introduced above are systems of linear partial differential equations
(SPDE), satisfied by the solutions of a given GKZ system. As we will see later on, these
equations are extremely useful in physical applications. Next we present an efficient way to
calculate the Pfaffian systems, essentially via linear algebra.

4 Constructing Pfaffian systems from Macaulay matrices

In this section we describe a method for building the Pfaffian systems defined in eq. (3.3).
The method amounts to first building an auxiliary matrix M called the Macaulay matrix,
and then solving a special system of linear equations. In section 4.1 we derive the Macaulay
matrix (4.5) and the linear system (4.12), (4.13) that it satisfies. In section 4.2 we then
present Algorithm 1 for calculation of Pfaffian systems. In section 4.3 we give several
remarks about the algorithm and its efficiency. We close this section with several examples
in section 4.4, showcasing the steps and runtime statistics of the algorithm in practice.

4.1 From Pfaffian to Macaulay matrix

We present how the Macaulay matrix arises from a Pfaffian system in the basis of standard
monomials. Since we will focus our discussion on the case of GKZ systems later on, based
on the comments at the end of section 3.1 we may safely assume that

a set of standard monomials Std := {∂k} is given,

and that its size equals the holonomic rank |Std| = r, defined in (2.12). We remind that ∂k

denotes a monomial in derivatives, while ∂i denotes a single derivative w.r.t. zi.

– 15 –
Isomorphism

J
H
E
P
0
9
(
2
0
2
2
)
1
8
7

We then obtain a chain complex

· · · ∇x−→ Ωk
X/Y

∇x−→ Ωk+1
X/Y

∇x−→ · · · . (2.21)

The k-th relative de Rham cohomology group is defined as follows:

Hk := Ker
(
∇x : Ωk

X/Y −→ Ωk+1
X/Y

) /
Im
(
∇x : Ωk−1

X/Y −→ Ωk
X/Y

)
. (2.22)

It can be shown that the direct image D-module
∫

π O(X) gβ0 x−β1
1 . . . x−βn

n is isomorphic
to the n-th relative de Rham cohomology group Hn, for which reason the latter is a left
DN -module by theorem 2.2. In fact, theorem 2.2 can be rephrased as

Proposition 2.3. Suppose that β is non-resonant. Then there is a unique isomorphism of
DN -modules

DN/HA(β) ≃ Hn (2.23)

such that [1] ∈ DN/HA(β) is sent to
[
dx
x

]
∈ Hn .

A consequence of Proposition 2.3, which will be essential for our application of DN -
module theory to Feynman integrals, is the following: given a cohomology class [ω(z)] ∈ Hn,
there exists a differential operator P ∈ DN , which is unique modulo HA(β), such that

P
[dx
x

]
= [ω(z)] . (2.24)

The partial differential operators ∂i in P act on a cohomology class [ω(z)] ∈ Hn via

∂i • [ω(z)] =
[
∂i ω(z) + β0

xαi

g(z;x)ω(z)
]
. (2.25)

The action (2.25) comes from differentiation under the integral sign:

∂

∂zi

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ω(z) =

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ∂i • ω(z) . (2.26)

Since a Feynman integral can be represented by a cohomology class [34], we may equally
well consider the operator P as representing that integral. An algorithm for computing P

was developed in [62] and will be outlined in the following section. Moreover, in the view of
the relation of GKZ-systems and Feynman integrals (to be elaborated on in section 5), we
observe that the finiteness of the rank, established by the first statement of Theorem 2.1,
can be related to the finiteness of the number of master integrals [59]. The formula for
its evaluation, given in the second statement of Theorem 2.1, offers an alternative way of
determining dim(Hn), which is ordinarily computed in terms of Betti numbers, by counting
the number of certain critical points, or by Euler characteristics — all of which are related
to the number of master integrals.
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nth-Cohomology groupGKZ D-module

Weyl Algebra:
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Thm : Isomorphism

Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)

– 15 –

Pfaffian Matrix

Basis of the Cohomology group

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)

– 15 –

Integral decomposition (IBP/InterX)

nth-Cohomology group   ~     GKZ D-module Gelf’and Kapranov Zelevinsky (1990)

Intersection Numbers for n-forms (V) from Pfaffian D-module systems



Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)

So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Thm : Isomorphism

Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms) & for D-operators (alias Std mon’s)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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