Feynman Integrals & Scattering Amplitudes in Particle Physics, Gravitation & Cosmology

Pierpaolo Mastrolia

New Frontiers in Theoretical Physics Cortona, 23.05.2025

In collaboration with: P. Benincasa, G. Brunello, S. Cacciatori, V. Chestnov, G. Crisanti, B. Eden, W. Flieger, M. Giroux, M. Gottwald, H. Frellesvig, S. Laporta, M.K. Mandal, S. Matsubara-Heo, S. Mizera, R. Patil, J. Steinhoff, T. Scherdin, S. Smith, WJ Torres Bobadilla, F. Vazao, N. Takayama

Physics and Astronomy Department Galileo Galilei University of Padova - Italy

INFN

Istituto Nazionale di Fisica Nucle

Outline

Feynman Calculus

Integral relations, Differential Equations and Special Functions

Amplitudes and Diagrams for Gravitational Wave Physics

Post-Minkowskian Corrections

Post-Newtonian Corrections

Vector Space Structure of Twisted Period Integrals (Feynman, GKZ, Euler-Mellin, A-hypergeometric)

De Rahm co-homology groups

Intersection Numbers

Intersection Theory Applications

Feynman Integrals Beyond Feynman Integrals Cosmological correlators and Wave Functions

Differential Space Structure of Twisted Period Integrals Annihilators and D-modules

Conclusions

Theoretical Physics goals: modelling Nature by modelling changes: Systems' Evolution

Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

$$\partial_x^{(n)} f(x) + p_{n-1}(x) \partial_x^{(n-1)} f(x) + \dots + p_1$$

 $\int_{1}^{1} (x) \partial_{x}^{(1)} f(x) + p_{0}(x) f(x) = 0$

Theoretical Physics goals: modelling Nature by modelling changes: Systems' Evolution

Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

$$\partial_x^{(n)} f(x) + p_{n-1}(x) \,\partial_x^{(n-1)} f(x) + \dots + p_1(x) \,\partial_x^{(1)} f(x) + p_0(x) f(x) = 0$$

Linear relations

 $f_n(x) + a_{n-1}f_{n-1}(x) + \dots + a_1f_1(x) + a_n$

$$a_0 f_0(x) = 0$$

Theoretical Physics goals: *modelling* Nature by *modelling* changes: Systems' Evolution Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

$$\partial_x^{(n)} f(x) + p_{n-1}(x) \partial_x^{(n-1)} f(x) + \dots + p_1$$

$$\partial_x^{(n)} f(x) = -p_{n-1}(x) \partial_x^{(n-1)} f(x) - \dots -$$

Linear relations

 $f_n(x) + a_{n-1}f_{n-1}(x) + \dots + a_1f_1(x) + a_0f_0(x) = 0$

$$f_n(x) = -a_{n-1}f_{n-1}(x) - \dots - a_1f_1(x)$$

 $(x) \partial_x^{(1)} f(x) + p_0(x) f(x) = 0$

 $p_1(x) \partial_x^{(1)} f(x) - p_0(x) f(x)$

 $-a_0 f_0(x)$

Theoretical Physics goals: *modelling* Nature by *modelling* changes: Systems' Evolution Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

$$\partial_x^{(n)} f(x) + p_{n-1}(x) \partial_x^{(n-1)} f(x) + \dots + p_1$$

$$\partial_x^{(n)} f(x) = -p_{n-1}(x) \partial_x^{(n-1)} f(x) - \dots -$$

Linear relations

 $f_n(x) + a_{n-1}f_{n-1}(x) + \dots + a_1f_1(x) + a_0f_0(x) = 0$

$$f_n(x) = -a_{n-1}f_{n-1}(x) - \dots - a_1f_1(x)$$

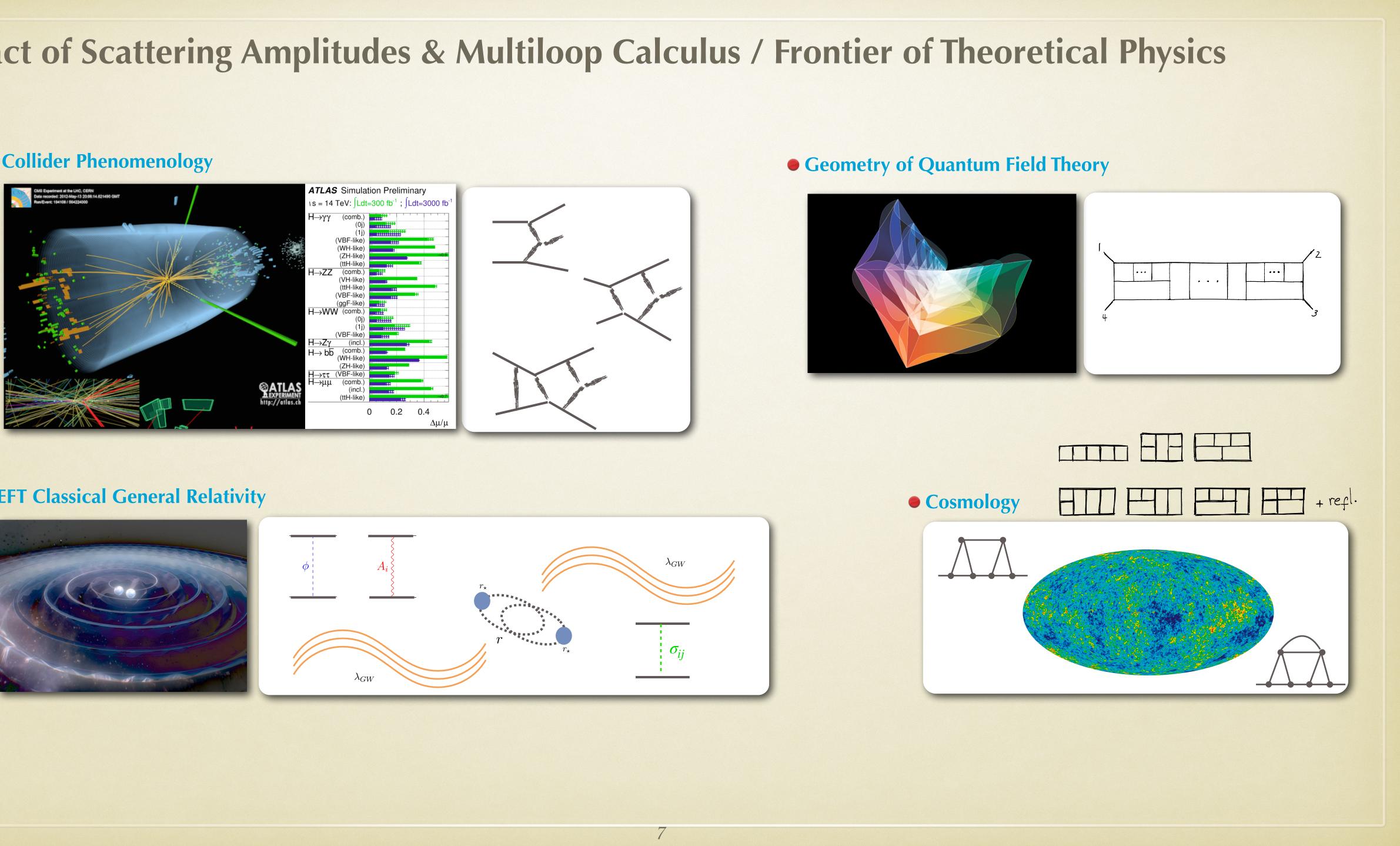
 $(x) \partial_x^{(1)} f(x) + p_0(x) f(x) = 0$

 $p_1(x) \partial_x^{(1)} f(x) - p_0(x) f(x)$

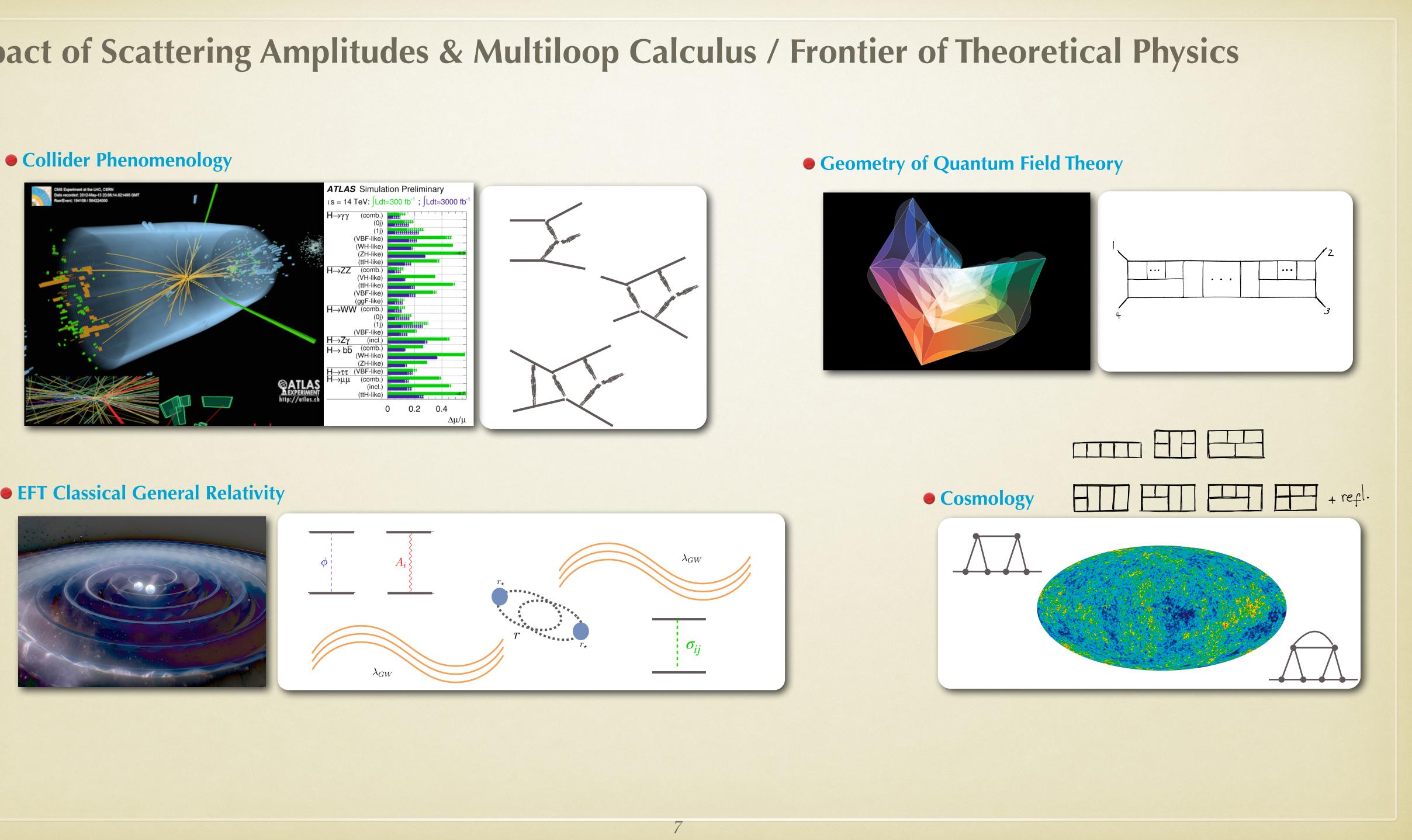
Decomposition formulas in terms of n independent elements

 $-a_0 f_0(x)$

Impact of Scattering Amplitudes & Multiloop Calculus / Frontier of Theoretical Physics

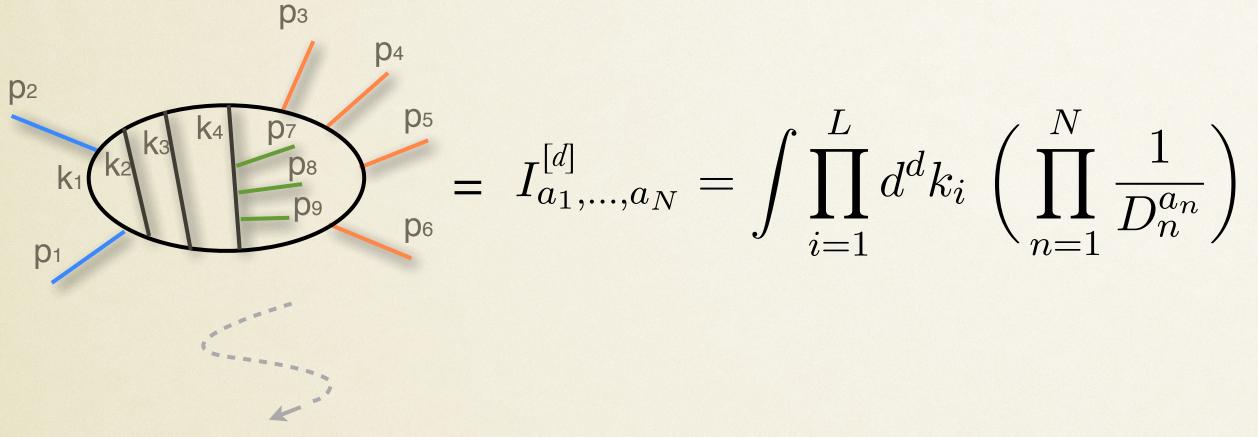


• EFT Classical General Relativity



Feynman Integrals

Momentum-space Representation



N-denominator generic Integral

L loops, E+1 external momenta,

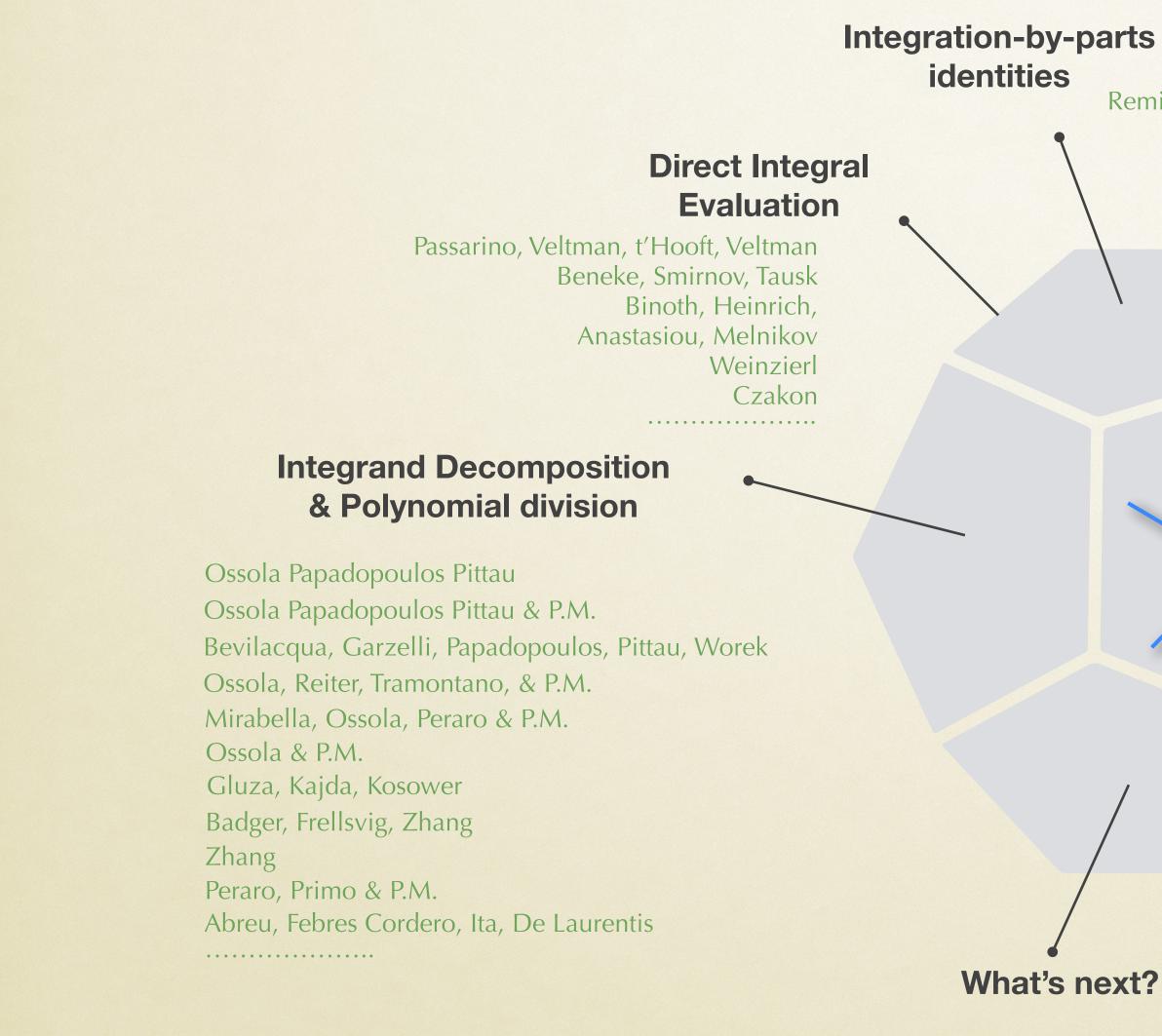
 $N = LE + \frac{1}{2}L(L+1)$ (generalised) denominators

total number of *reducible* and *irreducible* scalar products

't Hooft & Veltman

$$D_n = (p_1 \pm p_2 \pm \ldots \pm k_1 \pm k_2 \pm \ldots)^2 - m_n^2$$

Feynman Integrals / (a few) Evaluation Methods



Chetyrkin, Tkachov Remiddi, Laporta; Laporta Zhang, Larssen

Unitarity-based and on-shell methods

Bern, Dixon, Dunbar, Kosower Britto, Cachazo, Feng, Witten Brandhuber, Spence, Travaglini Britto, Buchbinder, Cachzao, Feng + P.M. Glover, Badger & P.M. Anastasiou, Britto, Kunszt & P.M. Forde; Badger Beger, Bern, Dixon, Forde, Kosower, Ita, Maitre Ellis, Giele, Kunszt, Melnikov, Zanderighi

Difference Equations

Tarasov Laporta Lee

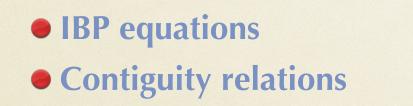
Differential Equations

Barucchi, Ponzano, Regge Bern, Dixon, Kosower Kotikov, Remiddi, Gehrmann Remiddi Bonciani, Remiddi, & P.M. Czakon Henn, Papadopoulos, Liu, Ma, Peking

Feynman Integrals

Integration-by-parts Identities (IBPs)

 $\int \prod_{i=1}^{L} d^{d}k_{i} \ \frac{\partial}{\partial k_{j}^{\mu}} \left(v_{\mu} \prod_{n=1}^{N} u_{n} \right)$



 $\sum_{i} b_i I_{a_1,\ldots,a_i \pm 1}^{[d]}$

• Generating an overdimensioned (sparse) systems of linear equations

• Solutions:

☑ Gauss' Elimination Groebner Bases Syzygy Equations **Finite Fields + Chinese Remainder Theorem + Rational Functions Reconstruction**

$$\left[\frac{1}{D_n^{a_n}}\right] = 0$$

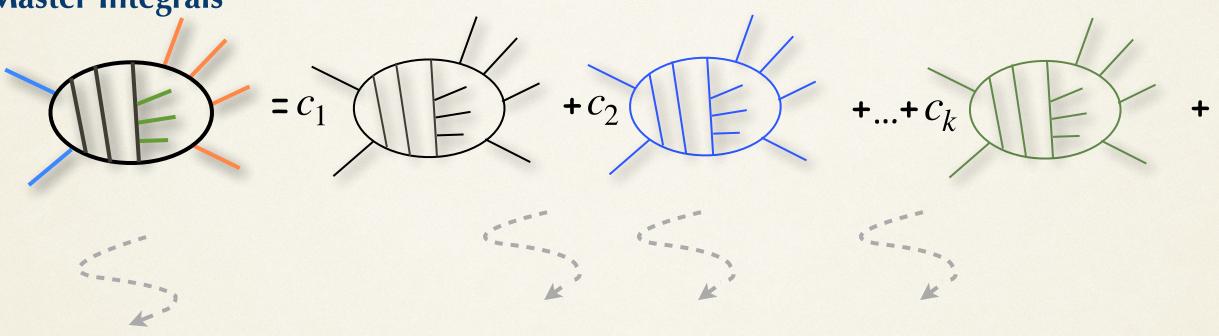
$$v_{\mu} = v_{\mu}(p_i, k_j)$$

arbitrary

$$_{1,...,a_N} = 0$$

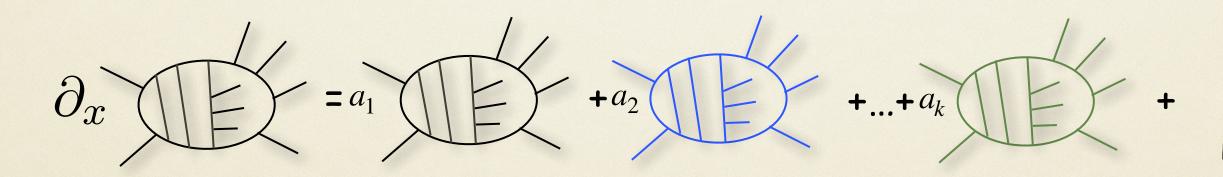
Linear relations for Feynman Integrals

Decomposition in terms of independent Master Integrals

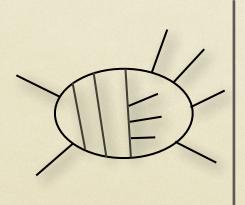


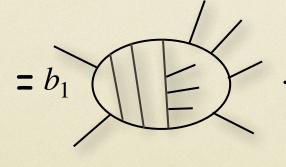
N-denominator generic Integral

Ist order Differential Equations for MIs

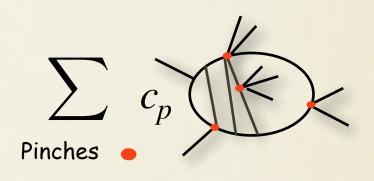


Dimension-Shift relations and Gram determinant relations

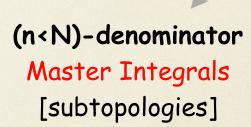


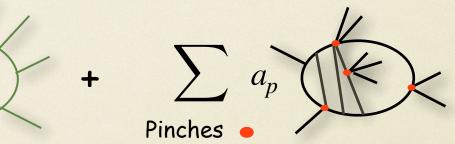


d+2

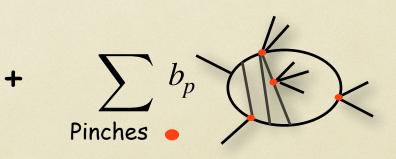


N-denominator Master Integrals





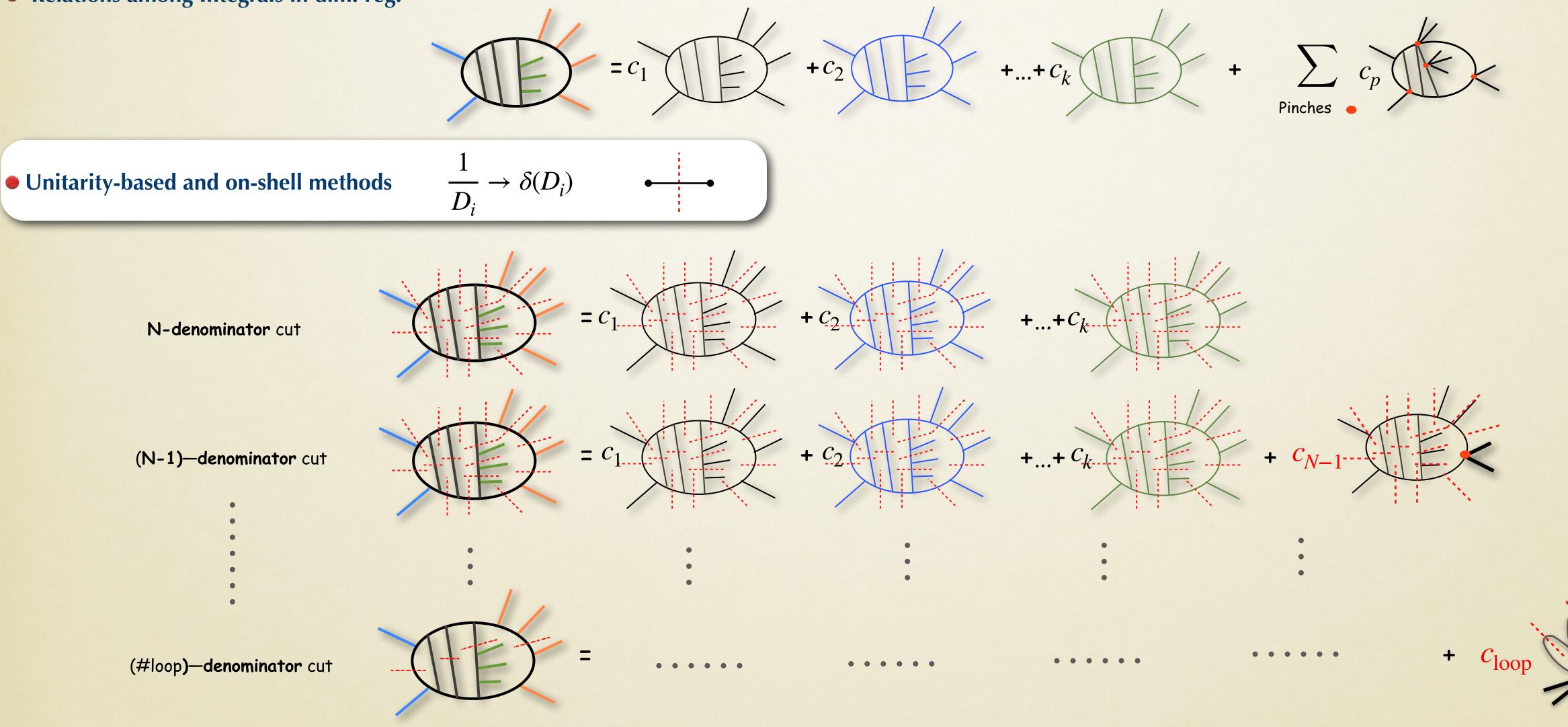
1 / $= b_1 + b_2 + b_2 + \dots + b_k + \sum_{\text{Pinches}} b_p + \dots + b_k$



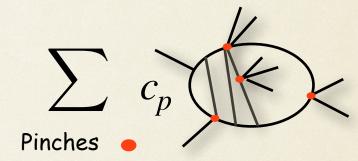
11

Linear relations for Feynman Integrals

• Relations among Integrals in dim. reg.



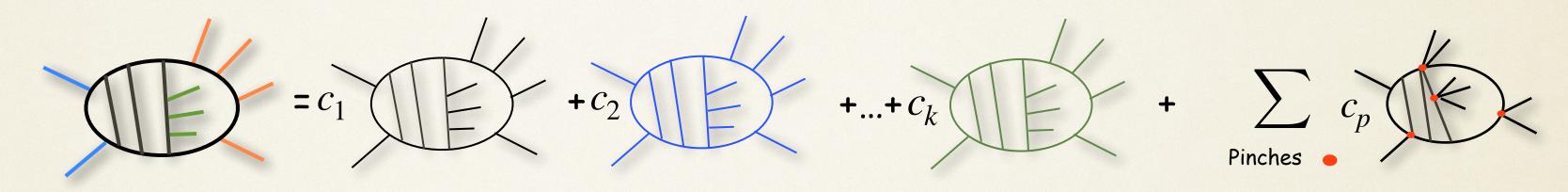
☑ Novel integrand generation: product of tree-amplitudes/diagrams; complex momenta across the cut ☑ Novel **complex-integration** techniques: (see 1loop 4ple-cut, 3ple-cut, 2ple-cut, ...)



12

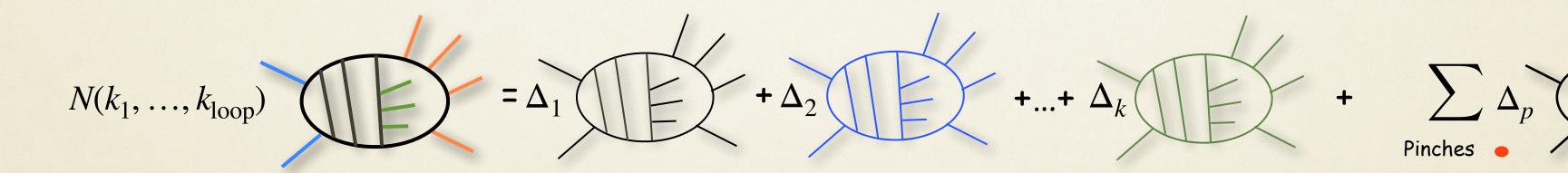
Linear relations for Feynman Integrands

• Relations among Integrals in dim. reg.



OPP Integrand Decomposition

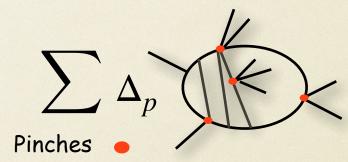
[integrand identity]



- \mathbf{V} c_i determined by **polynomial fitting**
- (Block)-triangular system of linear equations: principle of polynomial identity: integration NOT required

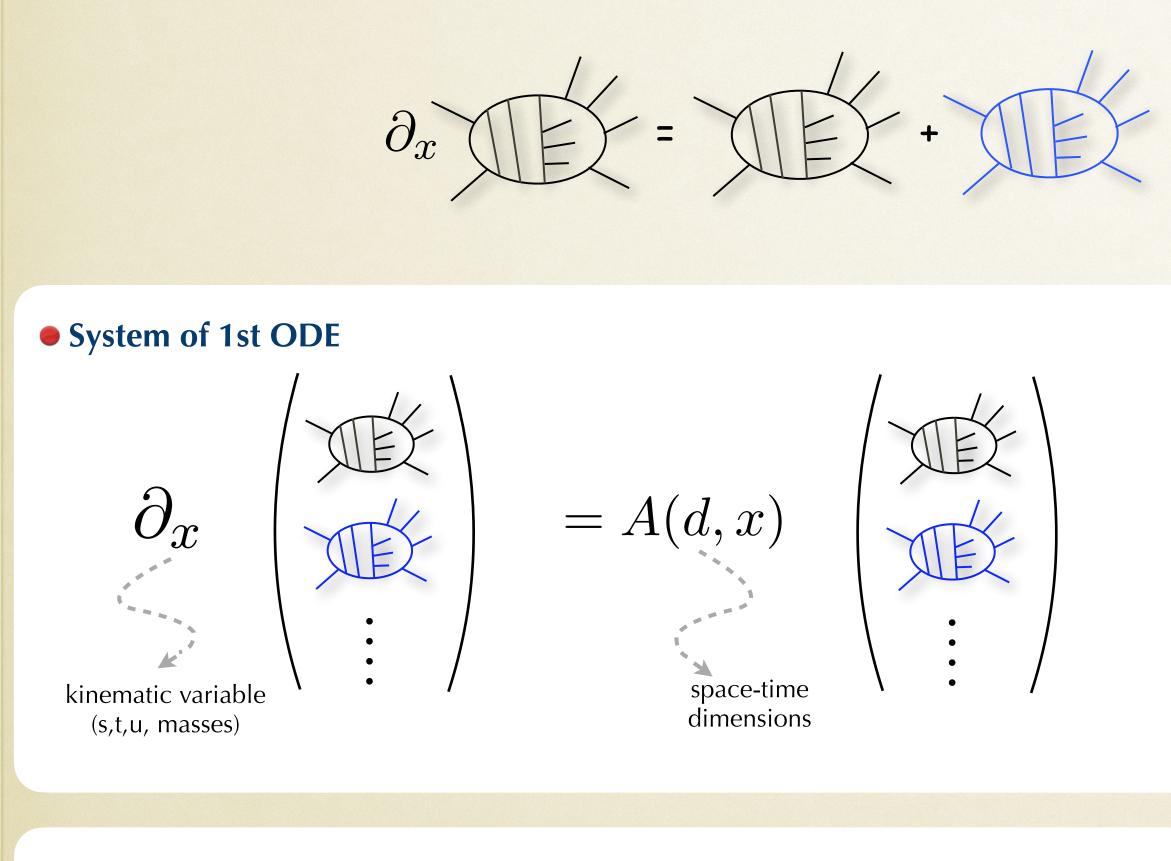
• Cuts vs Residues vs Remainders

 $\mathbf{\Delta}_i$, therefore c_i , determined by **polynomial division** (Δ_i are the **remainders**)



Evaluating Master Integrals / Differential Equations and Theory Special Functions

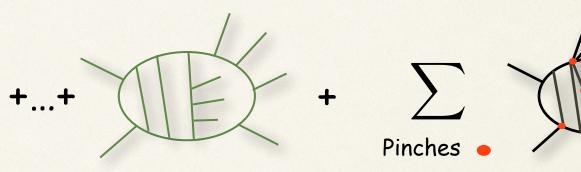
• 1st order Differential Equations for MIs Barucchi, Ponzano; Kotikov; Remiddi, & Gerhmann; ... Bern, Dixon, Kosower, ..., Anastasiou, Melnikov, Steinhauser, Weinzierl, ... Henn, Plefka; Lee;

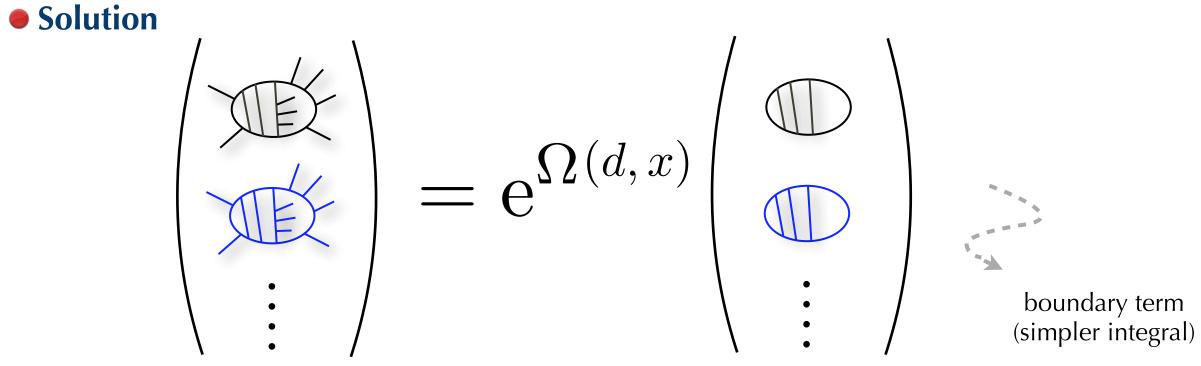


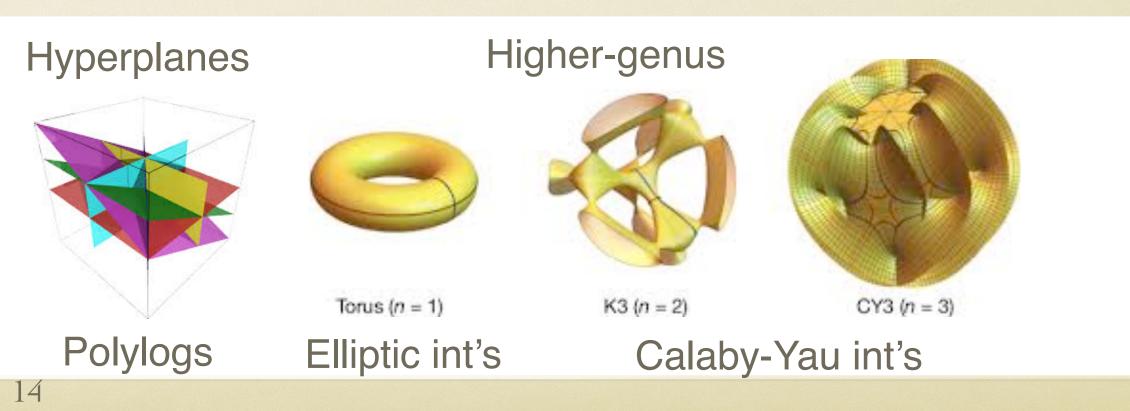
Dyson/Magnus Series: Iterated Integrals and Geometry

$$\mathbf{e}^{\Omega} = \mathbf{1} - \frac{1}{2} \mathbf{1} + \frac{1}{4} \mathbf{1} + \frac{1}{12} \mathbf{1} + \cdots,$$

Bonciani, Remiddi & P.M. Argeri, diVita, Mirabella, Schubert, Tancredi, Schlenck & P.M.; ...



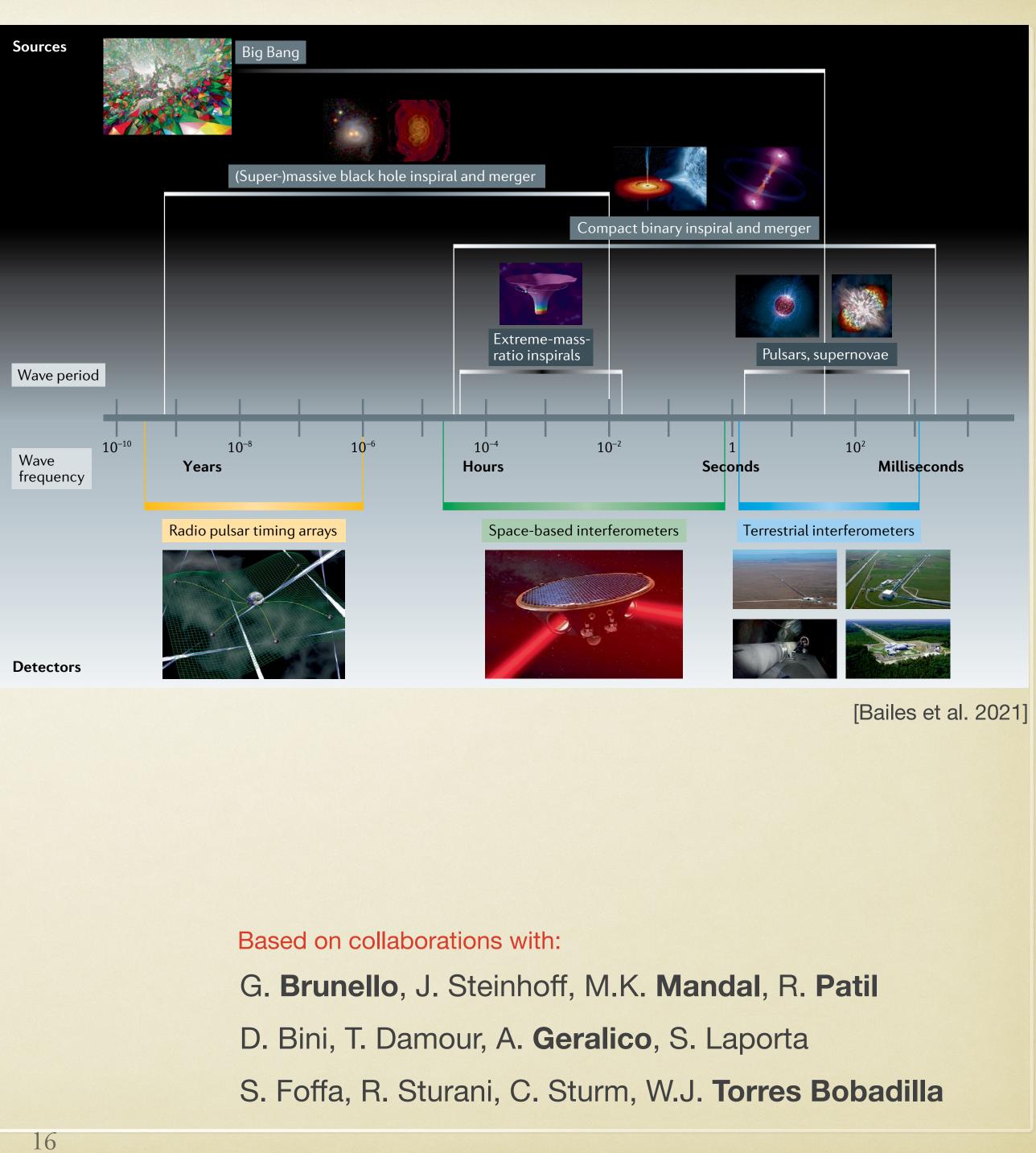


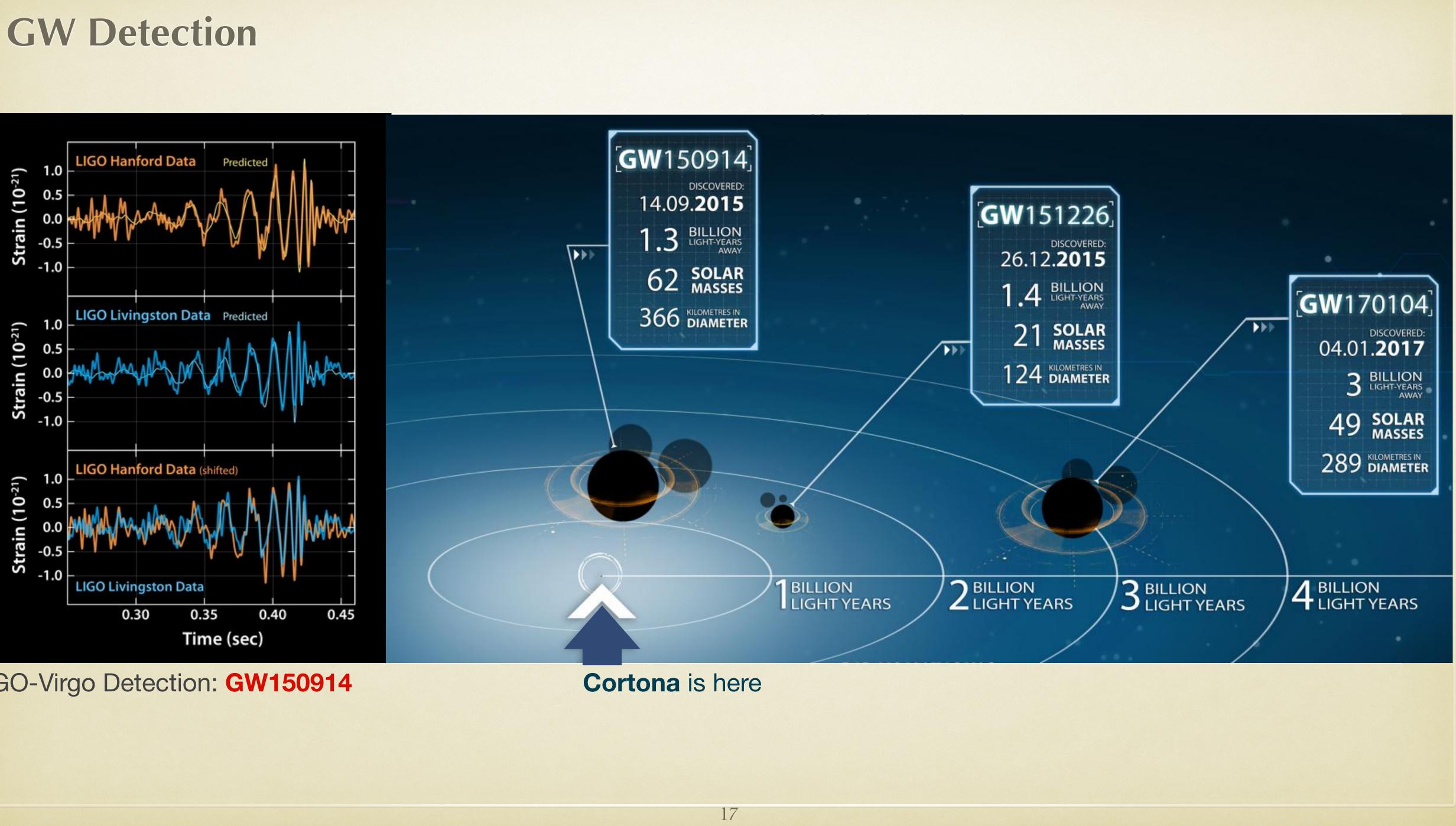


GR EFT and Amplitudes/Diagrammatic approach

Motivation

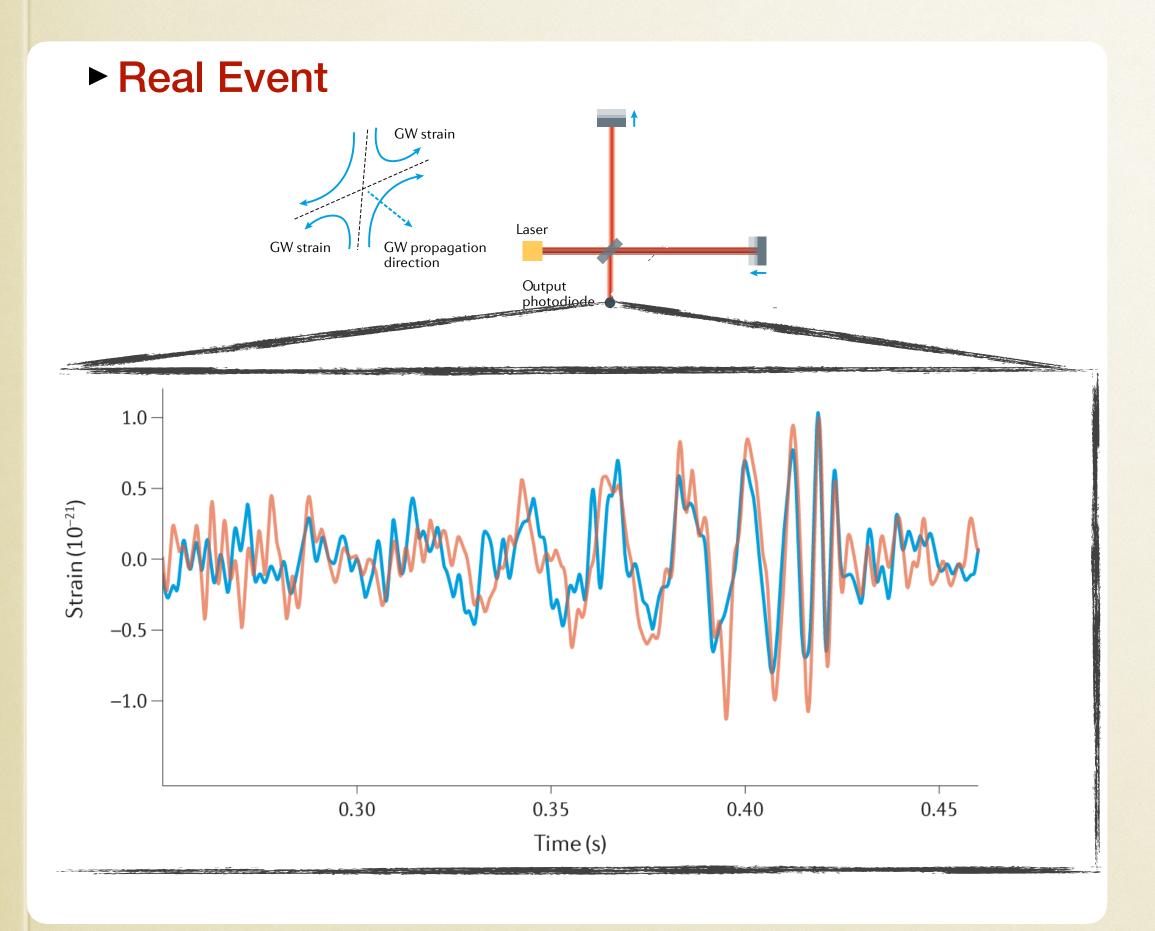
- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity





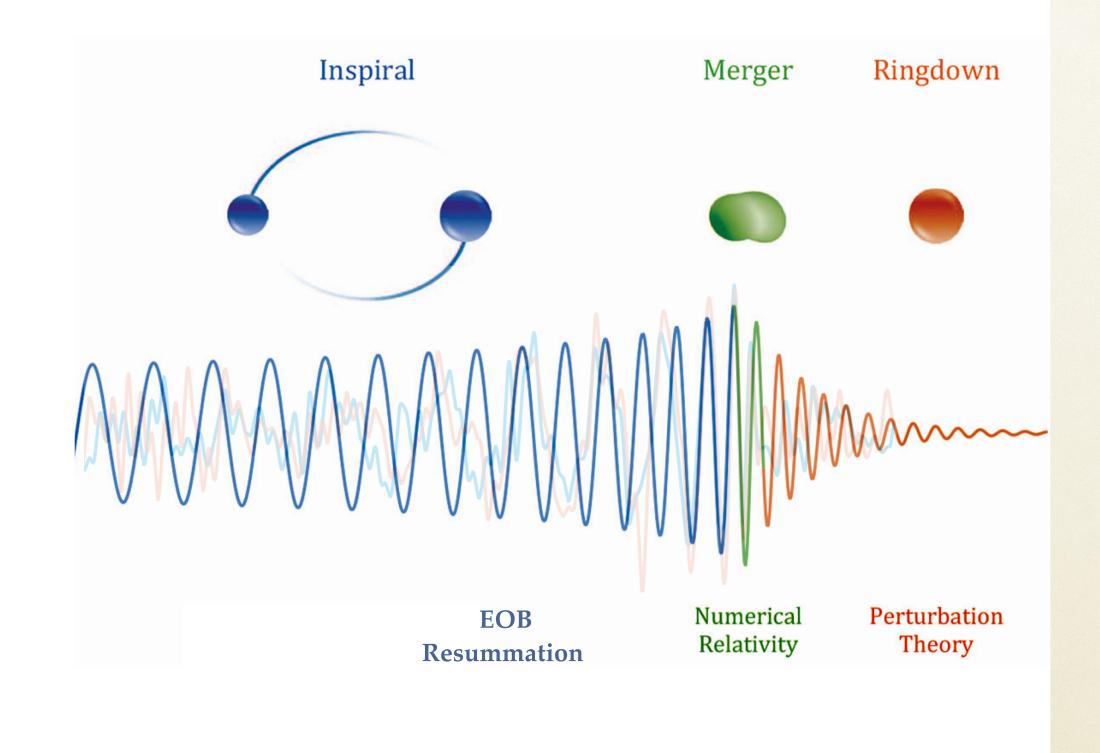
LIGO-Virgo Detection: GW150914

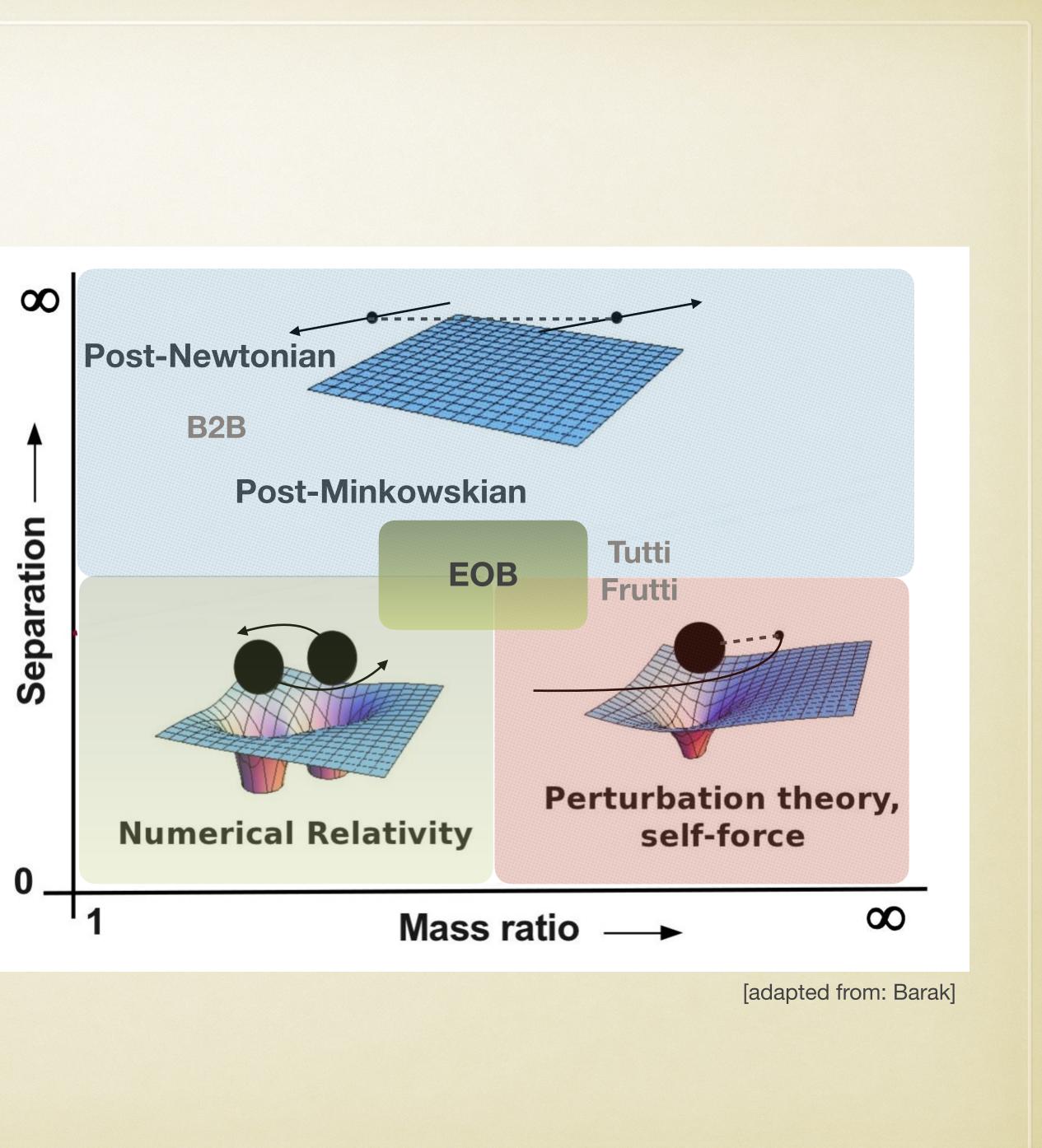
Two-body dynamics and GW signal



Two-body dynamics and GW signal

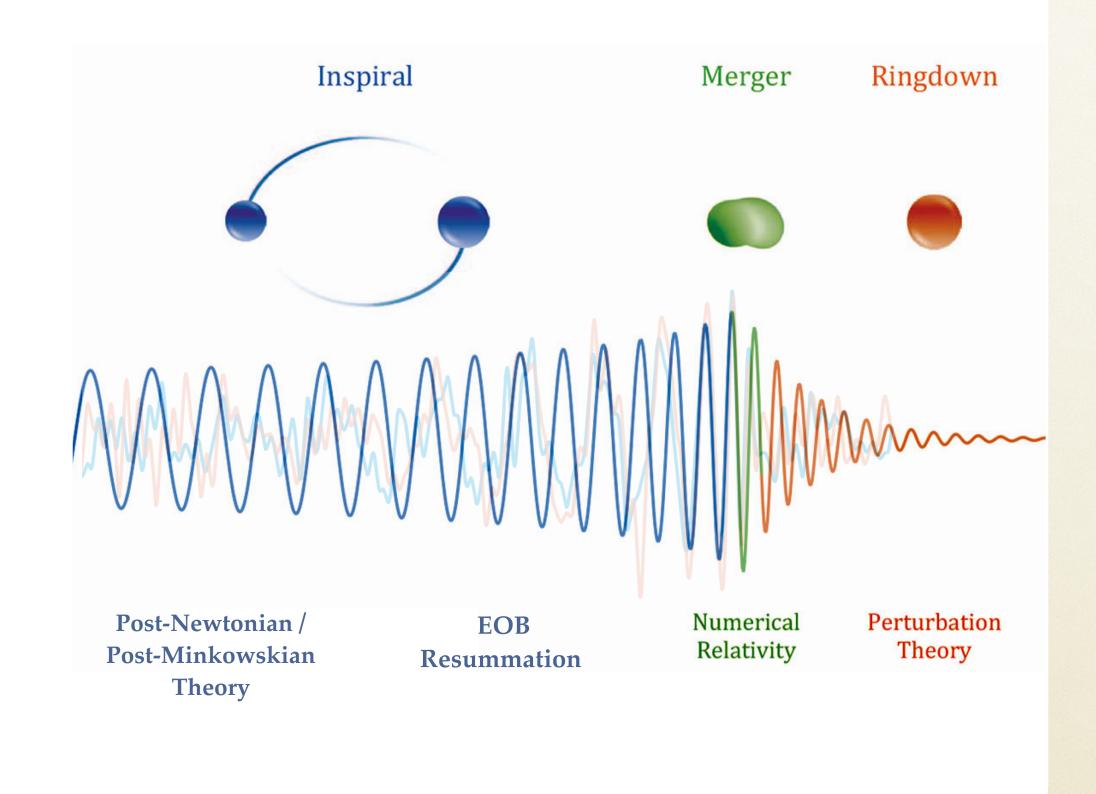
Waveform Model and Computing Techniques





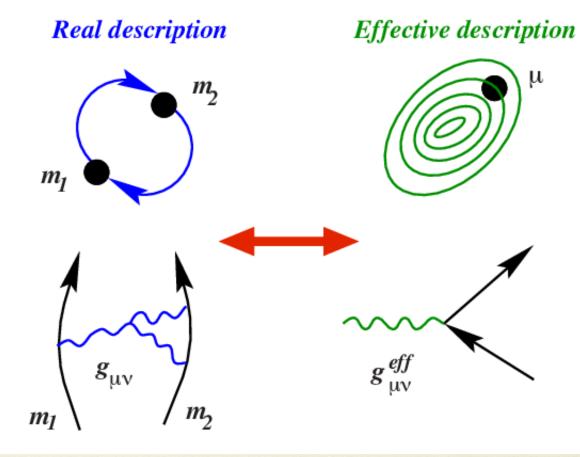
Two-body dynamics and GW signal

Waveform Model and Computing Techniques



Effective One Body (EOB) Formalism

the contributions coming from different kinematic regions for combined and calibrated with Numerical Relativity



- Post-Minkowskian Expansion [relativistic scattering]
- $G_N \frac{m}{r} \ll v^2 \sim 1$

Expansion in powers of G_N

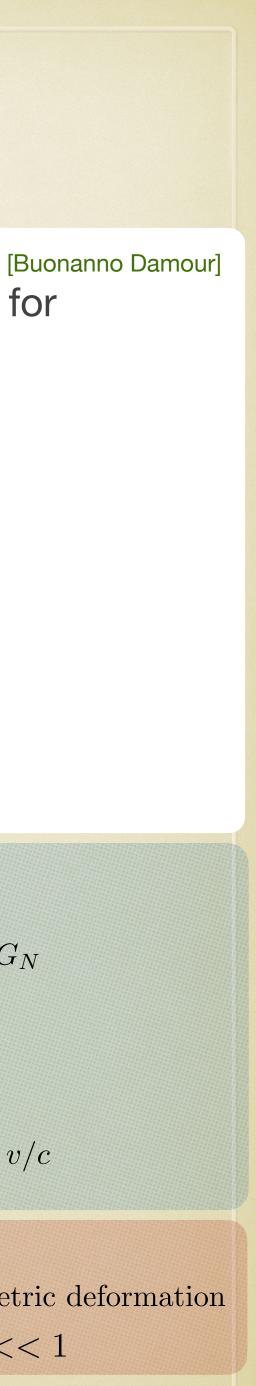
 Post-Newtonian Expansion [non relativistic system]

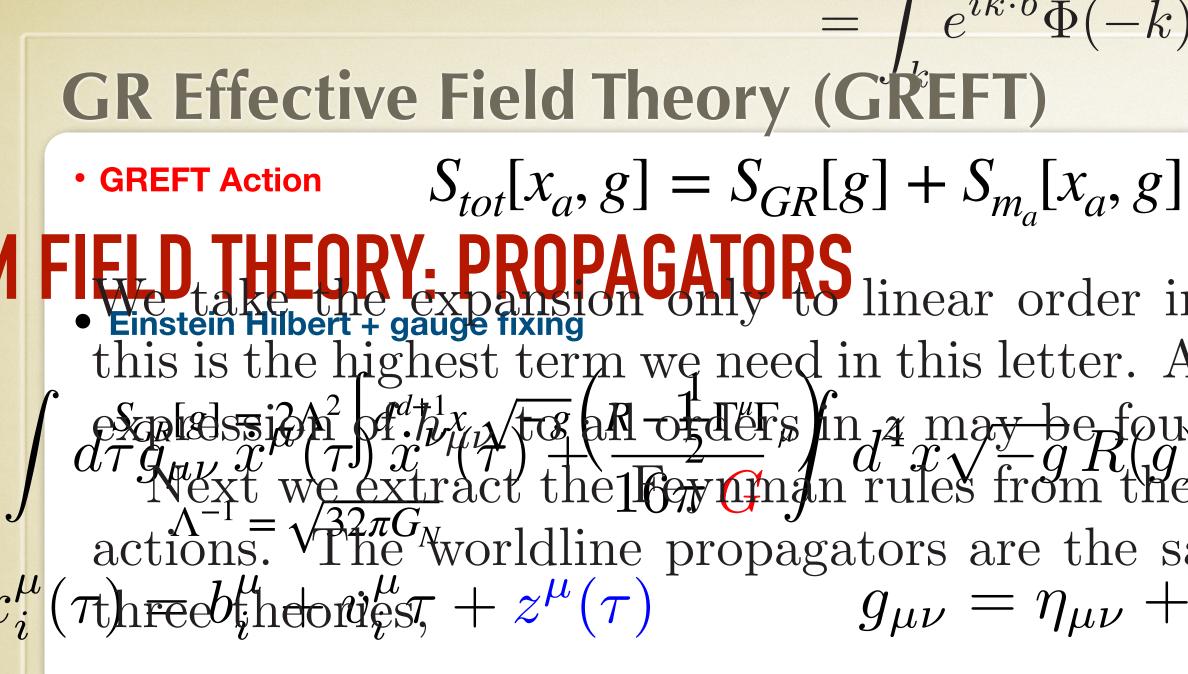
$$G_N \frac{m}{r} \sim v^2 << 1$$

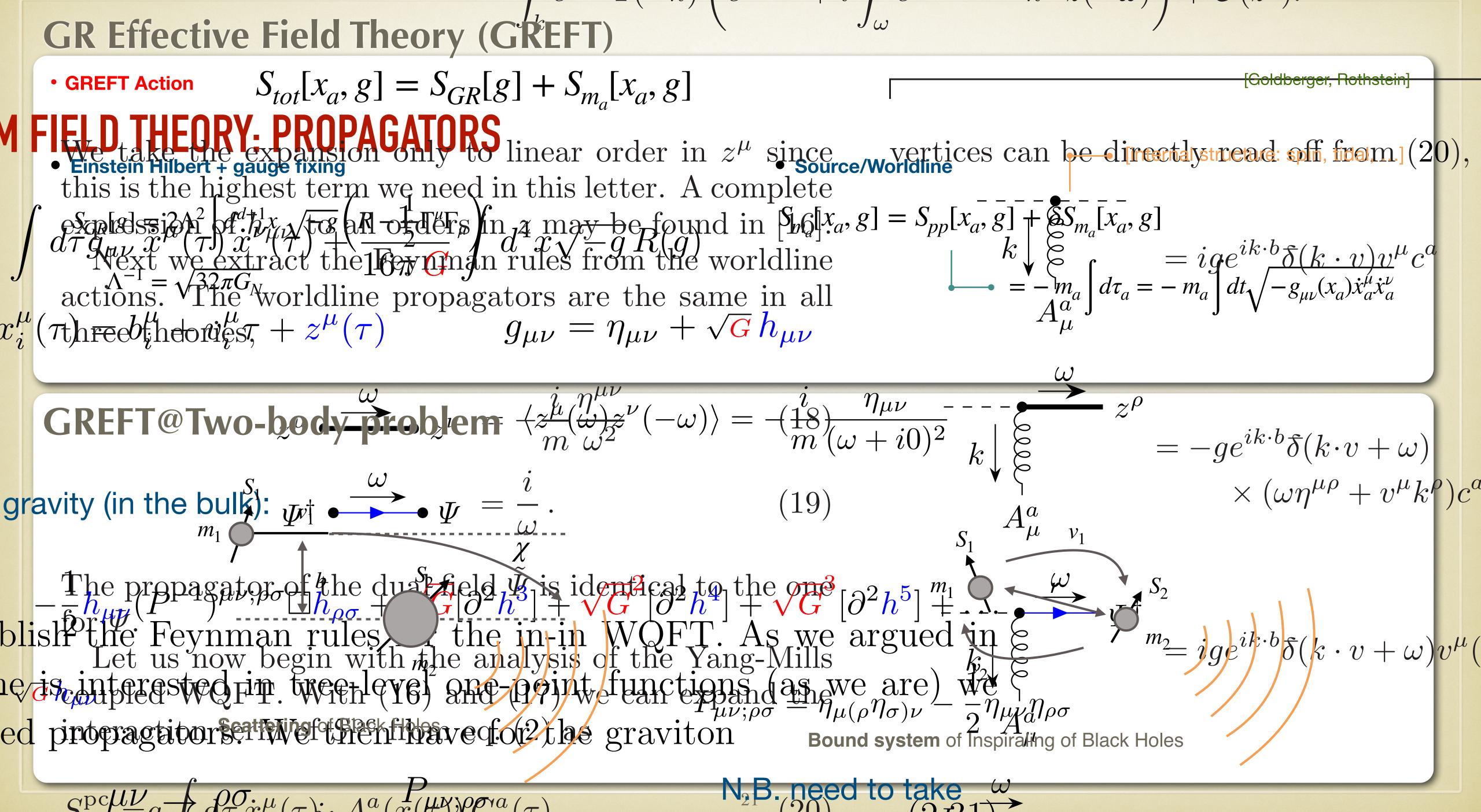
Expansion in powers of v/c

BH perturbation theory / self force

Expansion for small metric deformation $\delta g_{\mu\nu} \sim \epsilon = m_2/m_1 << 1$

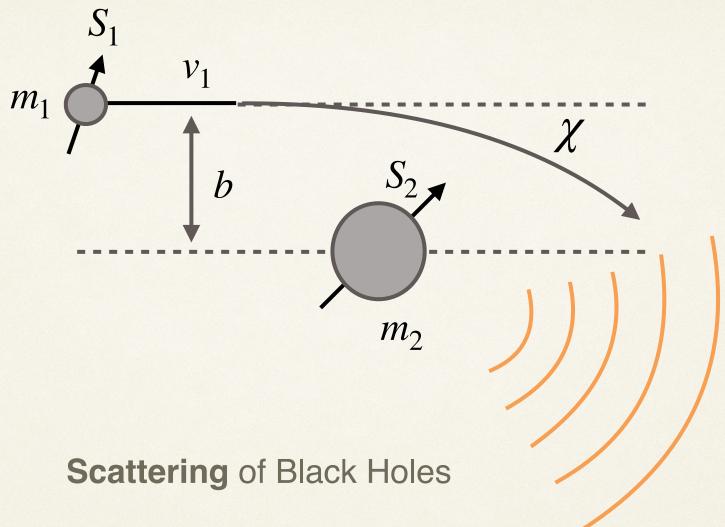






$$O\left(e^{i\kappa\cdot v\tau} + i\int_{\omega}e^{i(\kappa\cdot v+\omega)\tau}k\cdot z(-\omega)\right) + \mathcal{O}(z^2).$$

GREFT / PM Corrections



Corrections to the Newtonian potential:

relativistic velocities:

$$G_N {m \over r} << v^2 \sim 1$$
 1979-81 - 2019 -

Expansion in powers of G_N

2021

2024

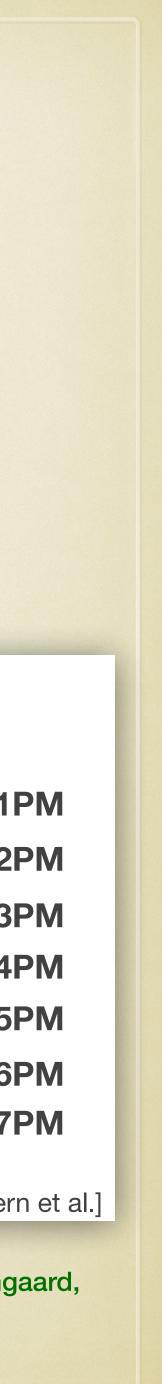
- Dynamics in Post-Minkowskian perturbative scheme
- ► At nPM order: G_{N}^{n}

Astrophysicists/Cosmologists' whishlist

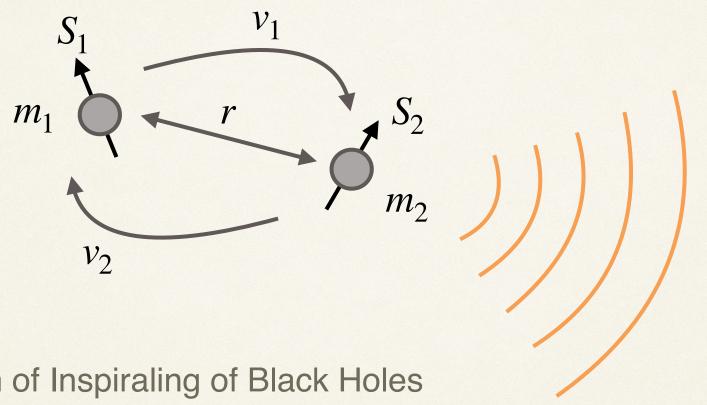
		OPN	1PN	2PN	I 3 F	N 4	4PN	5PN	6	PN			
G	($1^{+}v^{2}$	$+ v^4$	+	-v ⁶ +.		$+ v^{10}$)**** 	v^{12}	+	•••)	11
 G^2	($1 + v^2$	$+ v^4$	+	v ⁶ +	$-v^{8}$	$+ v^{10}$	+	v^{12}	+	•••)	2
 G^3	($1 + v^2$	+ v4	+	$-v^{6} + $	$-v^{8}$	$+ v^{10}$	' +	v^{12}	+	• • •)	3
 G^4	($1 v^{2}$	$+ v^{4}$	k	$-v^{6} +$	v^8	$+ v^{10}$	' +	v^{12}	+	• • •)	4
 G^5	($1 + v^2$	$+ v^4$						v^{12}		•••)	5
G^6	($1 + v^2$	$+ v^4$	₽ +	$v^{6} +$	v^8	$+ v^{10}$	+	v^{12}	+	•••)	6
G^7	($1 + v^2$	$+ v^4$	₽ ₽ +	$v^{6} +$	v^8	$+ v^{10}$	' +	v^{12}	+	•••)	71

[credit: Bern et al.]

...Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard, Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators...



GREFT / PN Corrections



Bound system of Inspiraling of Black Holes

Corrections to the Newtonian potential:

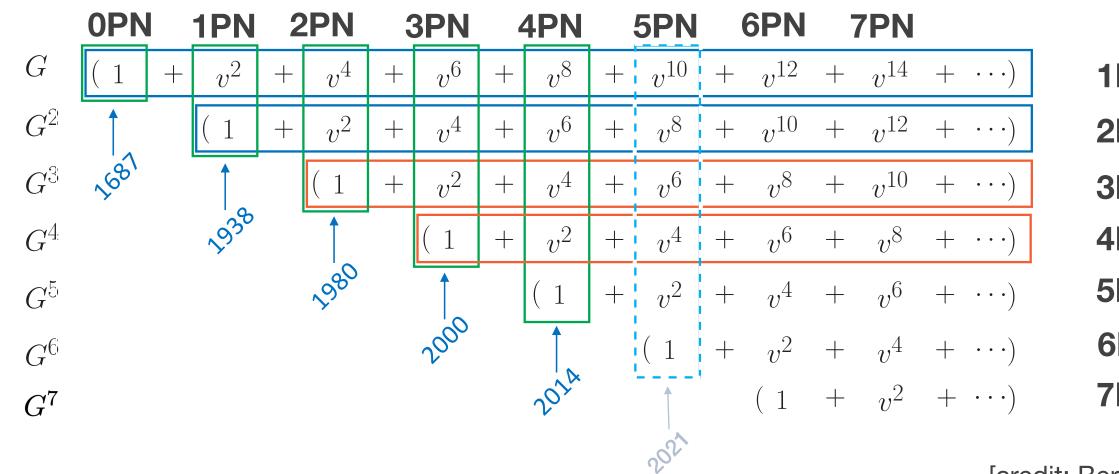
- Non-relativistic velocities:
- Virial theorem:

$$G_N \frac{m}{r} \sim v^2 << 1$$

Expansion in powers of v/c

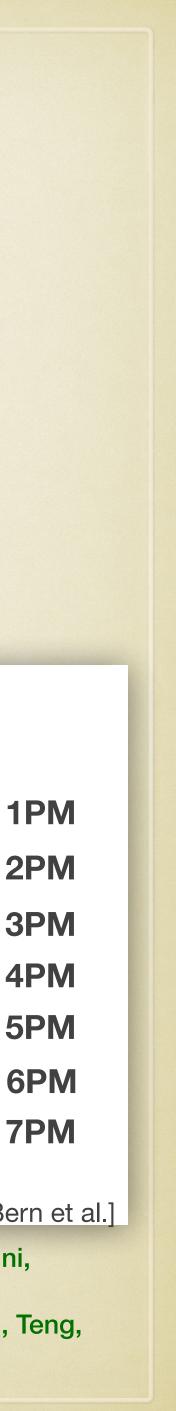
- Dynamics in Post-Newtonian perturbative scheme
- At nPN order: $G_N^{n-\ell} v^{2\ell}$

Astrophysicists/Cosmologists' whishlist

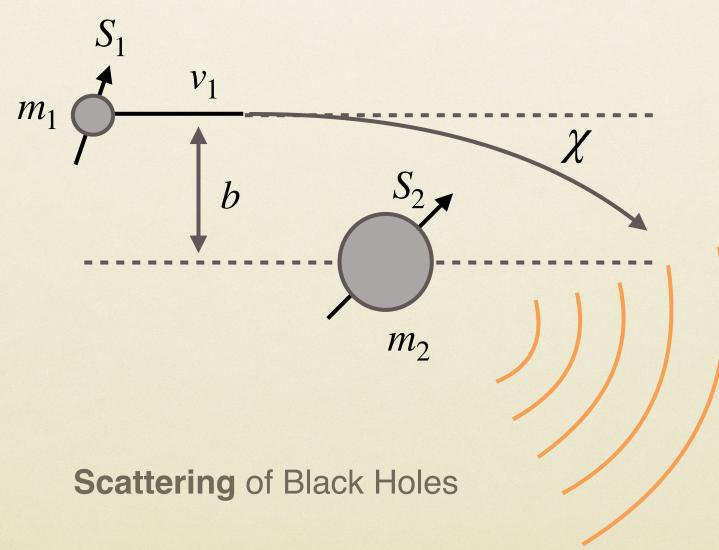


[credit: Bern et al.]

..Jaranowski, Schaefer, Damour, Blanchet, Faye, Porto, Rothstein, Goldberger, Foffa, Sturani, Bini, Buonanno, Geralico, Sturm, Torres Bobadilla, Bluemlein, Maier, Marquard, Levi, Steinhoff, Vines, Antonelli, Kavanagh, Khalil, Galley, von Hippel, McLeod, Edison, Kim, Morales, Yin, Mandal, Patil, Teng, P.M. ...and collaborators

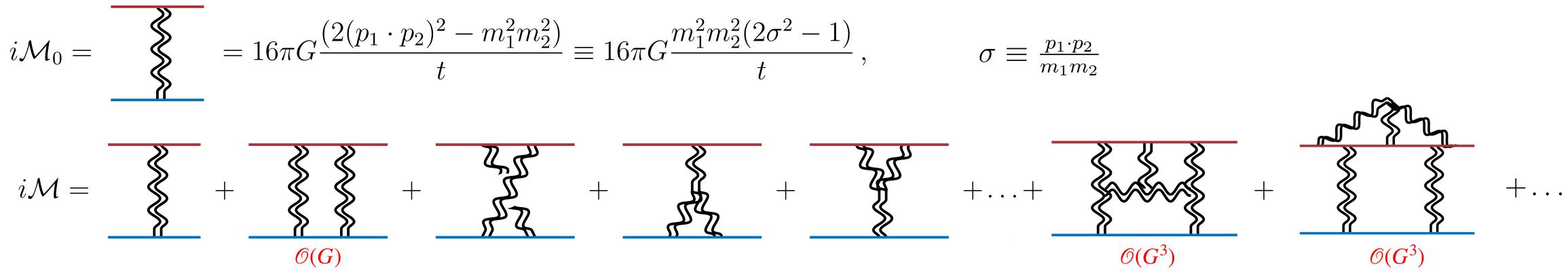


GR EFT for PM corrections / Diagrammatic approach



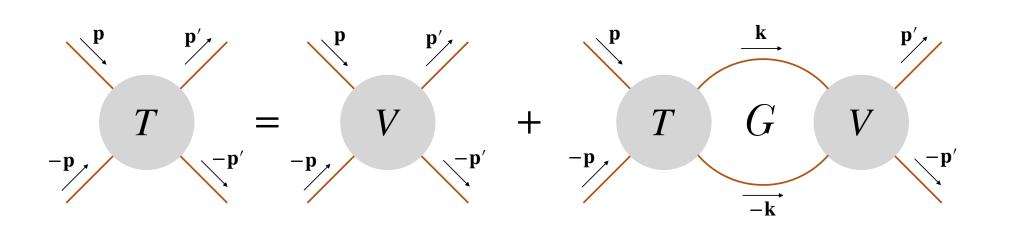
PM Corrections / Scattering Amplitudes based approach

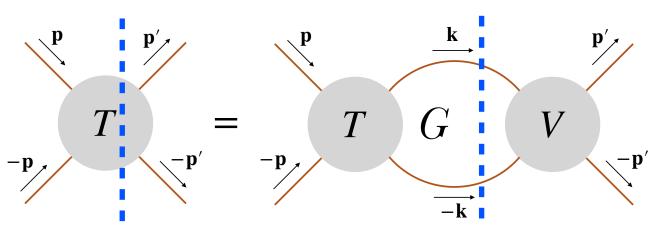
- GR EFT Feynman rules / on-shell / double-copy / spinor-formalism / recurrence relations
- Amplitudes based approach



Potential V from Lippman-Schwinger equation

$$T = V + VGV + VGVGV + \dots = V\frac{1}{1 - GV}$$





 $G(\mathbf{p}, \mathbf{k}) = \frac{1}{|\mathbf{k}|^2 - |\mathbf{p}|^2 - i\epsilon}$

-p

Cheung, Rothstein, Solon Bern, Cheung, Hermannn, Parra Martinez, Roiban, Schen Solon, Zeng...

(see Correia et al.'s review)

$$\frac{2\sigma^2 - 1}{t}, \qquad \sigma \equiv \frac{1}{2}$$

$$\sigma \equiv \frac{p_1 \cdot p_2}{m_1 m_2}$$

Correia, Isabella

Im $G(\mathbf{p}, \mathbf{k}) = \delta(|\mathbf{k}|^2 - |\mathbf{p}|^2)$

PM Corrections / Classical Observables based approach (KMOC)

Asymptotic states

$$|\psi\rangle_{in} = \int d\phi(p_1) d\phi(p_2) \ \phi_1(p_1) \phi_2(p_2) e^{i(b_1 \cdot p_1 + b_2 \cdot p_2)} \ |p_1, p_2\rangle_{in} \qquad |\psi\rangle_{out} = S |\psi\rangle_{in} \qquad S = 1 + i T$$

On-shell phase space integral

wavefunction

Expectation value of a Physical Observable:

$$\Delta \langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{out} - \langle \mathcal{O} \rangle_{in} = _{out} \langle \psi | \mathcal{O} | \psi \rangle_{out} - _{in} \langle \psi | \mathcal{O} | \psi \rangle_{in} = _{in} \langle \psi | S^{\dagger} [\mathcal{O}, S] | \psi \rangle_{in} \longrightarrow \text{[in-in form]}$$

Impulse a

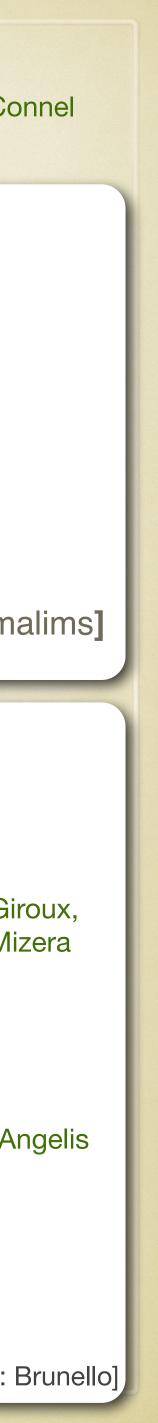
$$\Delta \langle p_1^{\mu} \rangle = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q_1 + q_2) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q) \left(\begin{array}{c} q \\ P_1 \end{array} \right) = \int d\mu \, \hat{\delta}^D (q) \left(\begin{array}{c} q$$

Waveform

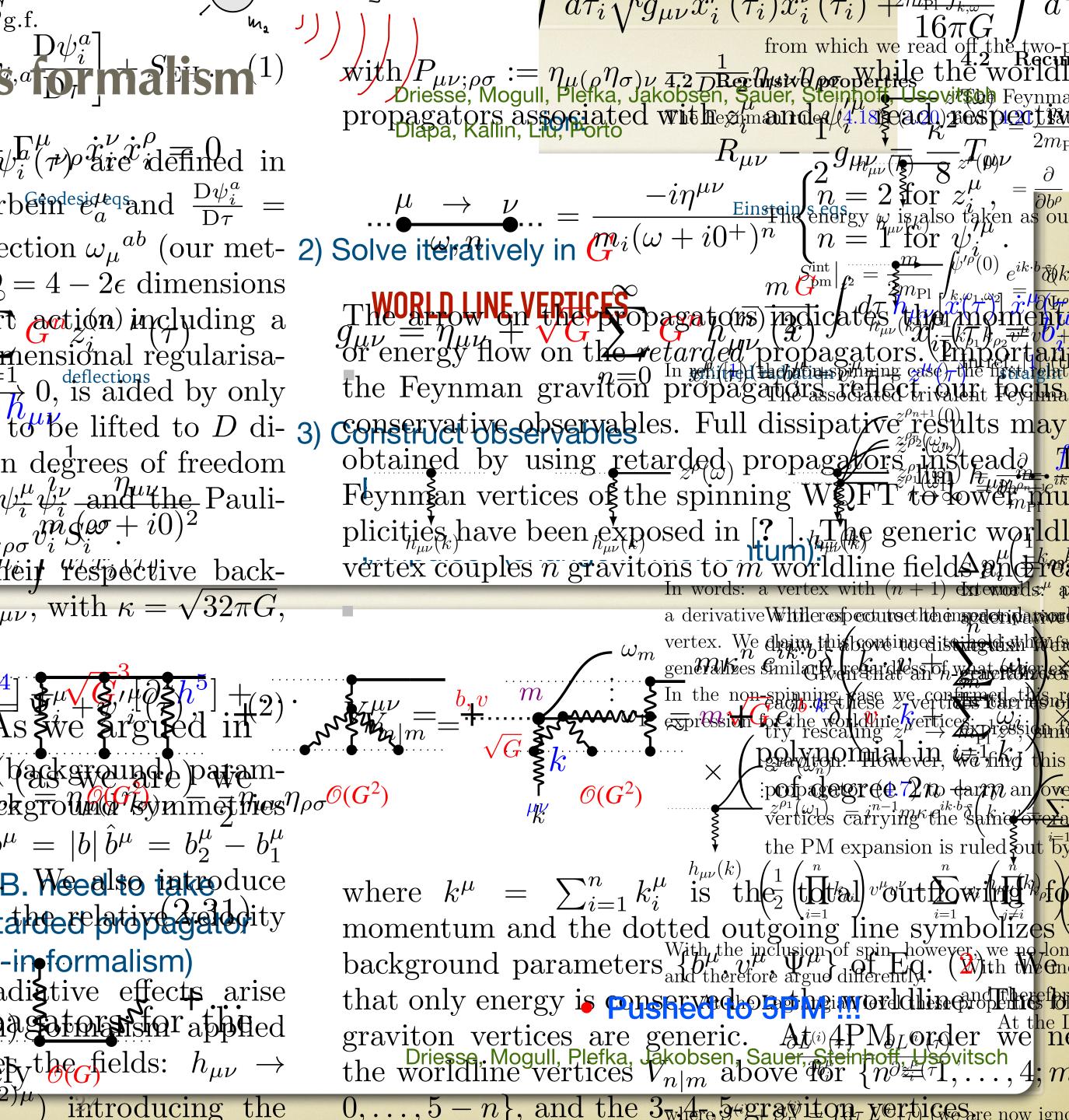
as Fourier Transform of Scattering Amplitudes
$$d\mu = \prod_{i=1}^{2} \hat{d}^{D}q_{i} \delta(2p_{i} \cdot q_{i} + q_{i}^{2}) e^{ib_{i}q_{i}}$$

$$\Delta \langle p_{1}^{\mu} \rangle = \int_{\text{Fourier Transform}} d\mu \hat{\delta}^{D}(q_{1} + q_{2}) \left(\begin{array}{c} q^{\mu} \\ 4 \text{-point amplitude} \end{array} - i \int_{d(LIPS)} e^{\mu} \\ 4 \text{-point amplitude} \end{array} - i \int_{\text{teration terms}} d\mu e^{ib_{i}q_{i}} \right).$$
Caron Huot, Gi Hanesdottir, M
Hanesdottir, M
The second s

Two particle momentum eigenstates

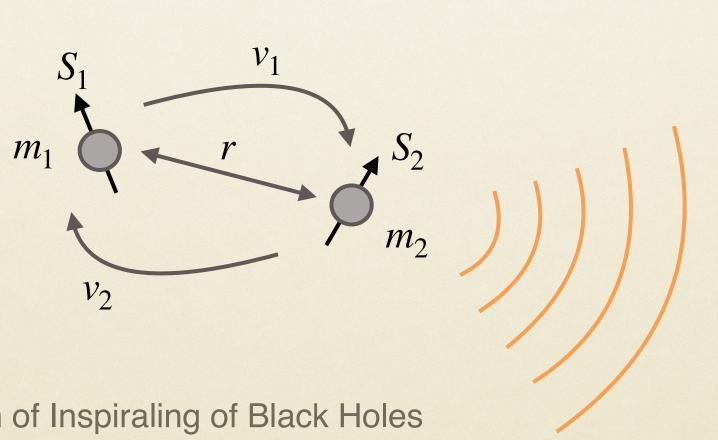


$$S = -\sum_{i=1}^{n} d\tau_i \sqrt{g_{\mu\nu}x_i^r}(\tau_i) x_i^r(\tau_i) + \frac{216\pi G}{216\pi G} \int d^2x \sqrt{-gR} + S_i$$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT EFT of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Corrections / QFT effect of $d^2x \sqrt{-gR} + S_i$
PM Correc



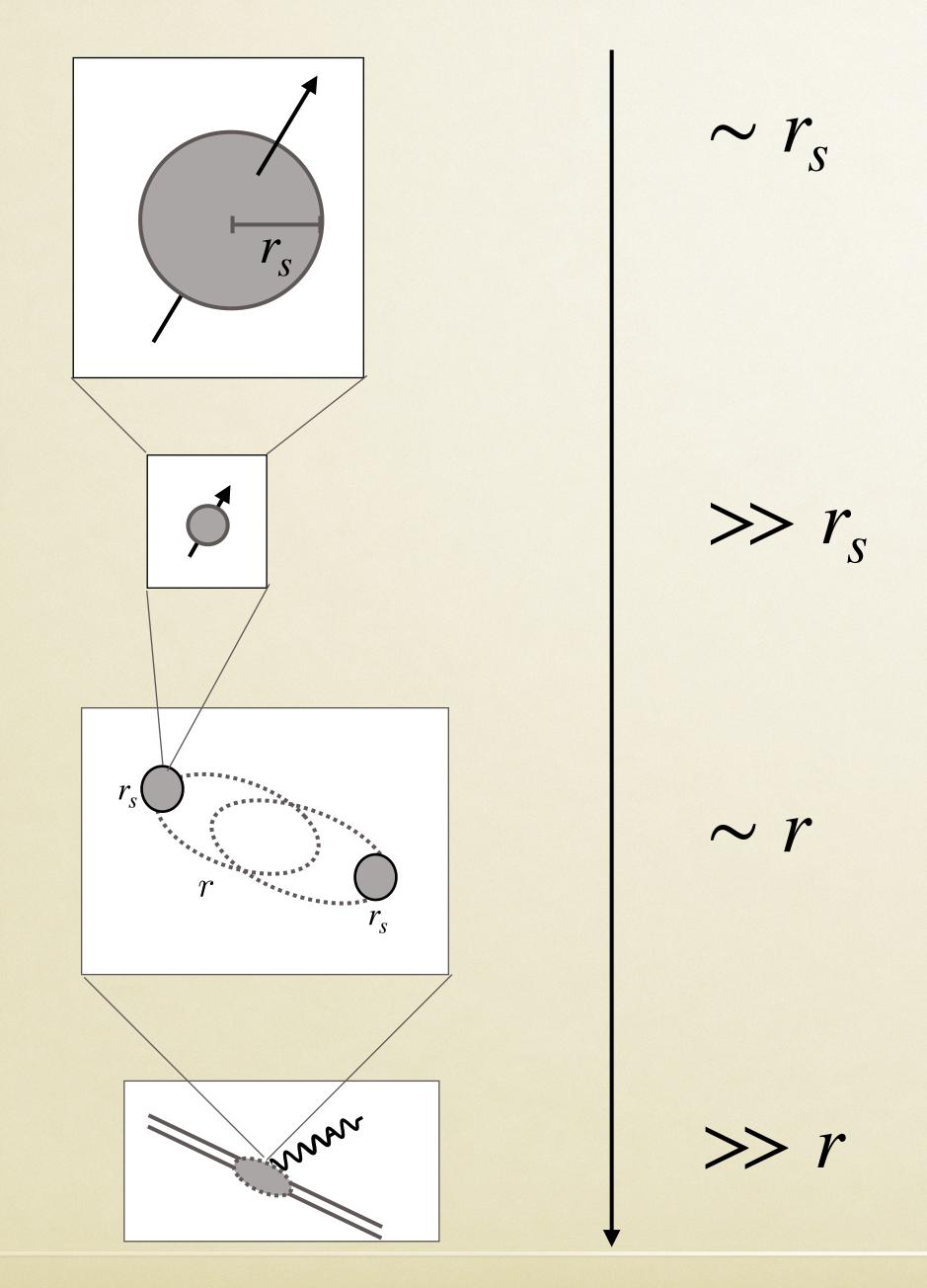
lso taken as ou ase we confirmed this of

GR EFT for PN corrections / Diagrammatic approach



Bound system of Inspiraling of Black Holes

Scales Hierarchies



Black hole / Neutron star

Point particle + internal structure

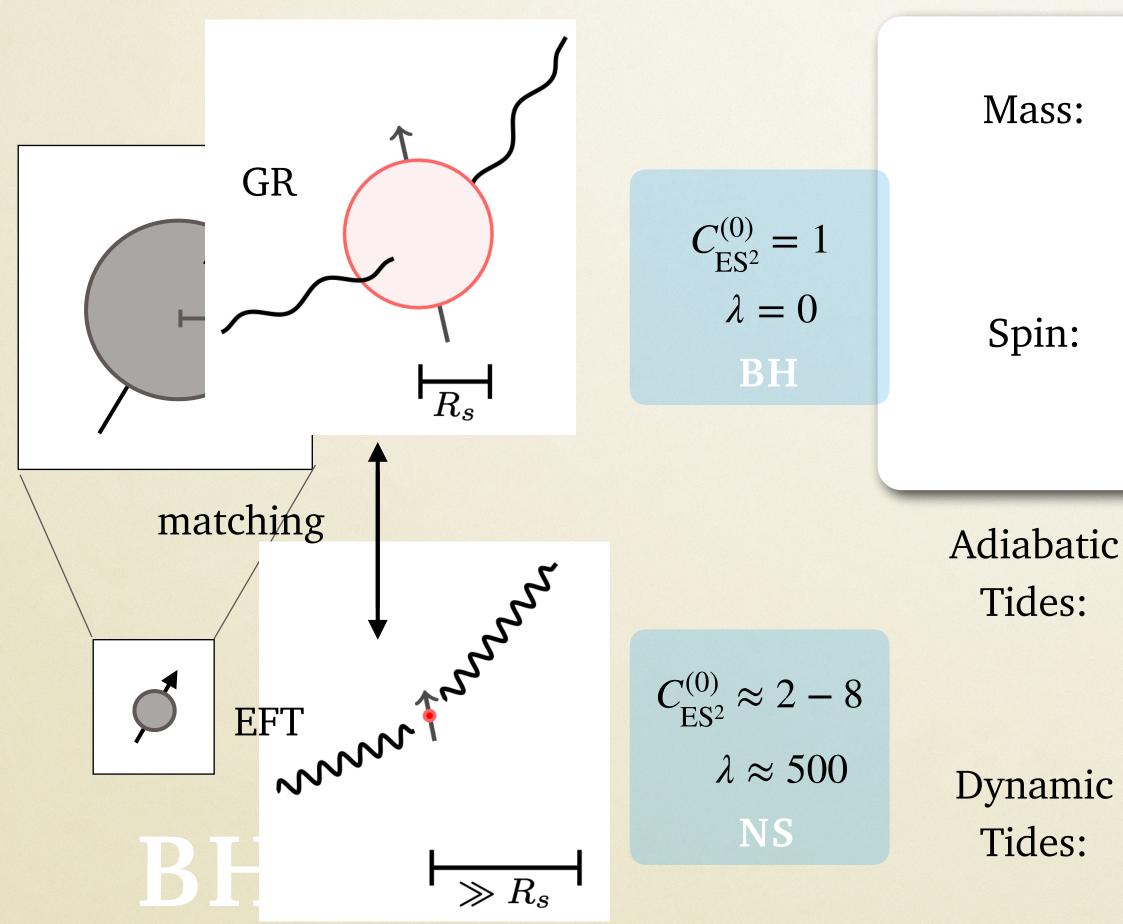
Binary + Near zone + Far zone

GW emission + Multipoles

[credit: Patil]

Point particle modelling

compact object as a point particle with internal structure parametrised Wilson coefficients



Mass:

$$\int dt \ m \sqrt{g_{\mu\nu}^{L} u^{\mu} u^{\nu}}$$

$$\int dt \ \left\{ -\frac{1}{2} S_{\mu\nu} \Omega^{\mu\nu} - \frac{1}{2mc} \left(C_{\text{ES}^{2}}^{(0)} \right) \frac{E_{\mu\nu}}{u} \left[S^{\mu} S^{\nu} \right]_{\text{STF}} + \cdots \right\}$$

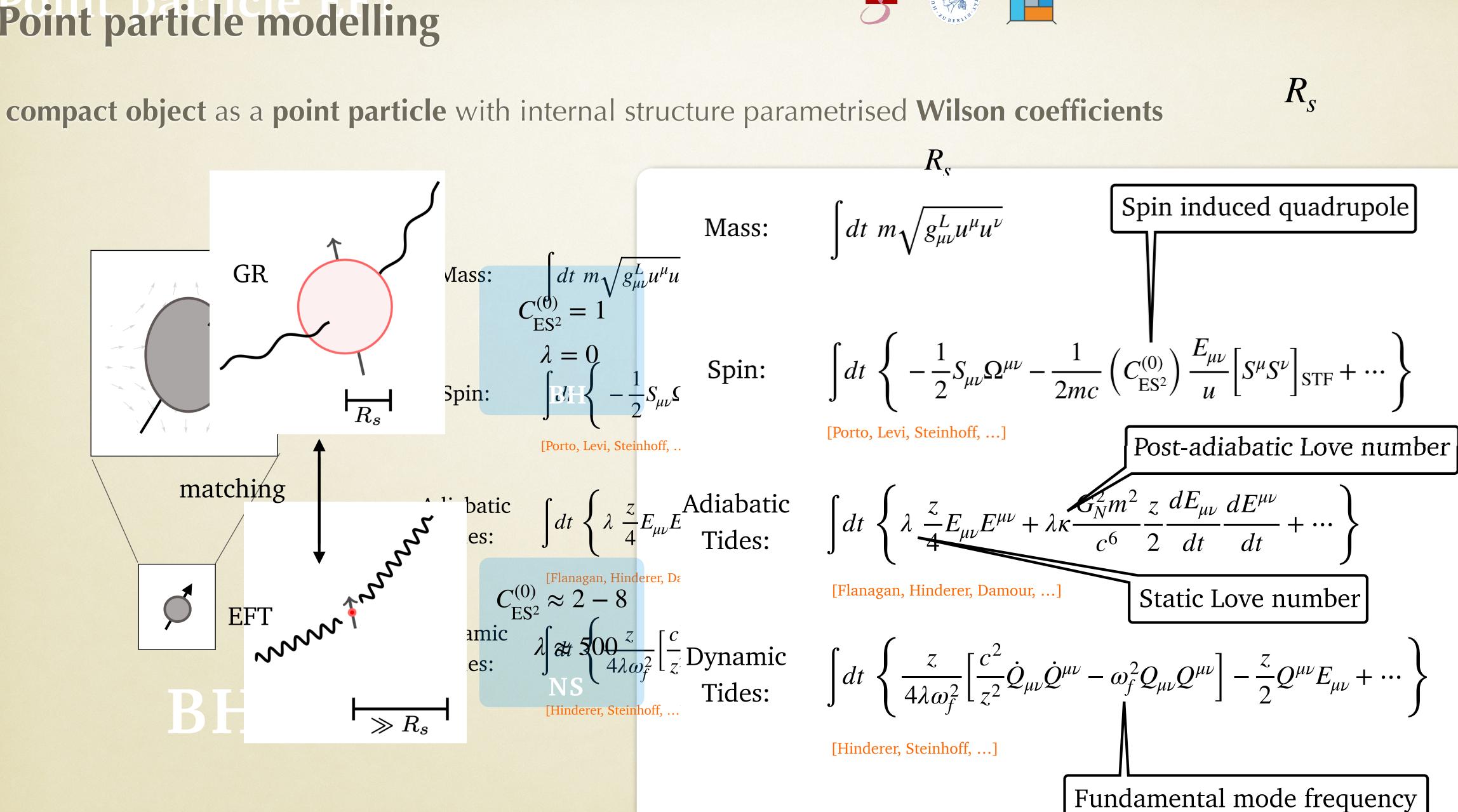
 R_{s}

[Porto, Levi, Steinhoff, ...]

Adiabatic Tides:

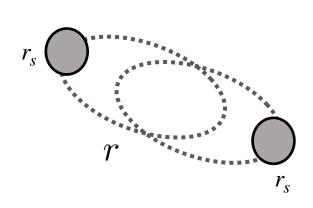
$$\int dt \left\{ \lambda \frac{z}{4} E_{\mu\nu} E^{\mu\nu} + \lambda \kappa \frac{G_N^2 m^2}{c^6} \frac{z}{2} \frac{dE_{\mu\nu}}{dt} \frac{dE^{\mu\nu}}{dt} + \cdots \right\}$$
[Flanagan, Hinderer, Damour, ...]
Static Love number
$$\int dt \left\{ \frac{z}{4\lambda \omega_f^2} \left[\frac{c^2}{z^2} \dot{Q}_{\mu\nu} \dot{Q}^{\mu\nu} - \omega_f^2 Q_{\mu\nu} Q^{\mu\nu} \right] - \frac{z}{2} Q^{\mu\nu} E_{\mu\nu} + \cdots \right\}$$
[Hinderer, Steinhoff, ...]
Fundamental mode frequency

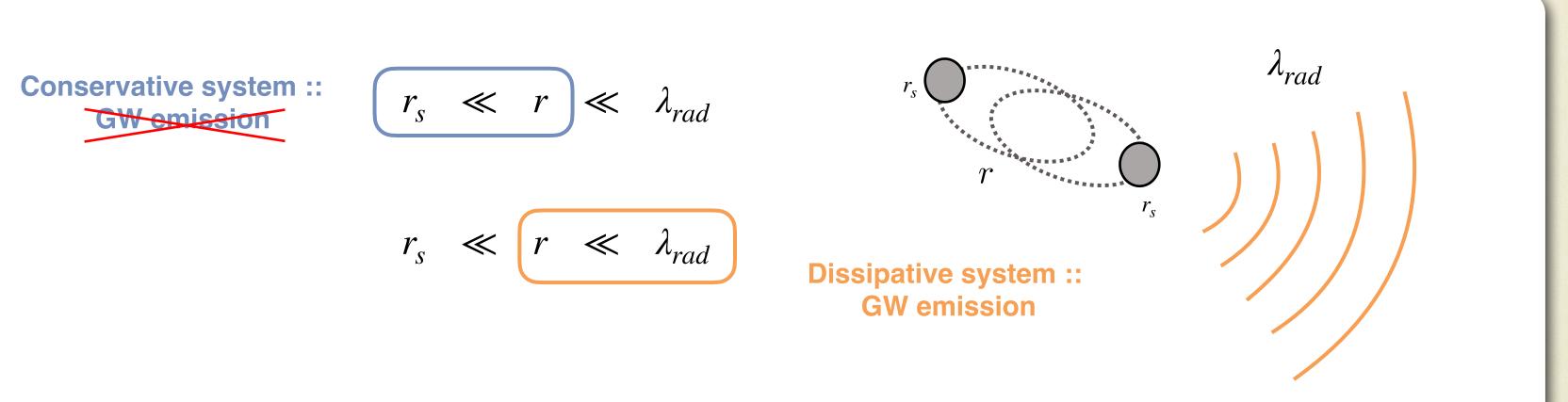
Point particle modelling



Coalescing Binary System

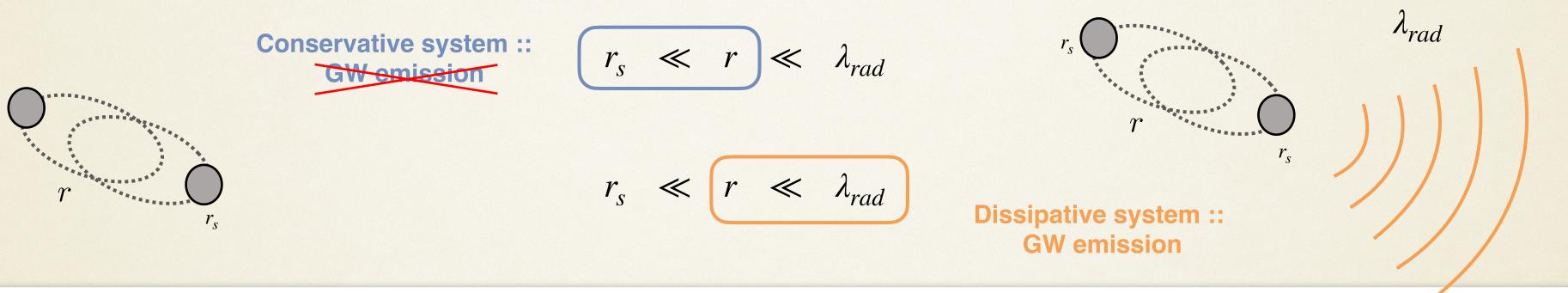
Double Hierarchy





Coalescing Binary System

Double Hierarchy



► Non-relativistic approximation [method of regions]: [Beneke Smirnov]

Weak field expansion:

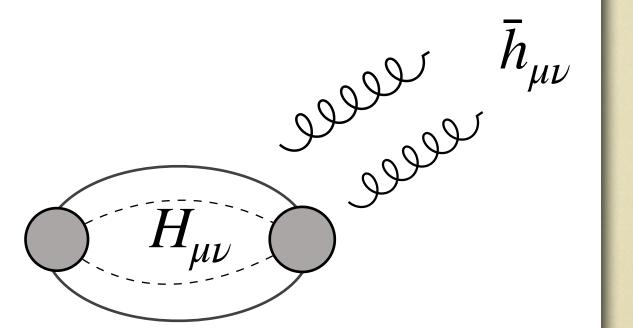
$$v \ll 1$$
 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $h_{\mu\nu} = H_{\mu\nu} + \bar{h}_{\mu\nu}$

- Potential gravitons $H_{\mu\nu}$: $(k_0, \mathbf{k}) \sim \left(\frac{v}{r}, \frac{1}{r}\right)$ -----

• Worldline/BH x_a :

Effective action by integrating out gravitons:

$$e^{iS_{eff}[x_a]} = \int D\bar{h}$$



DH $e^{iS_{tot}[x_a,H,\bar{h}]}$

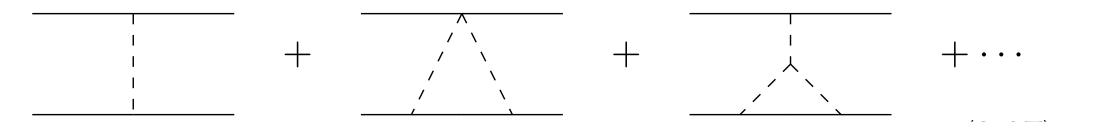
GREFT Action / Near & Far zones $e^{iS_{eff}[x_a]} = \int D\bar{h} \int DH \ e^{iS_{tot}[x_a, H, \bar{h}]} = \int D$

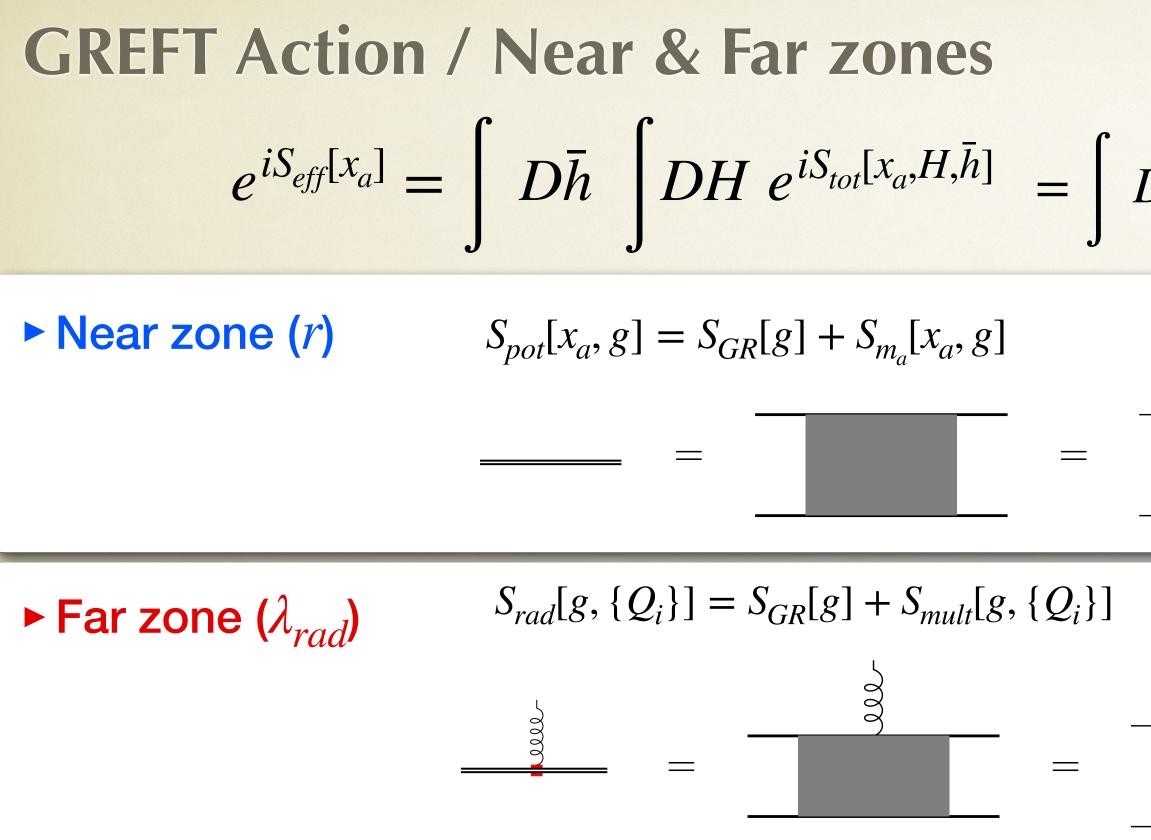
► Near zone (r) $S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$

$$D\bar{h} e^{\left\{iS_{bulk}[\bar{h}] + - + -\frac{3}{2} + -\frac{3}{2}\right\}} + \dots \right\}$$

 $g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}$

=





E

• $\{Q_i\}$: multipole moments $E, L^i, Q^{ij}, O^{ij\kappa}, J^{ij}$

PN-GREFT Diagrammar

Action

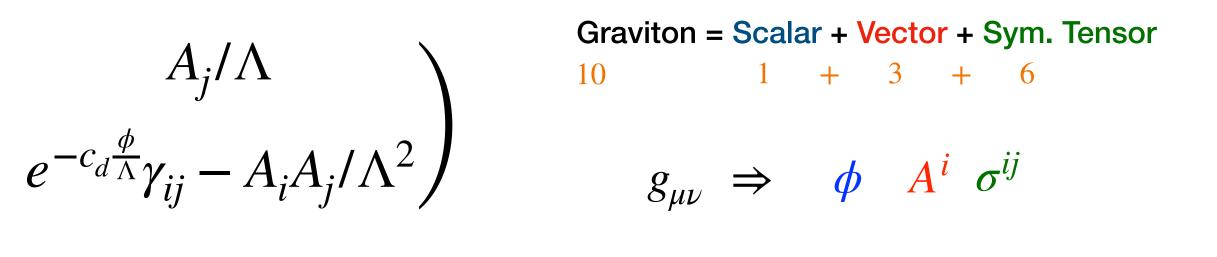
$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

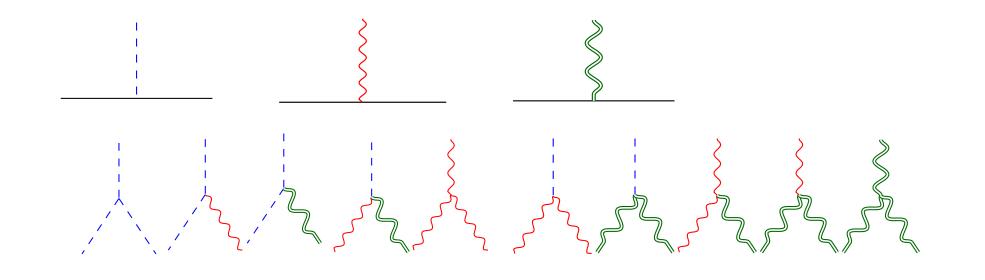
$$S_{m_a}[$$

Kaluza-Klein parametrization: [Kol Smolkin] [Blanchet Damour] $\gamma_{ij} = \delta_{ij} + \frac{\sigma_{ij}}{\Lambda} \qquad c_d = 2\frac{d-1}{d-2} \qquad g_{\mu\nu} = e^{2\phi/\Lambda} \begin{pmatrix} -1 & A_j/\Lambda \\ A_i/\Lambda & e^{-c_d\frac{\phi}{\Lambda}}\gamma_{ii} - A_iA_j/\Lambda^2 \end{pmatrix}$ $A^i \sigma^{ij}$ Feynman rules for: $X_a \phi$ Φ X_a A^{\prime} σ^{ij} Static / non-propagating source **Propagating fields**

[Goldberger, Rothstein] [Gilmore, Ross] [Foffa, Sturani]

$$x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

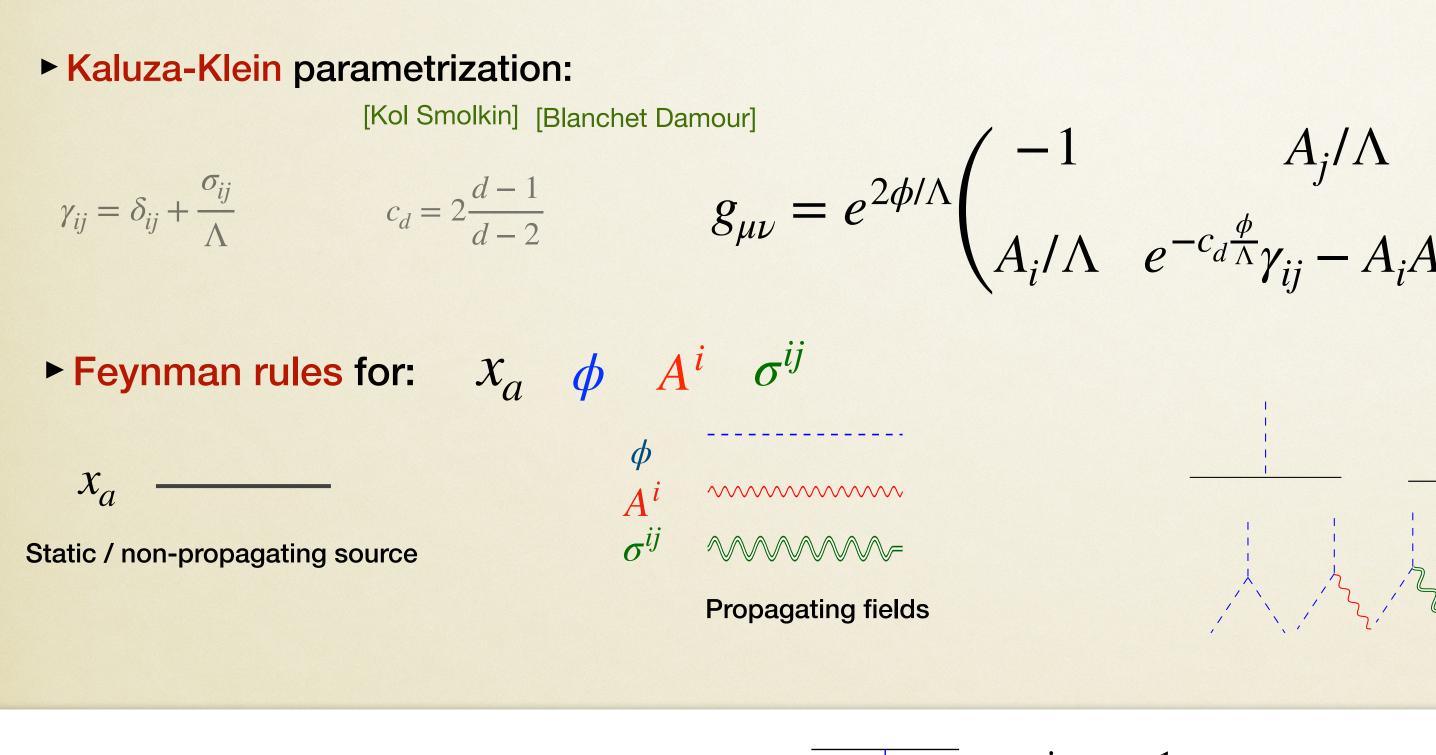




PN-GREFT Diagrammar

Action

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g] \qquad S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$



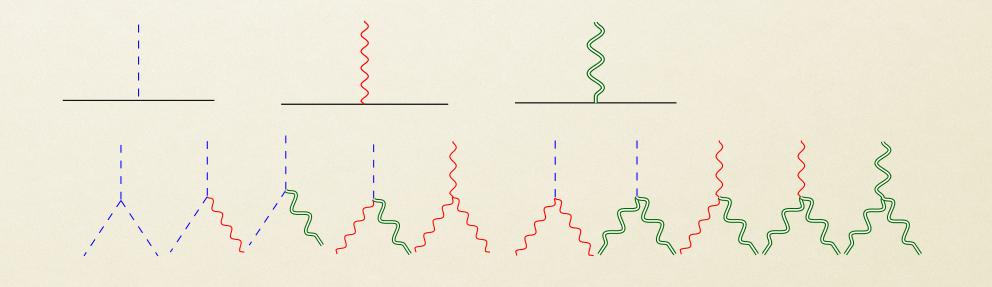
Newton Potential

 im_1m_2 I $\mathcal{M}_{0PN} =$

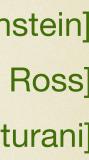
Fourier transform: from amplitude to the effective action:

[Goldberger, Rothstein] [Gilmore, Ross] [Foffa, Sturani]

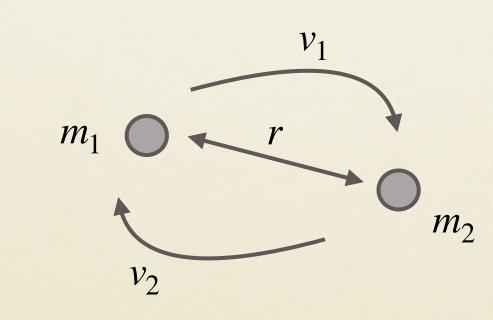
$$A_{j}/\Lambda^{2} \begin{pmatrix} Graviton = Scalar + Vector + Sym. Tensor \\ 10 & 1 + 3 + 6 \\ g_{\mu\nu} \Rightarrow \phi \quad A^{i} \quad \sigma^{ij} \end{pmatrix}$$



$$\mathscr{L}_{0PN} = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1 - x_2)} \left(\boxed{\begin{array}{c} \\ \end{array} \right) = \frac{G_N m_1 m_2}{r}$$



GR EFT for PN corrections / near zone spineless



Bound system of Inspiraling of Black Holes

PN-Corrections / GREFT Potential

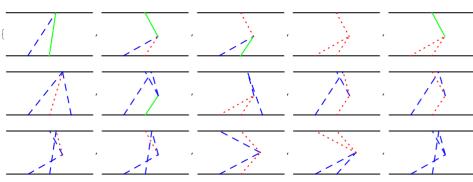
► 1PN corrections:

Einstein, Infeld, Hoffman (1938)

► 2PN corrections:

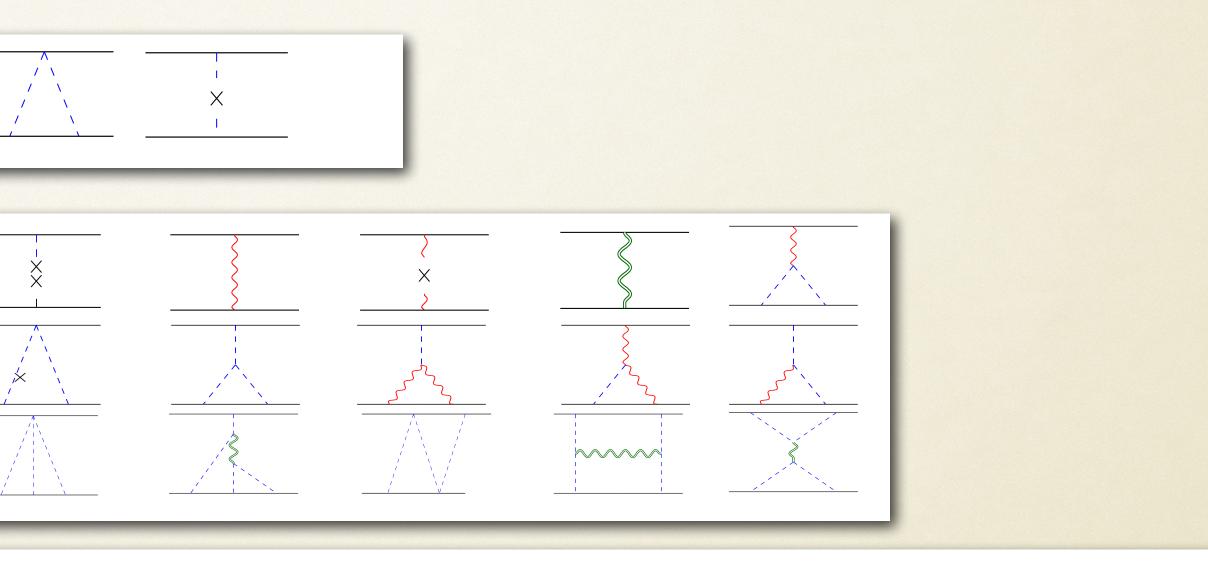
Ohta-Okamura-Kimura-Hiida (1974) Gilmore, Ross (2008)

Jaranowski, Schaefer (1997); Damour, Jaranowski, Schaefer (1997); Blachę, Faye (2000); Damour, Jaranowski Schaefer (2001); Foffa Sturani (2011)



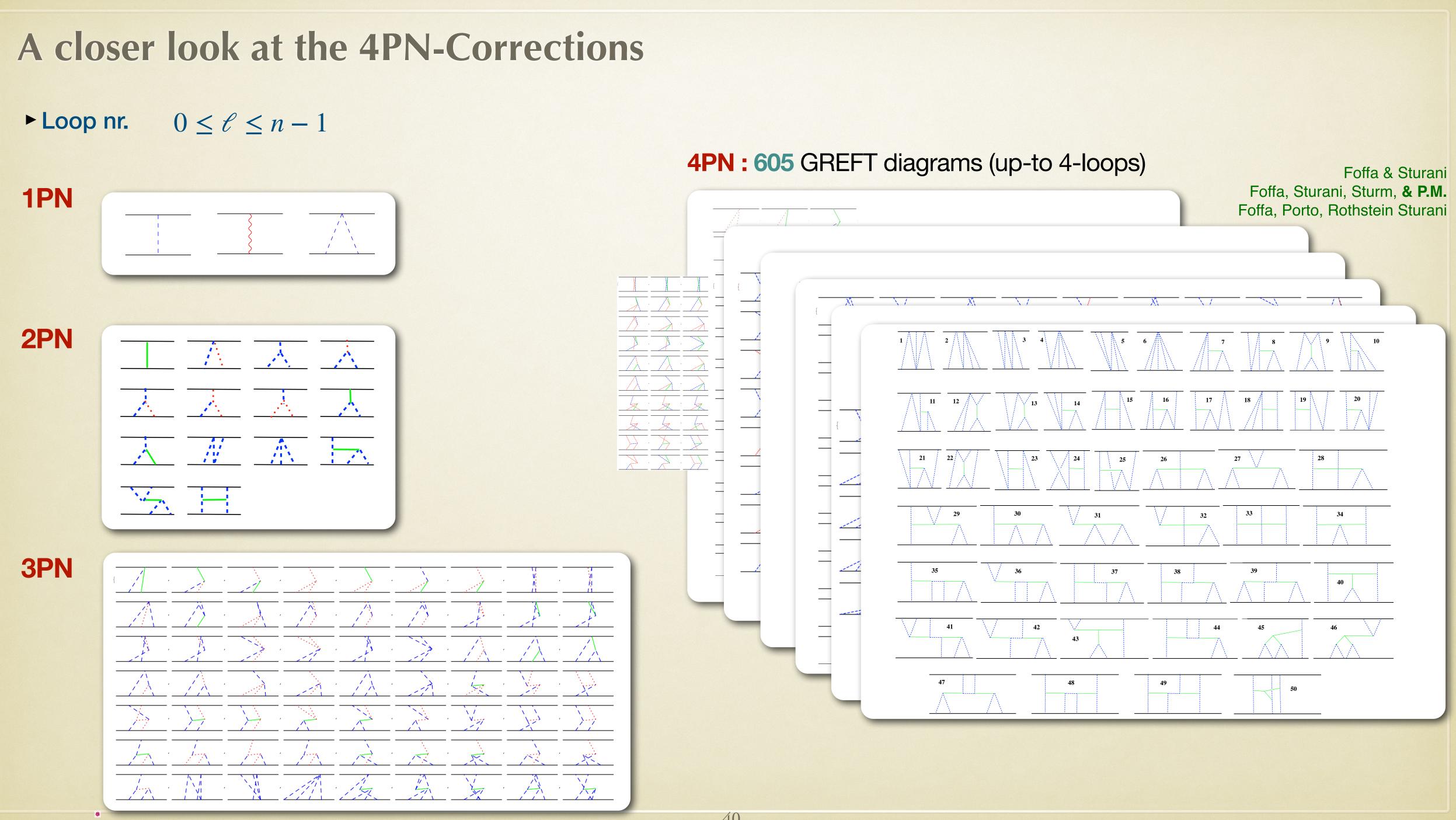
► 4PN: corrections:

Damour, Jaranowski, Schaefer (2014); Bernard, Blanchet, Bohe, Faye, Marsa (2016); Foffa, Sturani, Sturm & P.M. (2016); Foffa, Porto, Rothstein, Sturani (2019) Blumlein, Maier, Marquard, Schaefer (2020)



► 5PN: corrections:

Bini, Damour, Geralico (2019); Foffa, Sturani, Sturm, Torres Bobadilla & P.M. (2019); Blumlein, Maier, Marquard, Schaefer (2020,2021)



GREFT Diagrams vs 2-point QFT Integrals / a key observation

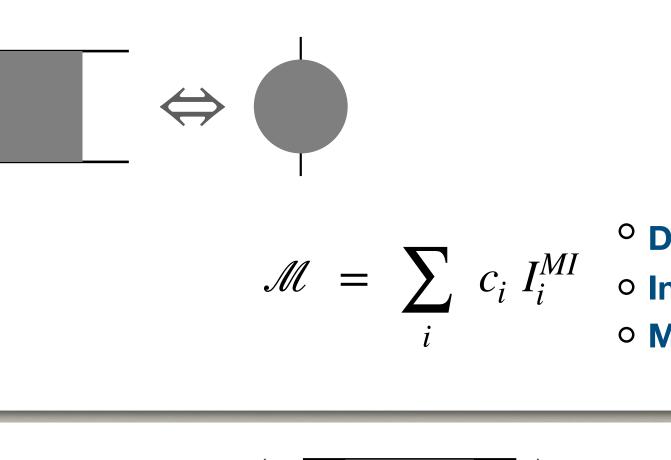
Computational techniques:

- From Effective diagrams to QFT Amplitudes:
- World-lines are not propagating
- ► EFTGravity Amplitudes of order G^ℓ_N mapped into (ℓ − 1)—loop 2-point functions with massless internal lines:
- Amplitudes evaluation with QFT multi-loop techniques

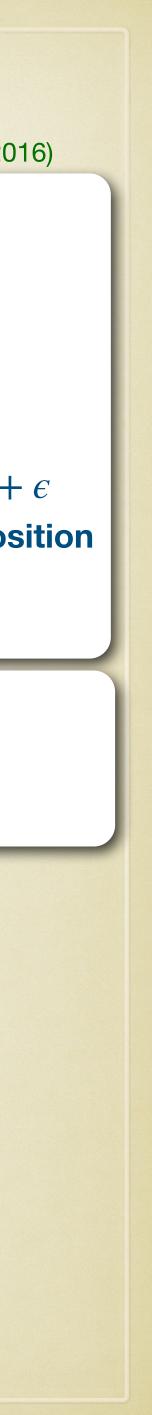
From QFT Amplitudes to Effective Lagrangians:

 $\mathscr{L}_{eff}[x_a] = -$

Foffa, Sturani, Sturm, & P.M. (2016)



O Dimensional Regularization d = 3 + ε
 O Integration-by-parts (IBP) decomposition
 O Master Integrals evaluation

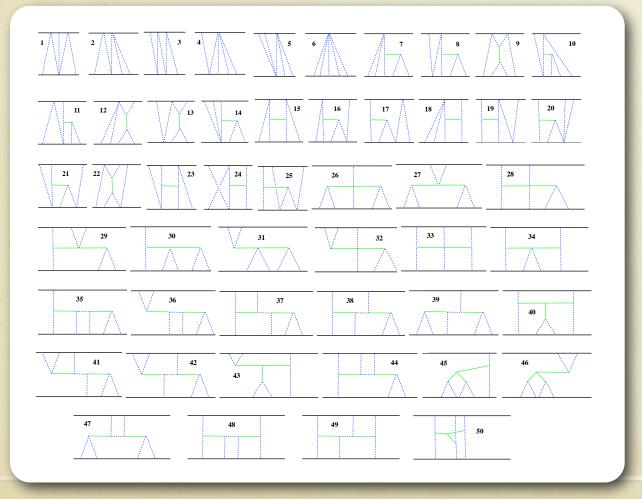


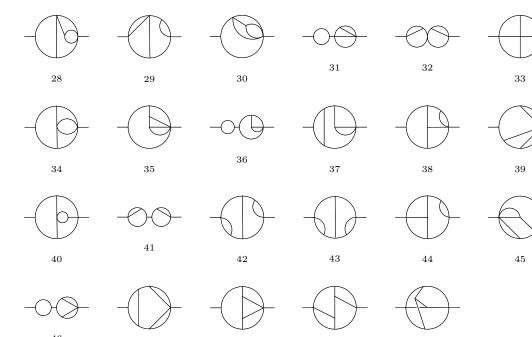
GREFT Diagrams vs 2-point QFT Integrals / a key observation

Computational techniques:

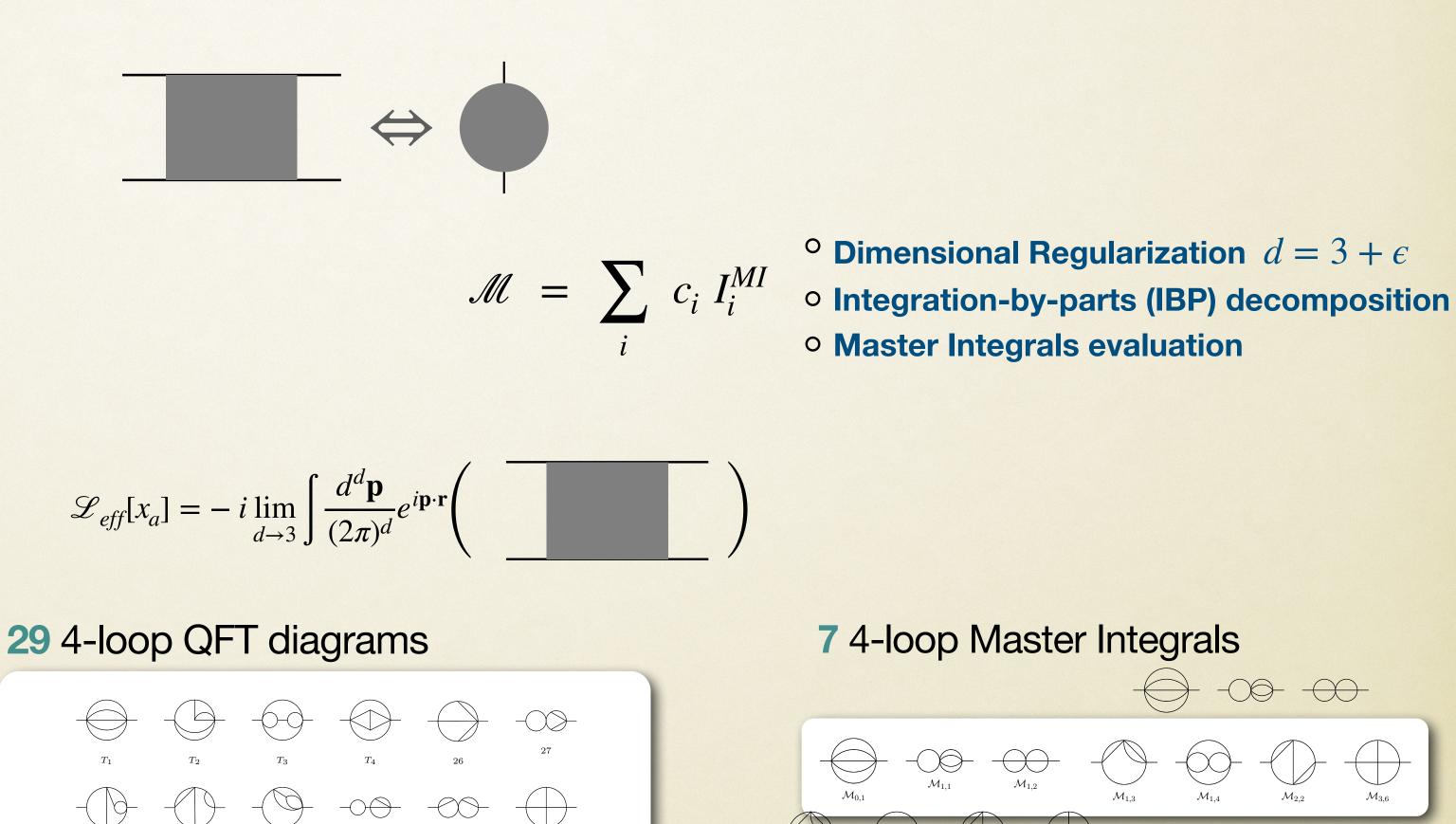
- From Effective diagrams to QFT Amplitudes:
- World-lines are not propagating
- EFTGravity Amplitudes of order G_N^{ℓ} mapped into $(\ell - 1)$ —loop 2-point functions with massless internal lines:
- Amplitudes evaluation with QFT multi-loop techniques
- From QFT Amplitudes to Effective Lagrangians:

4PN static O(G^5): 50 4-loop GREFT diagrams

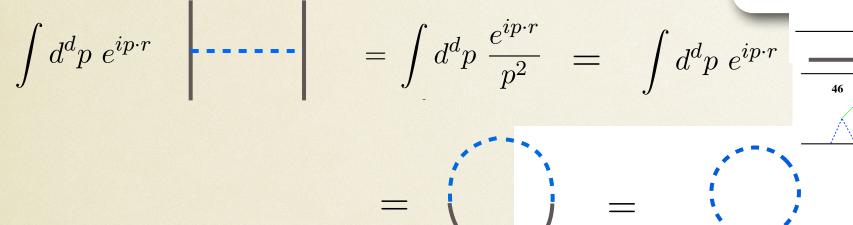




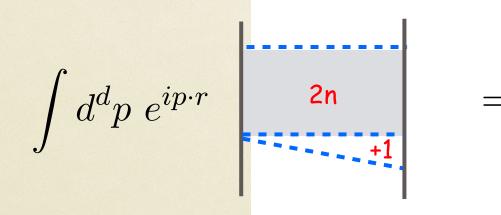
Foffa, Sturani, Sturm, & P.M. (2016)

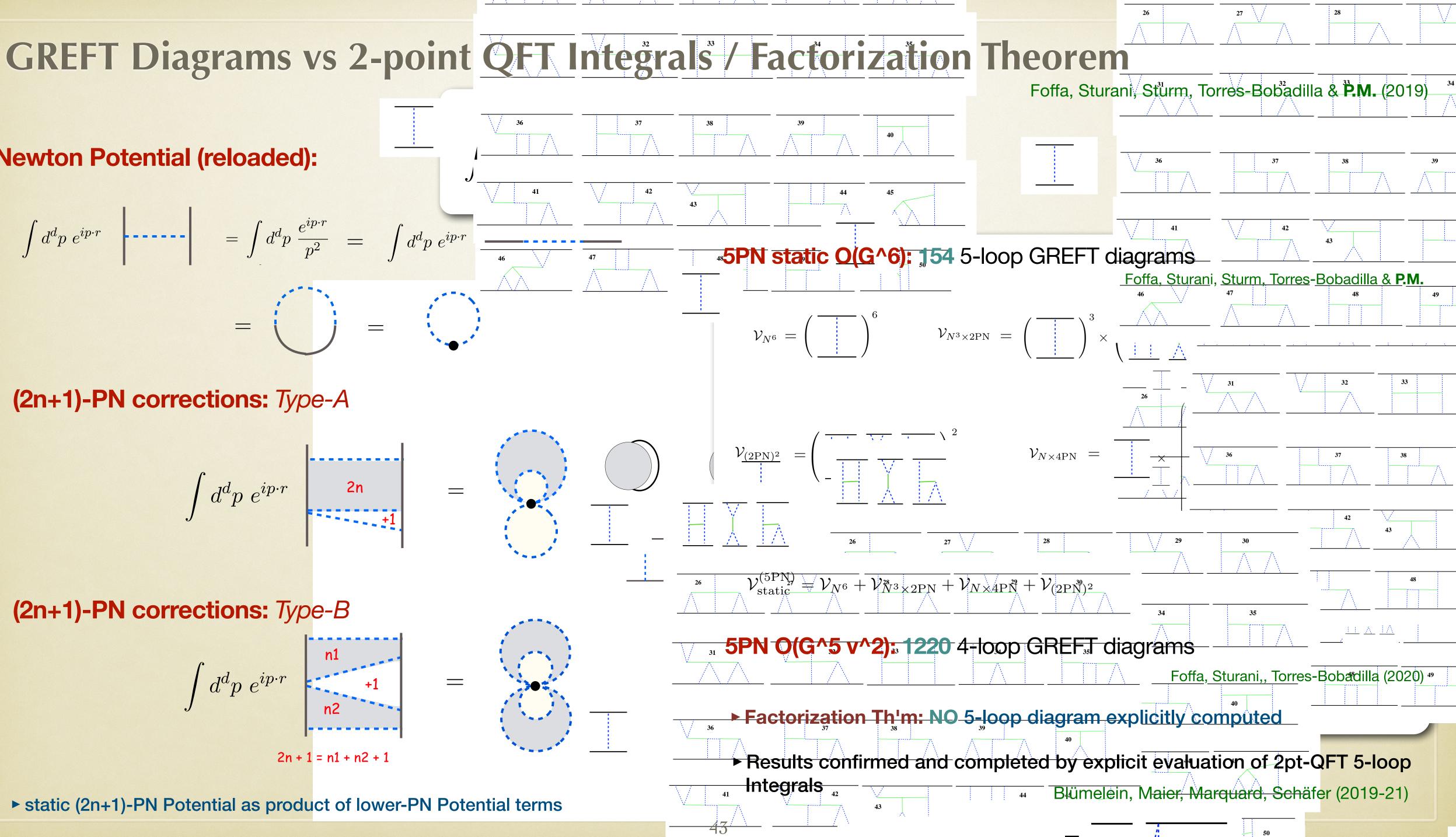


- $\longrightarrow \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad -$
 - \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

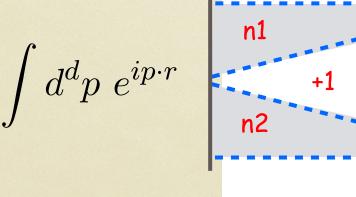


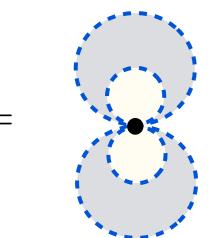
(2n+1)-PN corrections: Type-A





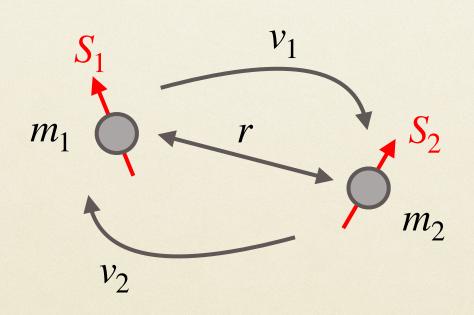
(2n+1)-PN corrections: Type-B





static (2n+1)-PN Potential as product of lower-PN Potential terms

GR EFT for PN corrections / near zone spinning



Bound system of Inspiraling of Black Holes

Near Zone with Spin / PN Corrections

Action for Spinning compact object

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a,g] = \sum_{a=1,2} \int d\tau \left(-m_{(a)} c \sqrt{u_{(a)}^2} - \frac{1}{2} S_{(a)\mu\nu} \Omega_{(a)}^{\mu\nu} - \frac{S_{(a)\mu\nu} u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}_{(a)}^{(R)} + \mathcal{L}_{(a)}^{(R^2)} + \dots \right) \quad u_{(a)}^{\mu} \equiv \dot{x}_a^{\mu}$$

Wilson coefficients that describe the internal structure

$$\mathcal{L}_{(a)}^{(R)} = -\frac{1}{2m_{(a)}c} \left(C_{\mathrm{ES}^2}^{(0)} \right)_{(a)} \frac{E_{\mu\nu}}{u_{(a)}} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^0)} = \frac{1}{2} \left(C_{\mathrm{E}^2}^{(2)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\nu} E^{\mu\nu}}{u_{(a)}^3} S_{(a)}^2 + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^2)} = \frac{1}{2} \left(C_{\mathrm{E}^2 \mathrm{S}^2}^{(0)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\alpha} E_{\nu}^{\ \alpha}}{u_{(a)}^3} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$

Electric and Magnetic components of Riemann tensor

$$E_{\mu\nu} \equiv R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta}$$

$$B_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\alpha\beta\gamma\mu} R^{\alpha\beta}{}_{\delta\nu} u^{\gamma} u^{\delta}$$

STF = Symmetrized Trace-Free

S ⁰	
S^1	
S ²	
S ³	
S^4	
S ⁵	
S ⁶	

Mandal, Patil, Steinhoff & P.M. (2022) Levi, Morales, Yin (2022)

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

PN ord	er	1.	5	2.5		3.	5	4.	5	5.	5	6.	5	(L+	⊦1)P	M/loop oi	rder
0		I	2		3		Z	4	5	5	Č	5				tree	
0PN	1F	٧N	2P	N	3P	'N	4P	'n	5P	'N	6P	'N				1-loop	
		L	0	NL	0	N2	LO	N3	LO	N4	LO					2-loop	
			LC)	NL	0	N2	2LO	N3	LO						3-loop	
						L	D I	NL	_0							4-loop	
							L	0	NI	_0						5-loop	
										L	0	NI	_0			6-loop	
											L	0				7-loop	

[credit: Vines/Roiban]

GREFT Diagrams vs 2-point QFT Integrals

S ⁰					S ¹			
Order	Diagrams	Loops	Diagrams] [Order	Diagrams	Loops	Diagrams
0PN	1	0	1		LO	2	0	2
1PN	1	1	1	NLO	1.0	1	8	
IPN	4	0	3	3	NLO	13	0	5
	21	2	5	1 1			2	56
2PN		1	10	$N^{2}LO$	100	1	36	
		0	6				0	8
	N 130	3	8		N ³ LO	894	3	288
3PN		2	75				2	495
51 1	100	1	38		IV LO		1	100
		0	9				0	11

(a) Non-spinning sector

(b) Spin-orbit sector

Mapping to 2-point Functions

$$\mathscr{L}_{eff}[x_a, \dot{x}_a, \ddot{x}_a, \dots, S_a, \dot{S}_a, \dots] = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p} \cdot \mathbf{r}} \left(\qquad \boxed{ \qquad \qquad} \right)$$

Kim, Levi, Yin (2022) Mandal, Patil, Steinhoff & P.M. (2022)

S^2

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	7	1	3
NLO		0	4
		2	27
$N^{2}LO$	58	1	24
		0	7
		3	125
$N^{3}LO$	553	2	342
		1	76
		0	10

(a) Spin1-Spin2 and Spin1² (Spin2²) sector

1

 $\mathcal{M} = \sum c_i I_i^{MI}$

(c) E^2 sector

Order

LO

Loops Diagrams

1

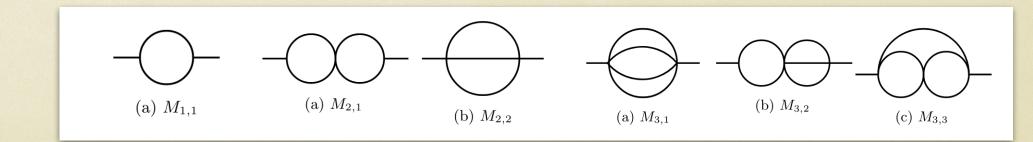
Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	1	1	1
NLO	4	0	3
		2	7
$N^{2}LO$	25	1	12
		0	6
		3	15
N ³ LO	168	2	101
IN LO	100	1	43
		0	9

(b) ES^2 sector

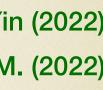
Order	Loops	Diagrams
LO	1	1

(d) E^2S^2 sector

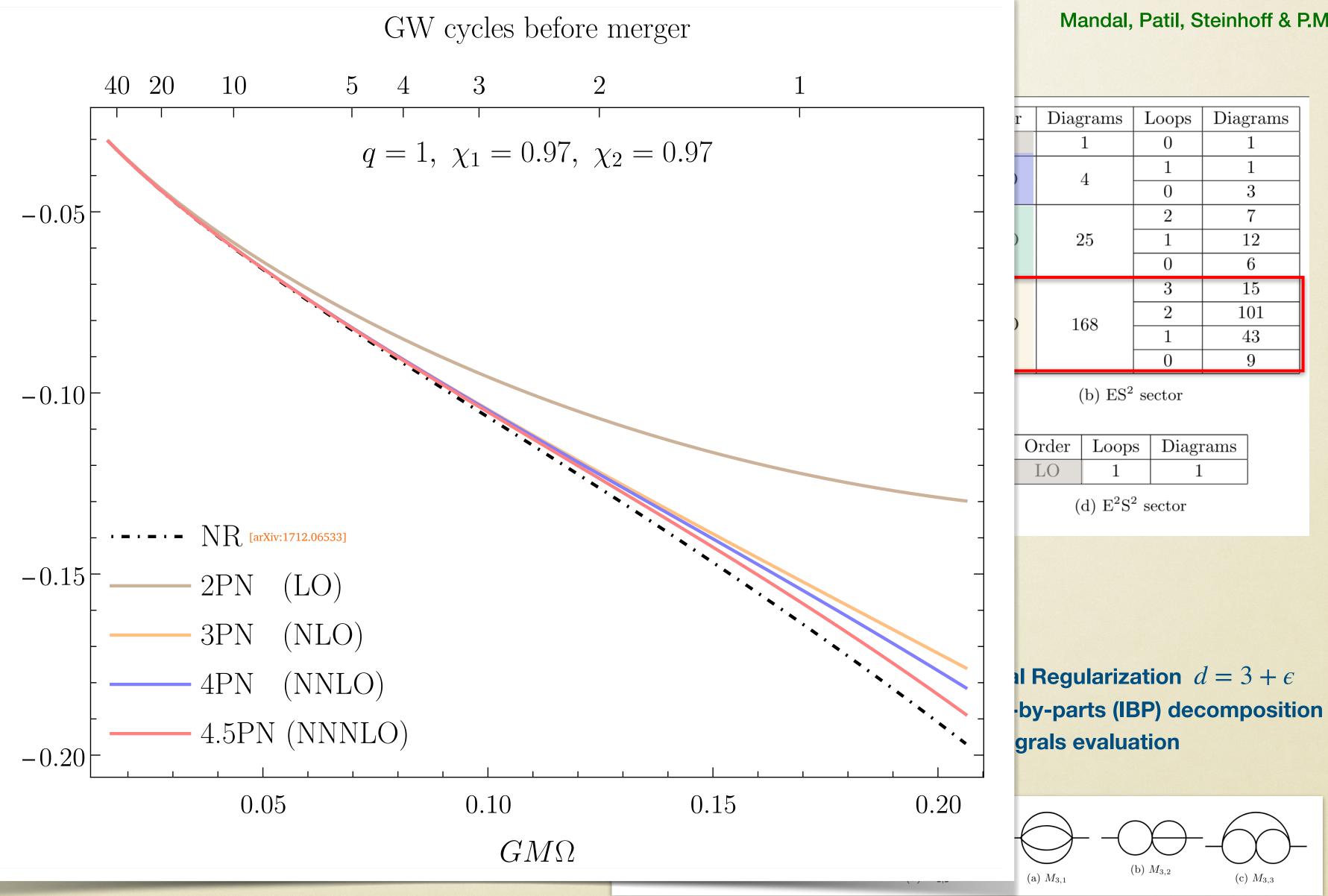




 \Leftrightarrow



ateldf-Ond-anSresk **GREFT Diagrams vs 2-point QFT Integrals**



S ⁰			
Order	Diagrams	Loops	Diagra
0PN	1	0	1
1PN	4	1	0 1
11 11	Poir	nt 0	3 tonian
	parti		tonian $\frac{5}{5}$
2PN	$21_{ m Spin-c}$	rbit ¹	10
		0	6
	Spin		Tree
3PN	130 _{Spin}	2	1 Loop
	Зріп	1	2 Loop
	Spin	<u>0</u>	
	(a) Non-	-spinnin _{	4 Loop
	Spin	^5	5 Loop

Mapping to 2-point Func

 $\mathcal{L}_{eff}[x_a, \dot{x}_a, \ddot{x}_a, \dots, S_a, \dot{S}_a, \dots] =$

 Ξ

Kim, Levi, Yin (2022) Mandal, Patil, Steinhoff & P.M. (2022)

0

0

2

0

3

2

0

Diagrams

Diagrams

1

3

7

12

6

15

101

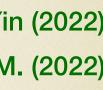
43

9

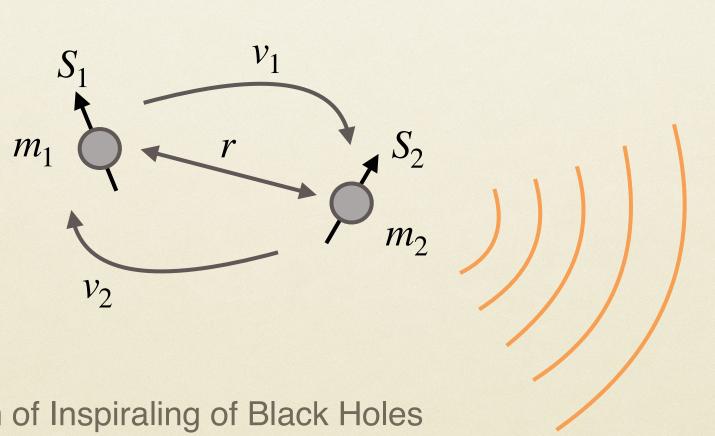
(c) $M_{3,3}$

Y

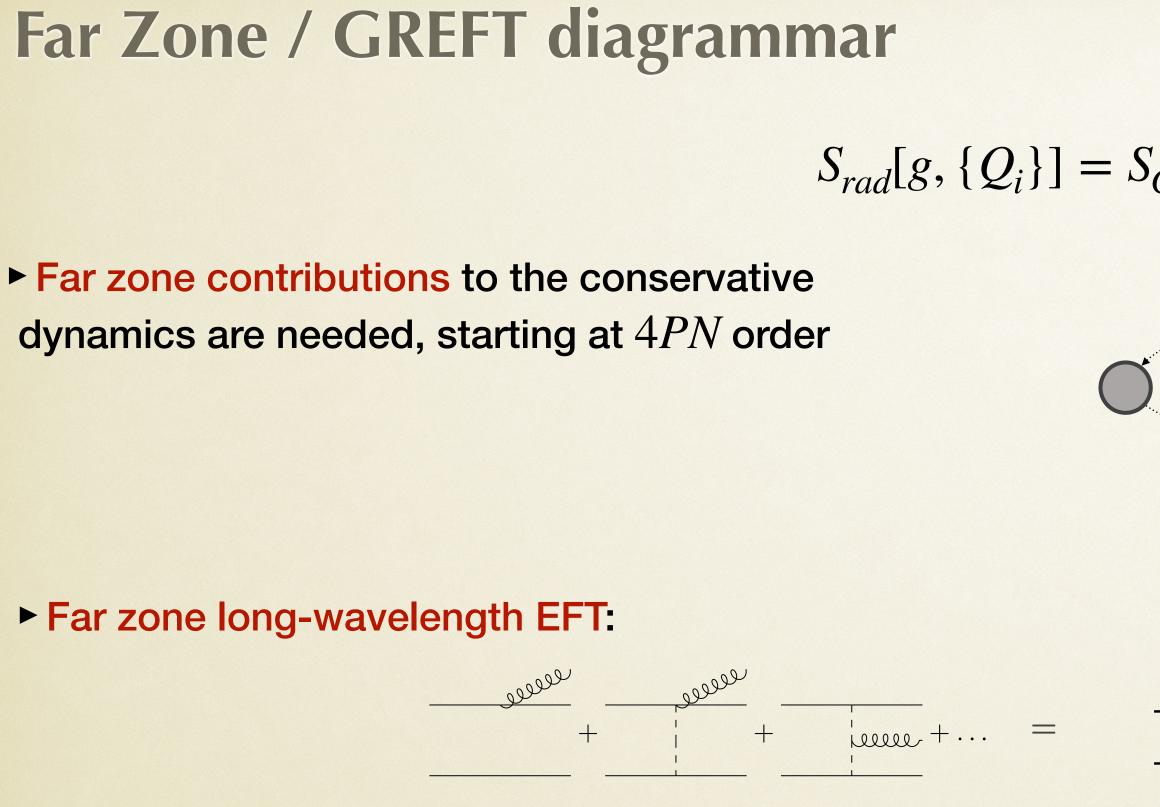
O THE THE



GR EFT for PN corrections / far zone spinning



Bound system of Inspiraling of Black Holes



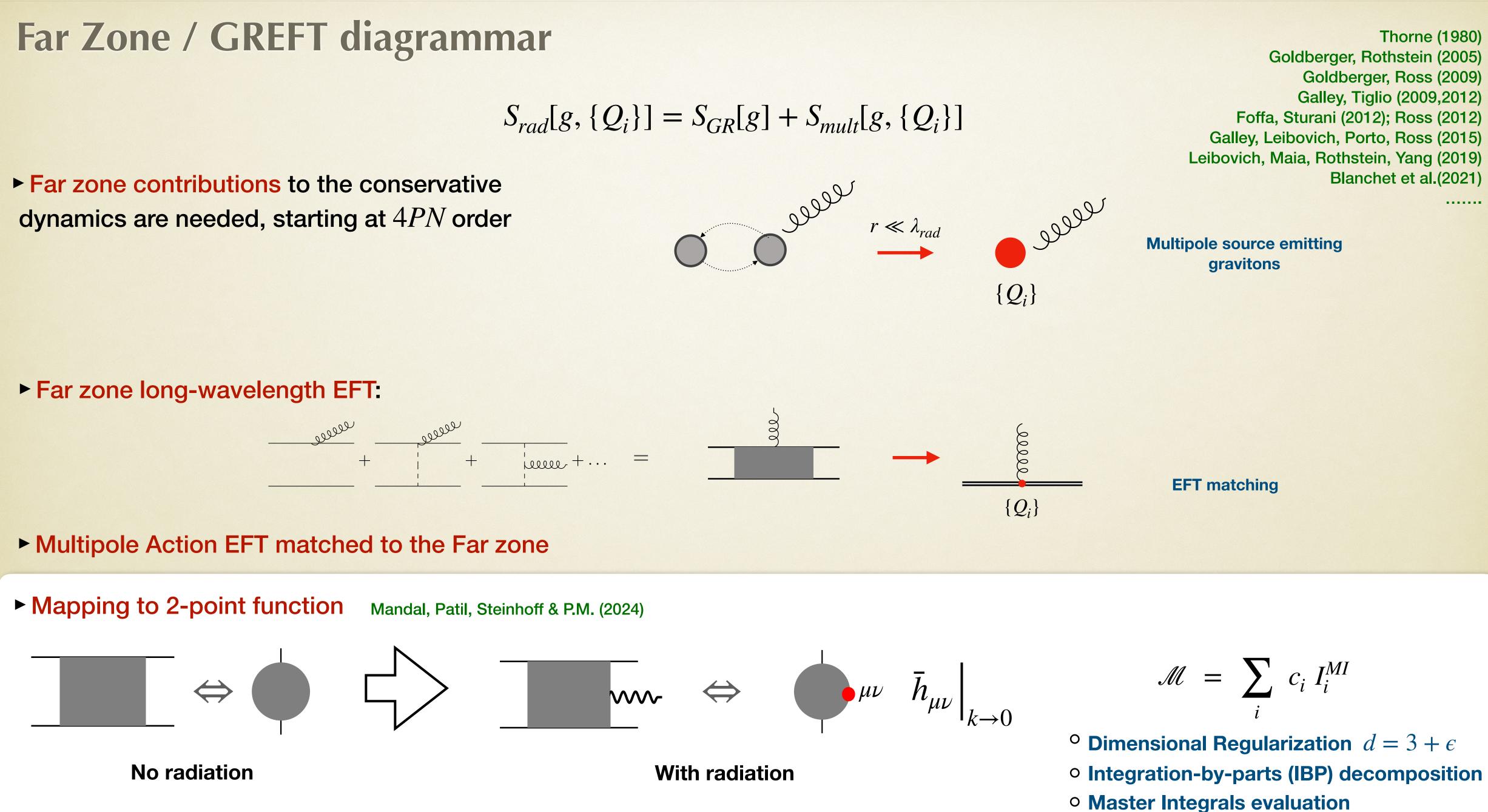
Multipole Action EFT matched to the Far zone

Binary system as a linear source $T_{\mu\nu}$ of size r emitting $\bar{h}_{\mu\nu}$:

$$S_{mult}[\bar{h}, \{Q_i\}] = \int dt \left[\frac{1}{2}E\bar{h}_{00} - \frac{1}{2}\epsilon_{ijk}L^i\bar{h}_{0j,k} - \frac{1}{2}Q^{ij}\mathscr{E}_{ij} - \frac{1}{6}O^{ijk}\mathscr{E}_{ij}\right]$$

Goldberger, Rothstein (2005) Goldberger, Ross (2009) Galley, Tiglio (2009,2012) $S_{rad}[g, \{Q_i\}] = S_{GR}[g] + S_{mult}[g, \{Q_i\}]$ Foffa, Sturani (2012); Ross (2012) Galley, Leibovich, Porto, Ross (2015) Leibovich, Maia, Rothstein, Yang (2019) Blanchet et al.(2021) $r \ll \lambda_{rad}$ **Multipole source emitting** gravitons $\{Q_i\}$ - 100 **EFT** matching $\{Q_i\}$ 2 .. $\int_{ij,k} -\frac{-}{3}J^{ij}B_{ij} + \dots$ $\{Q_i\}$ $\{Q_i\}$ $\{Q_i\}$

Thorne (1980)

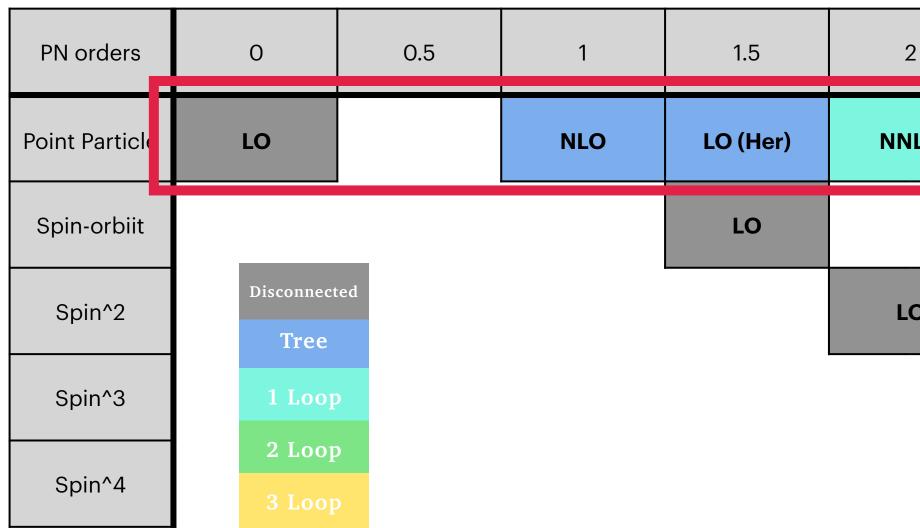


$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$

Thorne (1980)

State-or-the-art - Flux

Far Zone / Flux



$$\begin{split} \mathscr{F}_{cir}^{\mathrm{pp}} &= \frac{32c^5}{5G}\nu^2 x^3 \bigg\{ 1 + \bigg(-\frac{1247}{336} - \frac{35}{12}\nu \bigg) x + 4\pi x^{3/2} + \bigg(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \bigg) x^2 + \bigg(-\frac{8191}{672} - \frac{583}{24}\nu \bigg) \pi x^{5/2} \\ &+ \bigg[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\mathrm{E}} - \frac{856}{105}\ln(16x) + \bigg(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \bigg) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \bigg] x^3 \\ &+ \bigg(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \bigg) \pi x^{7/2} \\ &+ \bigg[-\frac{323105549467}{3178375200} + \frac{232597}{4410}\gamma_{\mathrm{E}} - \frac{1369}{126}\pi^2 + \frac{3991}{2924}\ln 2 - \frac{47385}{168}\ln 3 + \frac{232597}{8820}\ln x \\ &+ \bigg(-\frac{145202403629}{1466942400} + \frac{41478}{245}\gamma_{\mathrm{E}} - \frac{267127}{4608}\pi^2 + \frac{479062}{2205}\ln 2 + \frac{47385}{392}\ln 3 + \frac{20739}{245}\ln x \bigg) \nu \\ &+ \bigg(\frac{1607125}{6804} - \frac{3157}{384}\pi^2 \bigg) \nu^2 + \frac{6875}{504}\nu^3 + \frac{5}{6}\nu^4 \bigg] x^4 \\ &+ \bigg[\frac{265978667519}{745113600} - \frac{6848}{105}\gamma_{\mathrm{E}} - \frac{3424}{105}\ln(16x) + \bigg(\frac{2062241}{22176} + \frac{41}{12}\pi^2 \bigg) \nu - \frac{133112905}{290304}\nu^2 - \frac{3719141}{38016}\nu^3 \bigg] \pi x^{9/2} + \mathcal{O}(x^5) \bigg\} \end{split}$$

JI

Mandal, Patil, Steinhoff, & PM

THE TOBERLY

2	2.5	3	3.5	4	4.5	
ILO	NLO (Her)	N^3LO +NNLO (Her)	N^3LO (Her)	N^4LO +N^4LO (Her)	N^5LO (Her)	
	NLO	LO (Her)	NNLO	NLO (Her)	N^3LO +NNLO (Her)	
0		NLO	LO (Her)	NNLO	NLO (Her)	
			LO		NLO	
				LO		

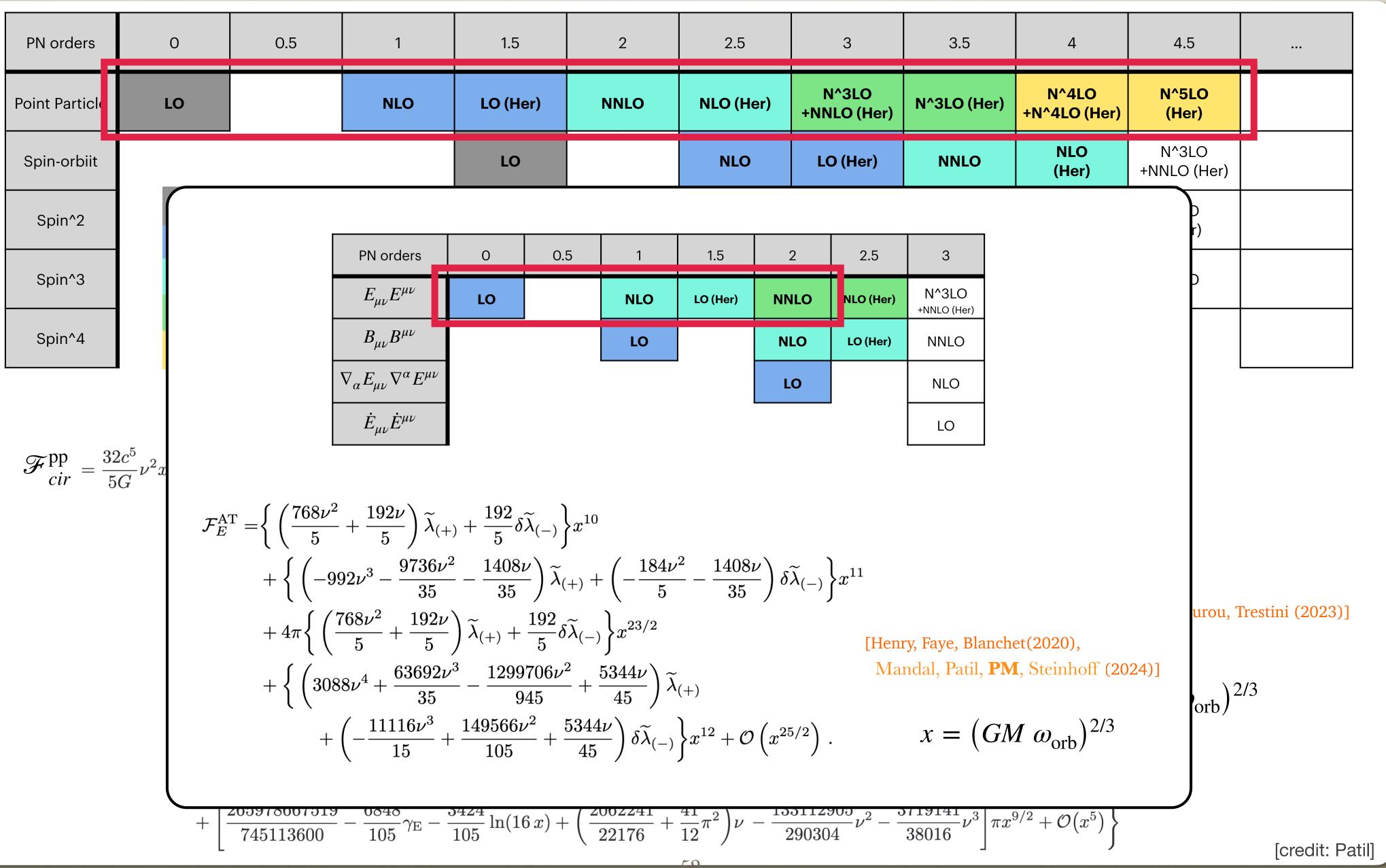
tini (2023)]

5

[credit: Patil]

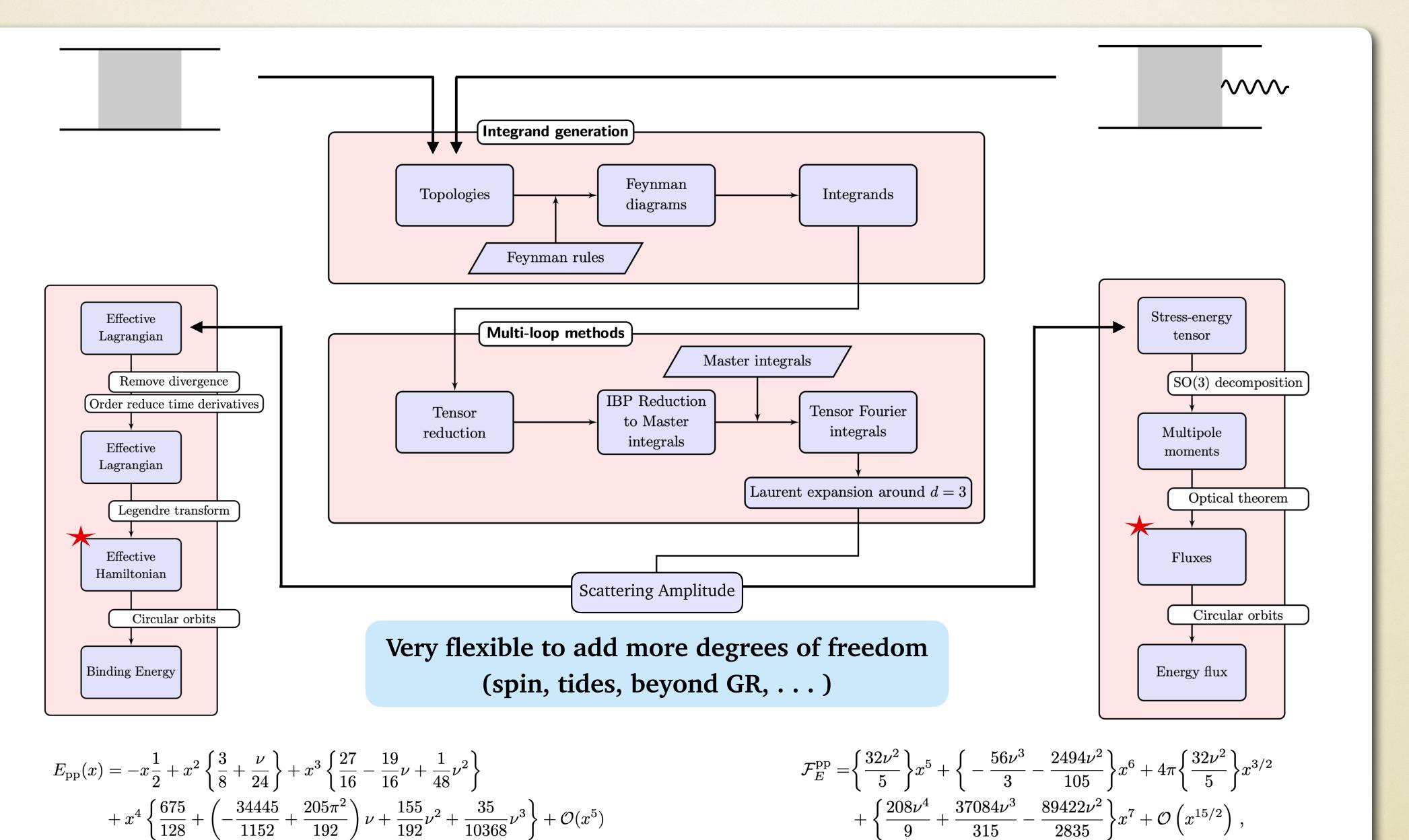
Didle-01-016-alt

Far Zone / Flux



Mandal, Patil, Steinhoff, & PM

PN-GREFT Diagammar & Multi-Loop Automation



Mandal, Patil, Steinhoff, & PM

TA.

Ģ

Novel Perspective on (Feynman) Calculus

$I(n, \mathbf{x}) \equiv \int_{\Gamma} d^{n} \mathbf{z} f(\mathbf{x}, \mathbf{z})$

 \leq

vanishing condition at the boundary of the integration domain

$$f(\mathbf{x},\mathbf{z})\Big|_{\partial\Gamma}=0$$

[Stokes' theorem] $\int_{\Gamma} df(\mathbf{x}, \mathbf{z}) = 0 = \int_{\partial \Gamma} f(\mathbf{x}, \mathbf{z})$

Space of Integrals and their (linear and quadratic) relations

 $I(n, \mathbf{x}) \equiv \int_{\Gamma} d^{n} \mathbf{z} f(\mathbf{x}, \mathbf{z})$

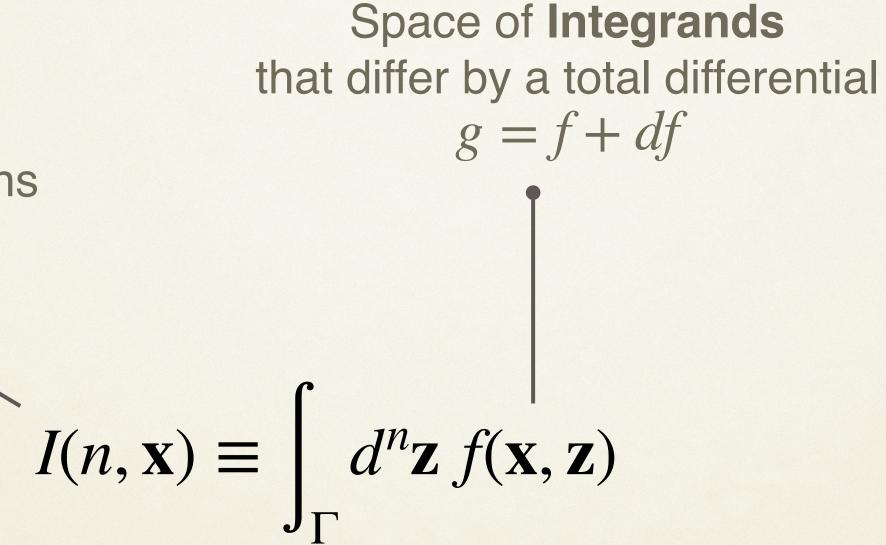
Space of Integrals and their (linear and quadratic) relations

Space of Integrands that differ by a total differential g = f + df

 $I(n, \mathbf{x}) \equiv \int_{\Gamma} d^{n} \mathbf{z} f(\mathbf{x}, \mathbf{z})$

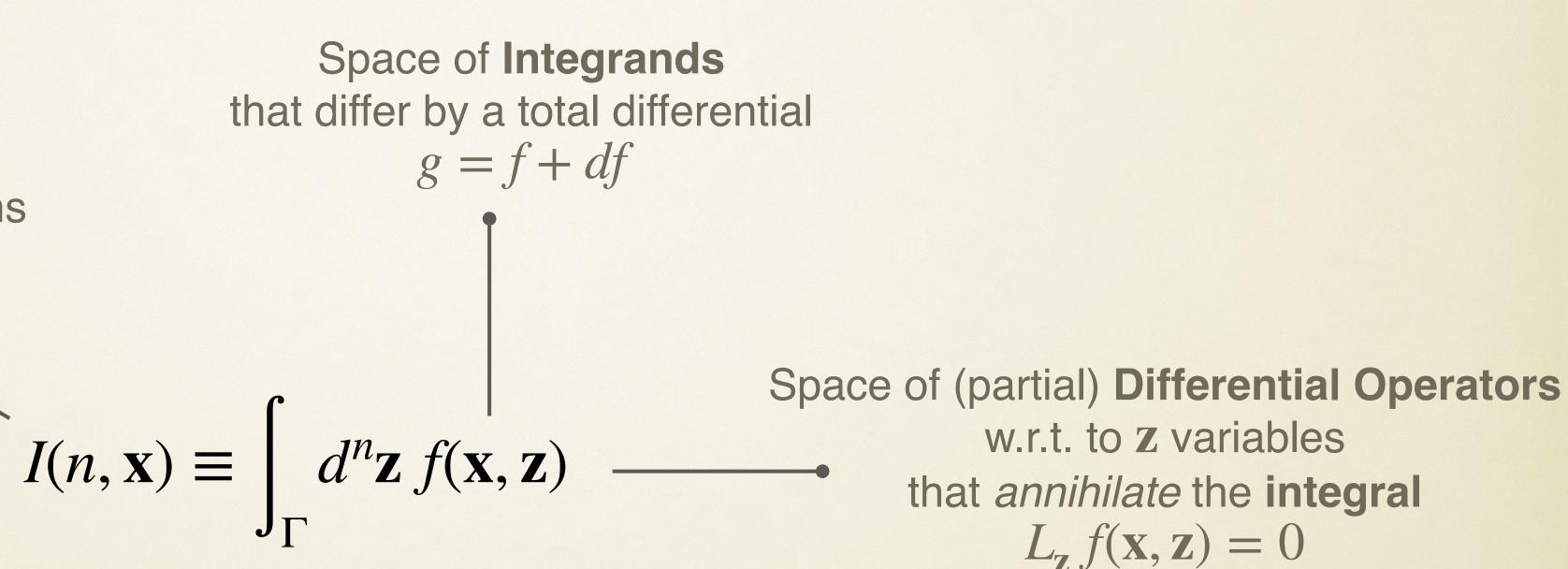
Space of Integrals and their (linear and quadratic) relations

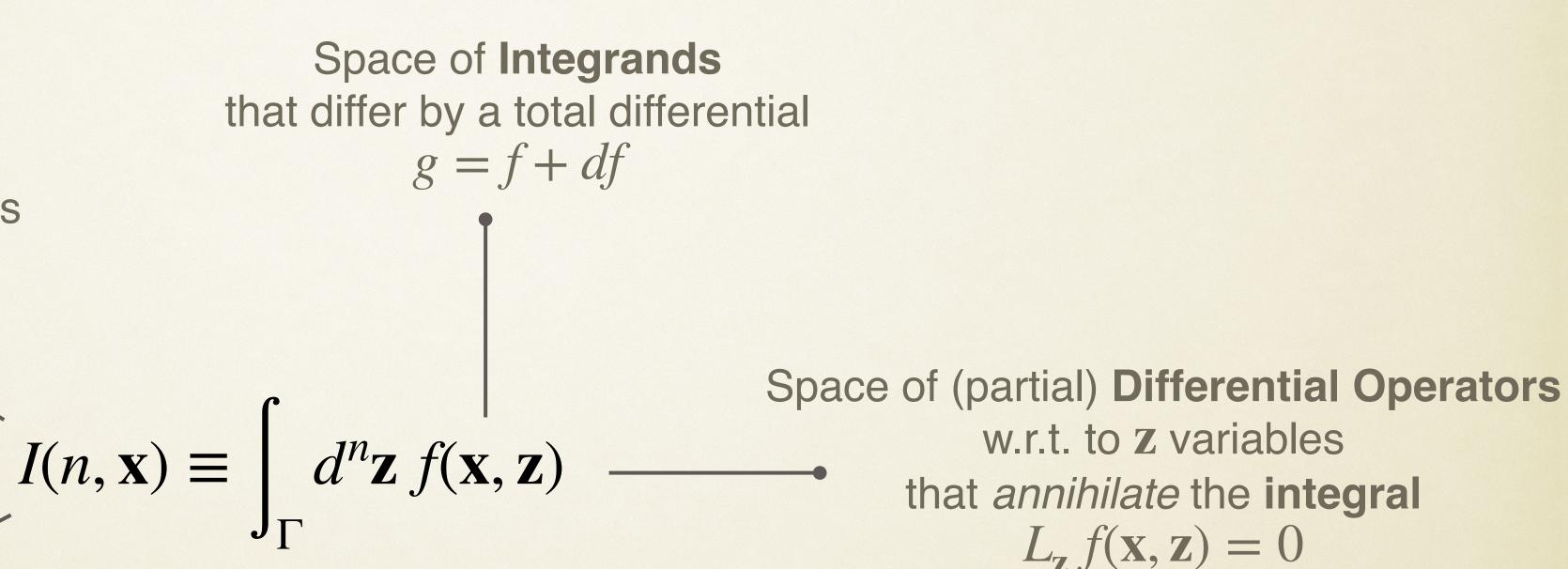
> Space of Integration Contours that differ by boundary terms $\Sigma = \Gamma + \partial \Gamma$



Space of Integrals and their (linear and quadratic) relations

> Space of Integration Contours that differ by boundary terms $\Sigma = \Gamma + \partial \Gamma$





Space of Integrals and their (linear and quadratic) relations

Space of (partial) **Differential Operators** w.r.t. to **x** variable that *annihilate* the **integral** $D_{\mathbf{x}} I(n, \mathbf{x}) = 0$

Space of Integration Contours that differ by boundary terms $\Sigma = \Gamma + \partial \Gamma$

What does a (twisted) integral represent? **De-Rham Cohomology Group**

Integrals Vector Space

Space of Integrals and their (linear and quadratic) relations

Space of (partial) Differential Operators w.r.t. to x variable that annihilate the integral $D_{\mathbf{x}}I(n,\mathbf{x})=0$

> **D-Module** (external variables)

Space of Integration Contours that differ by boundary terms $\Sigma = \Gamma + \partial \Gamma$

De-Rham Homology Group

Space of Integrands that differ by a total differential

g = f + df

 $I(n,\mathbf{x}) \equiv \int d^{n}\mathbf{z} f(\mathbf{x},\mathbf{z})$

Space of (partial) **Differential Operators** w.r.t. to z variables that annihilate the integral $L_{\mathbf{z}} f(\mathbf{x}, \mathbf{z}) = 0$

> **D-Module** (internal variables) [see Gaia Fontana's talk]

What are the properties of these "spaces" ?

Space Generators / basis

dimensions = # of basis elements

 ${\cal V}$

Integrals Vector Space

Space of Integrals and their (linear and quadratic) relations

> **Master Integrals (MIs)** # of MIs

D-Module (external variables)

Space of (partial) Differential Operators w.r.t. to x variable that annihilate the integral $D_{\mathbf{x}}I(n,\mathbf{x})=0$

> **Standard (Std) monomials** rank = # of independent Std

De-Rham Cohomology Group H_{dR}^n

Space of Integrands that differ by a total differential g = f + df

Differential forms

dim $H_{dR}^n = \#$ of independent forms

De-Rham Homology Group $H_{n,dR}$ Space of Integration Contours that differ by boundary terms $\Sigma = \Gamma + \partial \Gamma$ **Cycles / n-chains**

dim $H_{n,dR}$ = # of independent cycles

What we have found

Vector Space Structure of Feynman [- Euler-Mellin - GKZ - A-hypegeometric] Integrals

Vector decomposition

$$I = \sum_{i=1}^{
u} c_i \, J_i$$

$$c_i = I \cdot J_i ,$$

Completeness

Projections

$$\sum_{i} J_i J_i = \mathbb{I}_{\nu \times \nu}$$

 $\nu = \text{dimension of the vector space}$

ntegral = basis

$$J_i \cdot J_j = \delta_{ij}$$

Vector Space Structure of Feynman [- Euler-Mellin - GKZ - A-hypegeometric] Integrals

$$I = \sum_{i=1}^{\nu} c_i J_i$$
 Master In

$$c_i = I \cdot J_i \; ,$$

Completeness

Projections

$$\sum_{i} J_i J_i = \mathbb{I}_{\nu \times \nu}$$

The two questions:
1) what is the vector space dimension ν ?
2) what is the scalar product "·" between integrals ?

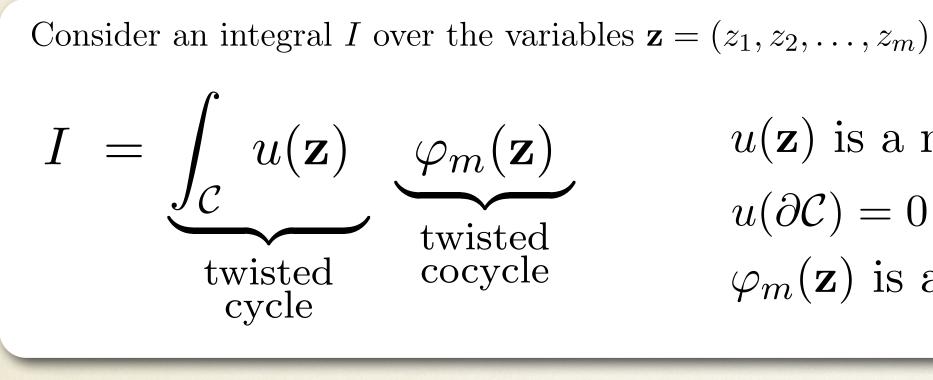
 $\nu = \text{dimension of the vector space}$

ntegral = basis

$$J_i \cdot J_j = \delta_{ij}$$

Basics of Intersection Theory

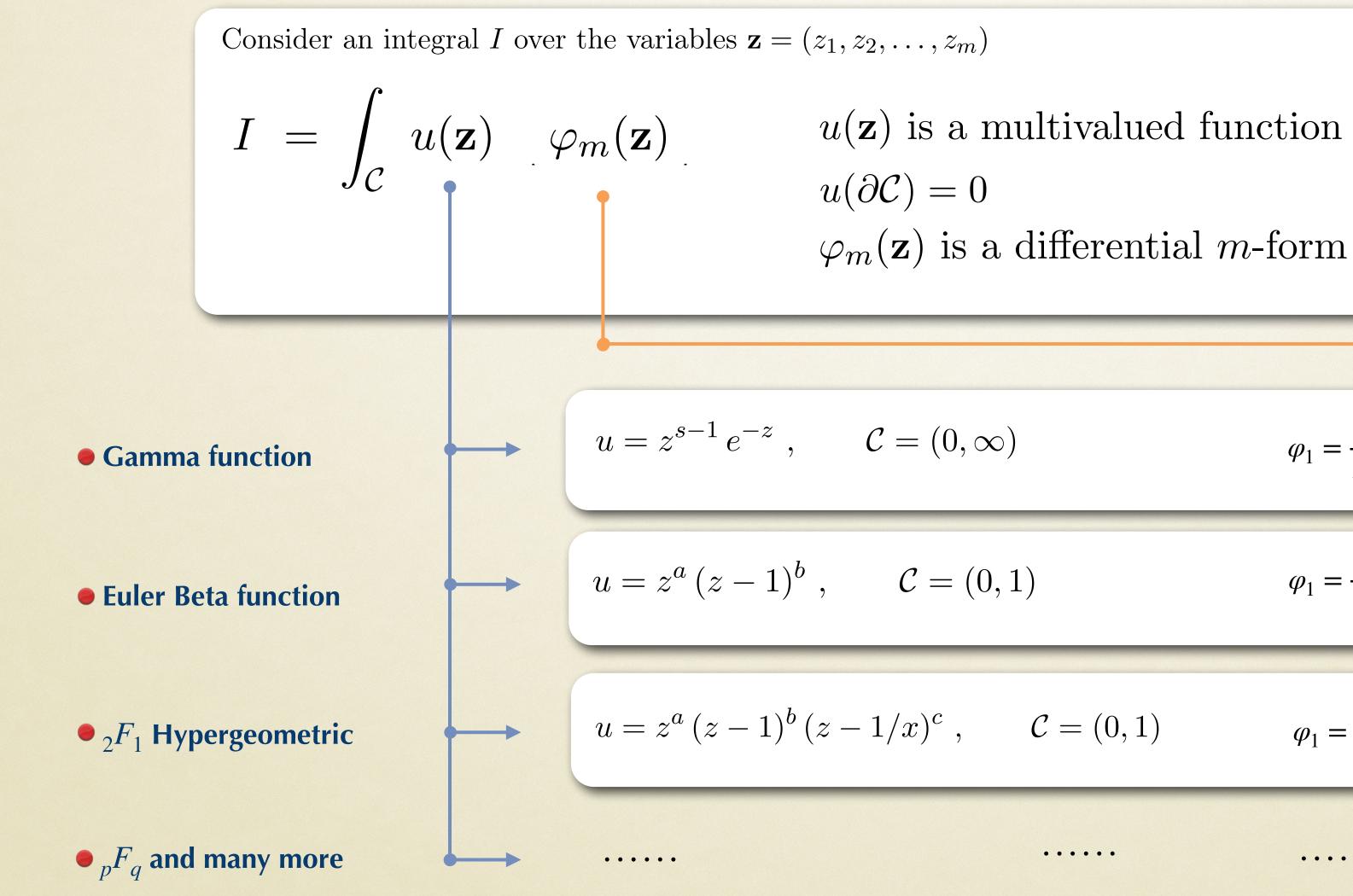
Aomoto, Brown, Cho, Goto, Kita, Matsubara-Heo, Mazumoto, Mimachi, Mizera, Ohara, Yoshida,...



 $u(\mathbf{z})$ is a multivalued function $u(\partial \mathcal{C}) = 0$

 $\varphi_m(\mathbf{z})$ is a differential *m*-form

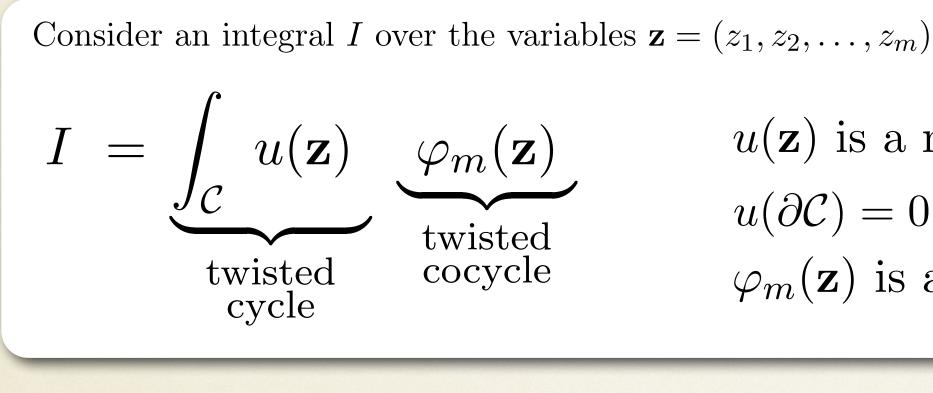
Aomoto, Brown, Cho, Goto, Kita, Matsubara-Heo, Mazumoto, Mimachi, Mizera, Ohara, Yoshida,...



 $\varphi_m(\mathbf{z})$ is a differential *m*-form

 $\varphi_1 = \frac{dz}{z^{n_1}}$ $\varphi_1 = \frac{dz}{z^{n_1}(z-1)^{n_2}}$ $u = z^a (z - 1)^b (z - 1/x)^c$, C = (0, 1) $\varphi_1 = \frac{dz}{z^{n_1}(z-1)^{n_2}(z-1/x)^{n_3}}$ ----.

Aomoto, Brown, Cho, Goto, Kita, Matsubara-Heo, Mazumoto, Mimachi, Mizera, Ohara, Yoshida,...



• The dawn of Integration by parts identities:

- Equivalence Classes of DIFFERENTIAL FORMS
- Equivalence Classes of INTEGRATION CONTOURS There could exist many contours \mathcal{C} that do not alter the the result of I

 $u(\mathbf{z})$ is a multivalued function $u(\partial \mathcal{C}) = 0$ $\varphi_m(\mathbf{z})$ is a differential *m*-form

There could exist many forms φ_m that upon integration give the same result I

Vector Space Structure of Twisted Period Integrals

- Integral invariance from the vanishing of total differential
- Stokes' theorem relating the invariance upon shifting the differential forms to the invariance upon contour deformation!

$$0 = \int_{C} d(u \, \varphi) = \int_{\partial C} u \, \varphi \qquad \qquad \int_{C} u \, \varphi = \int_{C} u \, (\varphi + \nabla_{\omega} \, \phi) = \int_{C + \partial \Gamma} u \, \varphi$$

• Covariant Derivative
$$\nabla_{\omega} \equiv d + \omega \wedge \equiv u^{-1} \cdot d \cdot u \qquad \omega \equiv d \log u$$

$$u \to u^{-1}$$

$$0 = \int_{C} d(u^{-1} \, \varphi) = \int_{\partial C} u^{-1} \, \varphi \qquad \qquad \int_{C} u^{-1} \, \varphi = \int_{C} u^{-1} (\varphi + \nabla_{-\omega} \, \phi) = \int_{C + \partial \Gamma} u^{-1} \, \varphi$$

$$\sum_{C} u \varphi = \int_{C} u (\varphi + \nabla_{\omega} \phi) = \int_{C+\partial\Gamma} u \varphi$$

$$\nabla_{\omega} \equiv d + \omega \wedge \equiv u^{-1} \cdot d \cdot u \qquad \qquad \omega \equiv d \log u$$

$$u \to u^{-1}$$

$$\sum_{C} u^{-1} \varphi = \int_{C} u^{-1} (\varphi + \nabla_{-\omega} \phi) = \int_{C+\partial\Gamma} u^{-1} \varphi$$

$$0 = \int_{C} d(u \, \varphi) = \int_{\partial C} u \, \varphi \qquad \qquad \int_{C} u \, \varphi = \int_{C} u \, (\varphi + \nabla_{\omega} \, \phi) = \int_{C + \partial \Gamma} u \, \varphi$$

• Covariant Derivative
$$\nabla_{\omega} \equiv d + \omega \wedge \equiv u^{-1} \cdot d \cdot u \qquad \omega \equiv d \log u$$

$$u \to u^{-1}$$

$$0 = \int_{C} d(u^{-1} \, \varphi) = \int_{\partial C} u^{-1} \, \varphi \qquad \qquad \int_{C} u^{-1} \, \varphi = \int_{C} u^{-1} (\varphi + \nabla_{-\omega} \, \phi) = \int_{C + \partial \Gamma} u^{-1} \, \varphi$$

• **Dual** Covariant Derivative

 $\nabla_{-\omega} \equiv d - \omega \wedge \equiv u \cdot d \cdot u^{-1}$

71

Vector Space Dimensions / counting "holes"

Chetyrkin, Tkachov (1981); Remiddi, Laporta (1996); Laporta (2000)

.

Betti numbers

Maximum likelihood degree

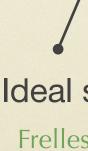
Agostini, Brysiewicz, Fevola, Sturmfels, Tellen (2021)

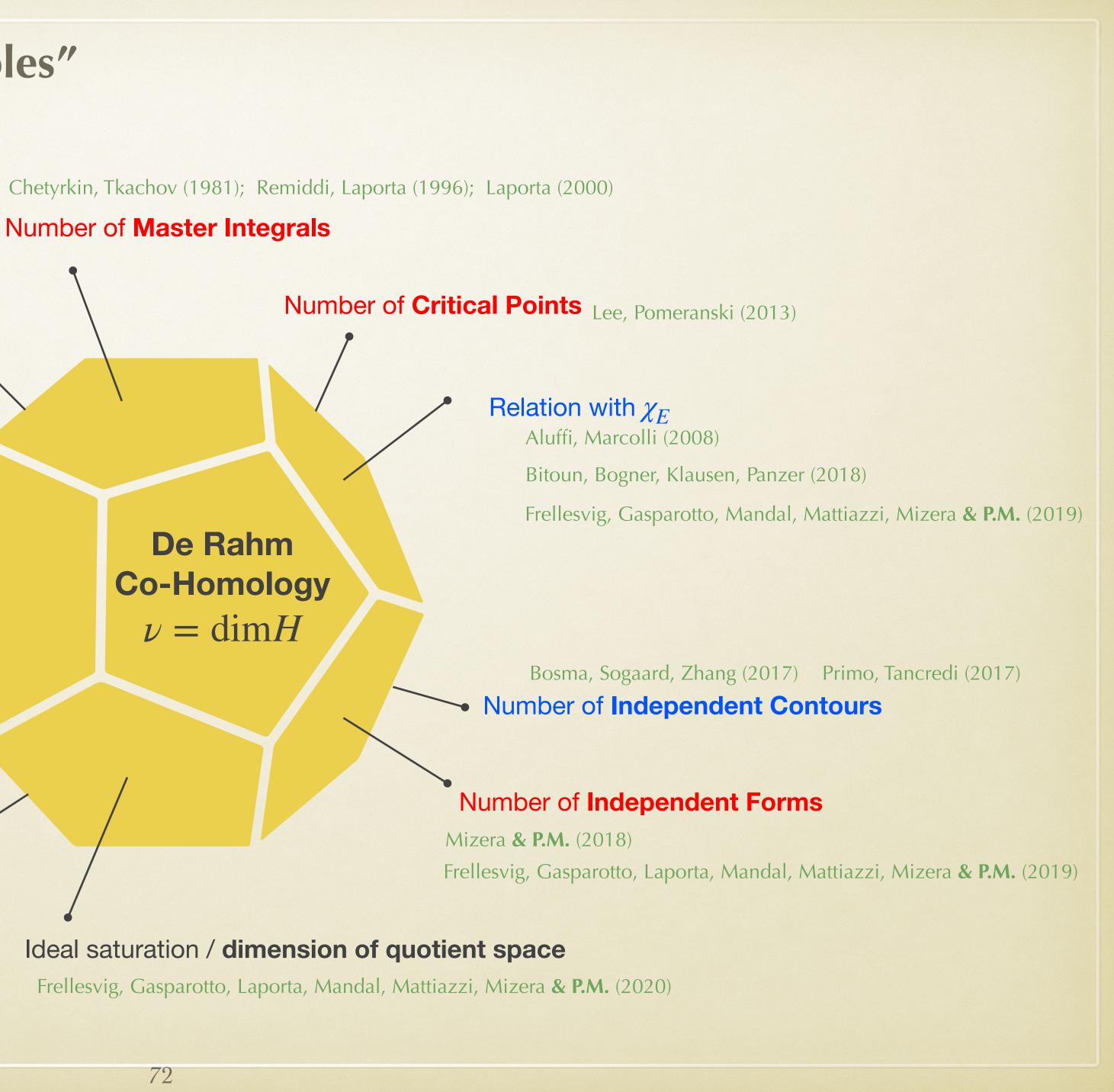
Holonomic rank of GKZ systems

Gelfand Kapranov Zelevinski

Mixed volume of Newton Polyhedra

Bernstein-Khobaskii-Kushnirenko Saito Sturmfels Takayama





Ideal saturation / dimension of quotient space

Identity Resolution

$\dim H^n_{\pm\omega} = \dim$

Cohomology Space

[vector space of differential forms]

Cohomology basis

$$\langle e_i | \in H^n_\omega$$

Identity resolution

$$\mathbb{I}_{c} = \sum_{i,j=1}^{\nu} |h_{i}\rangle \left(\mathbf{C}^{-1}\right)_{ij} \langle e_{j}|$$

$$\mathrm{Im}H_n^{\pm\omega} \equiv \nu$$

Dual Cohomology basis

$$|h_i\rangle \in H^n_{-\omega}$$

$$i=1,\ldots,
u$$

Metric matrix for Forms

$$\mathbf{C}_{ij} \equiv \langle e_i | h_j \rangle$$

Identity Resolution

$\dim H^n_{\pm\omega} = \dim$

Cohomology Space

[vector space of differential forms]

Cohomology basis

$$\langle e_i | \in H^n_\omega$$

$$\mathbb{I}_{c} = \sum_{i,j=1}^{\nu} |h_{i}\rangle \left(\mathbf{C}^{-1}\right)_{ij} \langle e_{j}|$$

Homology Space

[vector space of integration contours]

Homology basis

$$[\gamma_i] \in H_n^{\omega}$$

Identity resolution

$$\mathbb{I}_{h} = \sum_{i,j=1}^{\nu} |\gamma_{i}| \left(\mathbf{H}^{-1}\right)_{ij} [\eta_{j}|$$

$$\mathrm{m}H_n^{\pm\omega} \equiv \nu$$

Dual Cohomology basis

$$|h_i\rangle \in H^n_{-\omega}$$

$$i=1,\ldots,
u$$

Metric matrix for Forms

$$\mathbf{C}_{ij} \equiv \langle e_i | h_j \rangle$$

Dual Homology basis

$$[\eta_i] \in H_n^{-\omega}$$

$$i = 1, \ldots, \nu$$

Metric Matrix for Contours

$$\mathbf{H}_{ij} \equiv [\eta_i | \gamma_j]$$

Linear Relations

Linear Relations / IBPs identity

Master Integrals from Master Forms

Consider a set of ν MIs,

$$J_i = \int_{\mathcal{C}_R} u(\mathbf{z}) e_i(\mathbf{z}) = \langle e_i | \mathcal{C}_R], \qquad i = 1, \dots, \nu,$$

Integral Decomposition

$$I = \int_{\mathcal{C}_R} u(\mathbf{z}) \ \varphi_L(\mathbf{z}) = \langle \varphi_L | \mathcal{C}_R] = \sum_{i=1}^{\nu} c_i J_i$$

Decomposition of Differential Forms

$$\langle \varphi_L | = \langle \varphi_L | \mathbb{I}_c = \langle \varphi_L | \sum_{i,j=1}^{\nu} |h_i \rangle \left(\mathbf{C}^{-1} \right)_{ij} \langle e_j |$$

Mizera & P.M. (2018)

Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)

=1

2018) 2019) 2019)

Linear Relations / IBPs identity

Master Integrals from Master Forms

Consider a set of ν MIs,

$$J_i = \int_{\mathcal{C}_R} u(\mathbf{z}) e_i(\mathbf{z}) = \langle e_i | \mathcal{C}_R], \qquad i = 1, \dots, \nu,$$

Integral Decomposition

$$I = \int_{\mathcal{C}_R} u(\mathbf{z}) \ \varphi_L(\mathbf{z}) = \langle \varphi_L | \mathcal{C}_R] = \sum_{i=1}^{\nu} \mathcal{C}_i J_i$$

Decomposition of Differential Forms

Master Decomposition Formula

$$\langle \varphi_L | = \langle \varphi_L | \mathbb{I}_c = \sum_{i=1}^{\nu} c_i \langle e_i |,$$

Mizera & P.M. (2018)

Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)

with

$$\overline{c_i} = \sum_{j=1}^{\nu} \langle \varphi_L | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji}$$

coefficients depend on the basis choice but **do not depend** on the dual basis choice

77

Quadratic Relations

Riemann Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) differentials forms

$$\langle \phi_L | \phi_R \rangle = \int_{\Sigma} \phi_L \wedge \phi_R = \sum_{i=1}^g \left(\int_{a_i} \phi_L \int_{b_i} \phi_R - \int_{b_i} \phi_L \int_{a_i} \phi_R \right)$$

where Σ is an oriented Riemann surface of genus g > 0, built out of a 4g-gon with edges $\prod_{i=1}^{g} a_i b_i a_i^{-1} b_i^{-1}$ (where the exponent ±1 stands for clock/anticlockwise orientation) and gluing each edge with its inverse. The integration contours a_i and b_i , for $i = 1, \ldots, g$, are a canonical bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are: $a_i \cdot a_j = b_i \cdot b_j = 0$, and $a_i \cdot b_j = -b_j \cdot a_i = \delta_{ij}$. Riemann bilinear relation can be cast as,

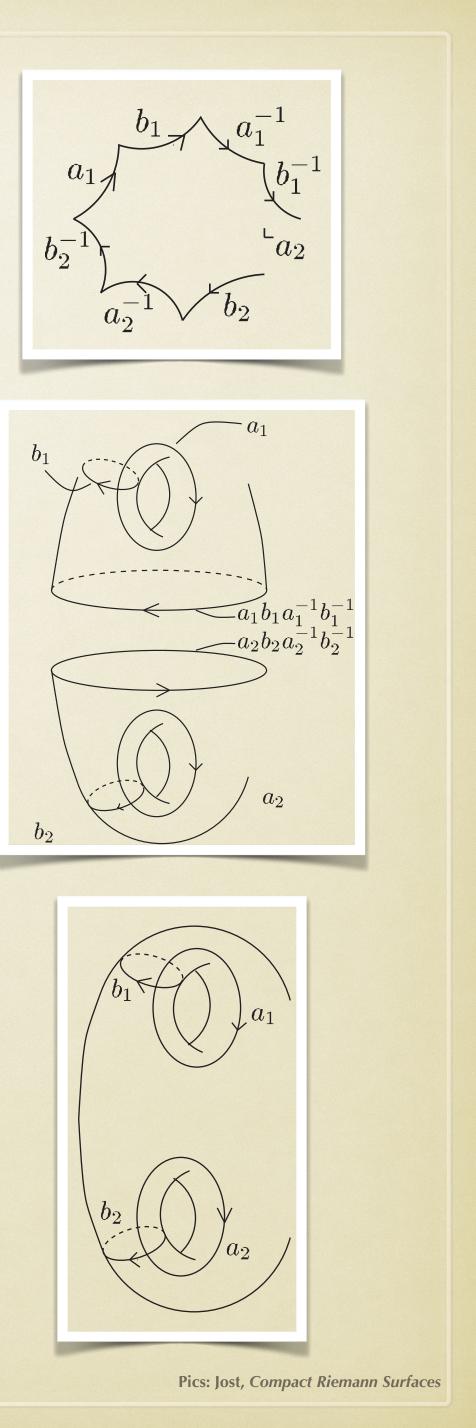
$$\langle \phi_L | \phi_R \rangle = \sum_{i,j}^{2g} \int_{\gamma_i} \phi_L \ (\mathbf{H}^{-1})_{ij} \int_{\gamma_j} \phi_R ,$$

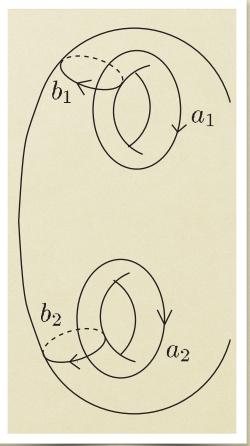
where $\{\gamma_i\}_{i=1,...,g} = a_i$ and $\{\gamma_i\}_{i=g+1,...,2g} = b_i$

$$\mathbf{H} = \begin{pmatrix} 0 & \mathbb{I}_{g \times g} \\ -\mathbb{I}_{g \times g} & 0 \end{pmatrix}, \quad \text{yielding} \quad \mathbf{H}^{-1} = \begin{pmatrix} 0 & -\mathbb{I}_{g \times g} \\ \mathbb{I}_{g \times g} & 0 \end{pmatrix},$$

and $\mathbb{I}_{g \times g}$ is the identity matrix in the $(g \times g)$ -space.

, and
$$\mathbf{H}_{ij} = [\gamma_i | \gamma_j]$$
, namely





79

Twisted Riemann Periods Relations (TRPR)

 $\langle \varphi_L | \varphi_R \rangle = \langle \varphi_L | \mathbb{I}_h | \varphi_R \rangle = \sum_{i,j=1}^r \langle \varphi_I | \mathbb{I}_h | \varphi_R \rangle$

 $[C_L|C_R] = [C_L|\mathbb{I}_C|C_R] = \sum_{i,j=1}^{\nu} [C_I]$

$$[Integrals] \qquad [(dual) Integrals] \qquad ((dual) Integr$$

$$\sum_{i,j}^{\nu} \left(\mathbf{C}^{-1} \right)_{ij} \left\langle e_j | C_R \right] = \sum_{i,j}^{\nu} \int_{C_L} u^{-1} h_i \left(\mathbf{C}^{-1} \right)_{ij} \int_{C_R} u e_j$$

$$= 1$$
[Integrals]

[(dual) Integrals]

Generalising Riemann Bilinear Relations

a	S	1
		-

A unique framework for:

Linear Relations

Gauss contiguity relations (Twisted Period Integrals)

Integration by parts identities (Feynman Integrals)

Differential Equations

Dimension-shift relations (Feynman Integrals)

• Finite difference Equations (Twisted Period Integrals)

Quadratic Relations

Riemann Twisted Periods Relations

KLT relations (Gravity vs Gauge-theory Amplitudes)

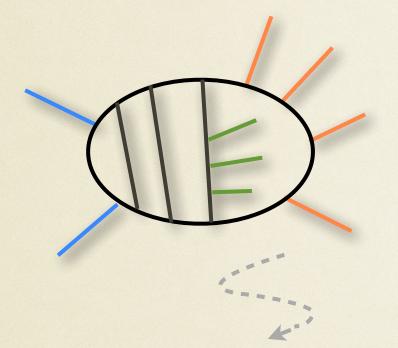
Relations for Closed- vs Open-String Theory Amplitudes

...& more

Vector Space Structure of Feynman Integrals

Parametric Representation(s)

• Upon a change of integration variables



N-denominator generic Integral

 $I_{a_1,...,a_N}^{[d]} = \int_{\mathcal{C}} u(\mathbf{z}) \ \varphi_N(\mathbf{z})$

Mizera & P.M. (2018)

Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019, 2020)

 $arphi_N(\mathbf{z}) = \hat{arphi}(\mathbf{z}) d^N \mathbf{z}$ differential *N*-form $d^N \mathbf{z} = dz_1 \wedge \ldots \wedge dz_N$ $\hat{arphi}_N(\mathbf{z}) = f(\mathbf{z}) \prod_i z_i^{-a_i}$

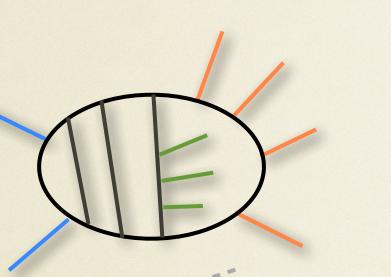
 $u(\mathbf{z}) = \mathcal{P}(\mathbf{z})^{\gamma}$

 $\mathcal{P}(\mathbf{z}) = \mathbf{graph-Polynomial}$

 $\gamma(d) =$ generic exponent

Feynman Integrals :: Baikov Representation

• Denominators as integration variables Baikov (1996)

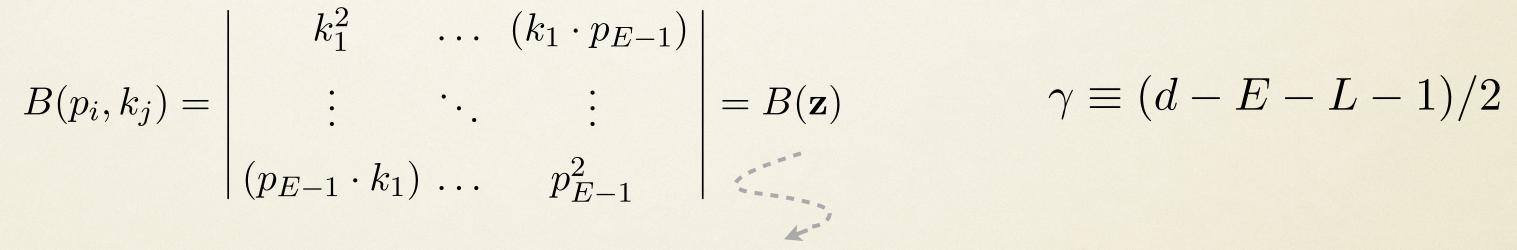


N-denominator generic Integral Frellesvig and Papadopoulos (2017)

$$\{D_1,\ldots,D_N\} \to \{z_1,\ldots,z_N\} \equiv \mathbf{z}$$

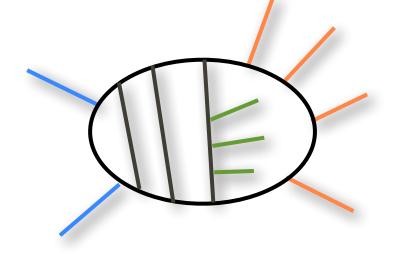
$$I_{a_1,...,a_N}^{[d]} = \int_{\mathcal{C}} B(\mathbf{z})^{\gamma} \frac{d^n \mathbf{z}}{z_1^{a_1} z_2^{a_2} \cdots z_N^{a_N}}$$

Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019, 2020)



Gram determinant

Vector Space of Feynman Integrals



overall create a closed path which is clearly contractible in 0.

• Vector space dimension

that u(QC) -1 then the number of Master Integrals is

$$\omega \equiv \sum_{i=1}^{\infty} \hat{\omega}_i \, \mathrm{d}z_i = \mathrm{d}\log(u)^{\omega} = 0 \quad \text{Z}_{\omega} = \{\text{zeroes of } \omega\} \quad \text{for master integrals is}_{\omega} = \{\text{poles of } \omega\} \cup \{\infty\}$$

$$\nu \equiv \mathrm{dim}(H^n_{\pm\omega}) = \operatorname{dim}(\mathbb{Z}_{\omega}) = (-1)^n (n + 1 - \chi(\mathbb{P}_{\omega})) = n \text{umber of solutions of the system} \quad \begin{cases} \omega_1 = 0 \\ \vdots \\ \omega_n = 0 \end{cases} \quad \begin{cases} \omega_1 = 0 \\ \vdots \\ \omega_n = 0 \end{cases} \quad (28) \\ \vdots \\ \omega_n = 0 \end{cases}$$

where

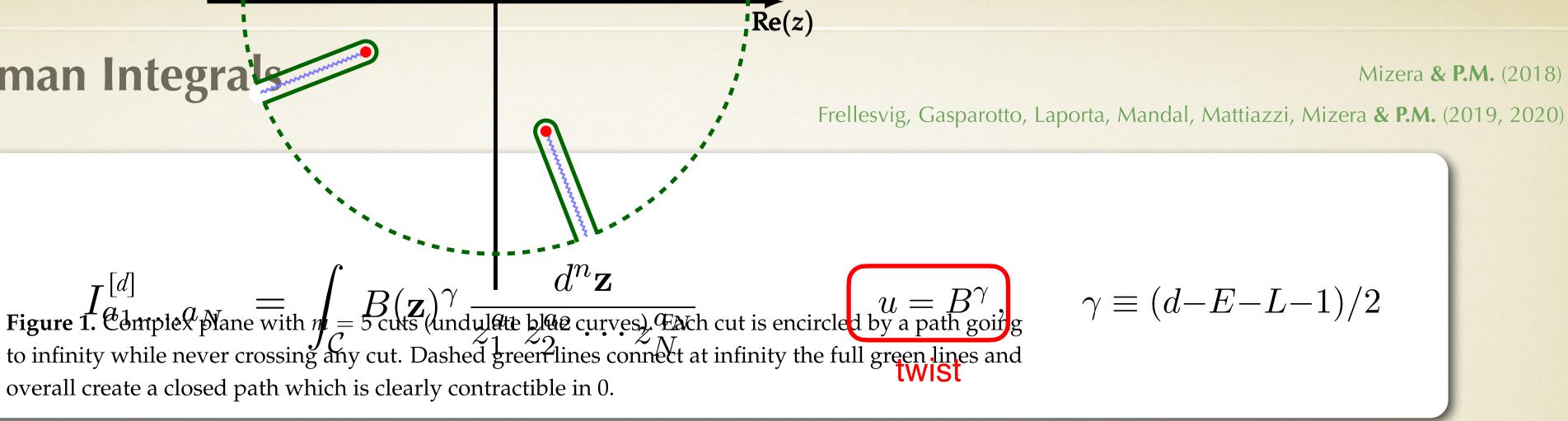
• (dual) bases choices: Master Forms for Master Integrals $\omega = d \log u(\vec{z}) = \sum_{i=1}^{n} \partial_{z_i}$

Summing up, the number h of MIs, which is the dimension of both the cohomology and homology groups thanks to the Poincaré duality, is equivalent to the number of proper critical points of B, which solve $\omega = 0$. We mention that ν is also related to another geometrical object: the Euler characteristic χ

• Decomposing Forms for fDectonoposingel net legicans[63]

$$\langle \varphi | = c_1 \langle e_1 | + c_2 \langle e_2 | + c_3 \langle e_3 | + \dots + C_{\nu}^{n} \langle e_{\nu} | ^{-1)^n} (n + 1 - \chi(P_{\omega})) c_i = \sum_{j=1}^{\nu} \langle \varphi_L | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji}^{30}$$

²⁴⁵ While we do not delve into the details of this particular result, we highlight how, once again, v relates the physical problem of solving a Feynman integral into a geometrical one



As shown more extensively in [53], this connection is actually much more general: given an integral of the form (26), in which ϕ is a holomorphic *M*-form and *u* is a multivalued function such

$$u_i \log u(\vec{z}) dz_i = \sum_{i=1}^n \omega_i dz_i.$$
(29)

[53][87]. It is found that is linked to $\chi(P_{\omega})$, where P_{ω} is a projective variety defined as the set of poles

Intersection Numbers for 1-forms

Intersection Numbers for 1-forms

• Calculus and Differential Forms two closed forms φ_1, φ_2

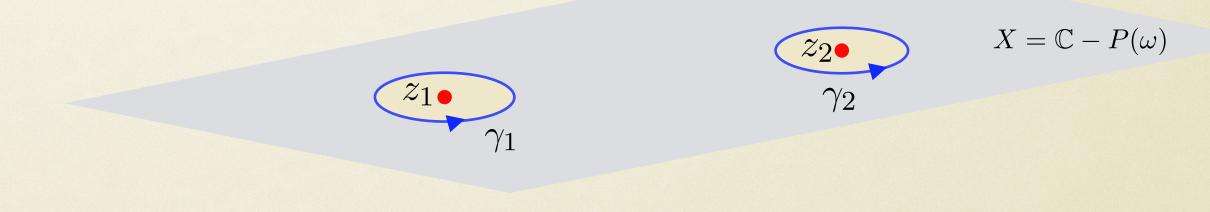
$$\langle \varphi_1 | \varphi_2 \rangle = \frac{1}{2\pi i} \int_X \varphi_1 \wedge \varphi_2 = \frac{1}{2\pi i} \int_X d\Omega = \frac{1}{2\pi i} \int_{\partial X} d\Omega = \sum_{p \in \text{Poles}} \text{Res}_{z=p} \left(\Omega \right) \qquad \qquad d\psi_1 = \varphi_1 \qquad \qquad \Omega \equiv \psi_1 \varphi_2$$

Intersection Number for twisted cocycles (1-form) Cho, Matsumoto (1996) **Zeroes and Poles of** $\omega \equiv d \log(u) = \gamma d \log(B)$ $\nu = \text{number of critical points} \in Z(\omega)$ $P(\omega) = \{\text{poles of } \omega, \text{including } \infty\}$

 $\varphi_1, \varphi_2 \in H^n_{\mathrm{dR}}$

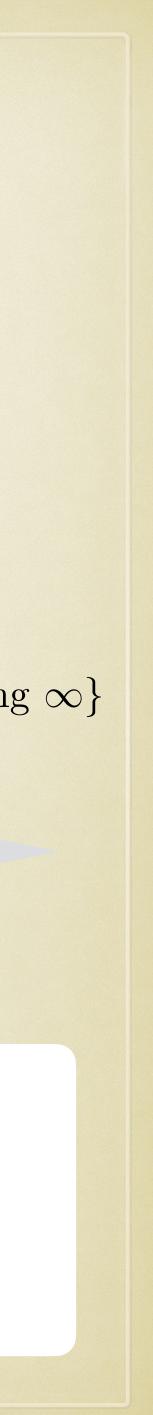
 $\varphi_1 \equiv u \varphi_L$, $\varphi_2 \equiv u^{-1} \varphi_R$ $\psi_1 \equiv u \psi_L$

$$\langle \varphi_L | \varphi_R \rangle = \frac{1}{2\pi i} \int_X (u\varphi_L) \wedge (u^{-1}\varphi_R) = \frac{1}{2\pi i} \sum_{z_i \in P(\omega)} \oint_{\gamma_i} \psi_i \varphi_R = \sum_{z_i \in P(\omega)} \operatorname{Res}_{z=z_i} \left(\psi_i \varphi_R \right)$$

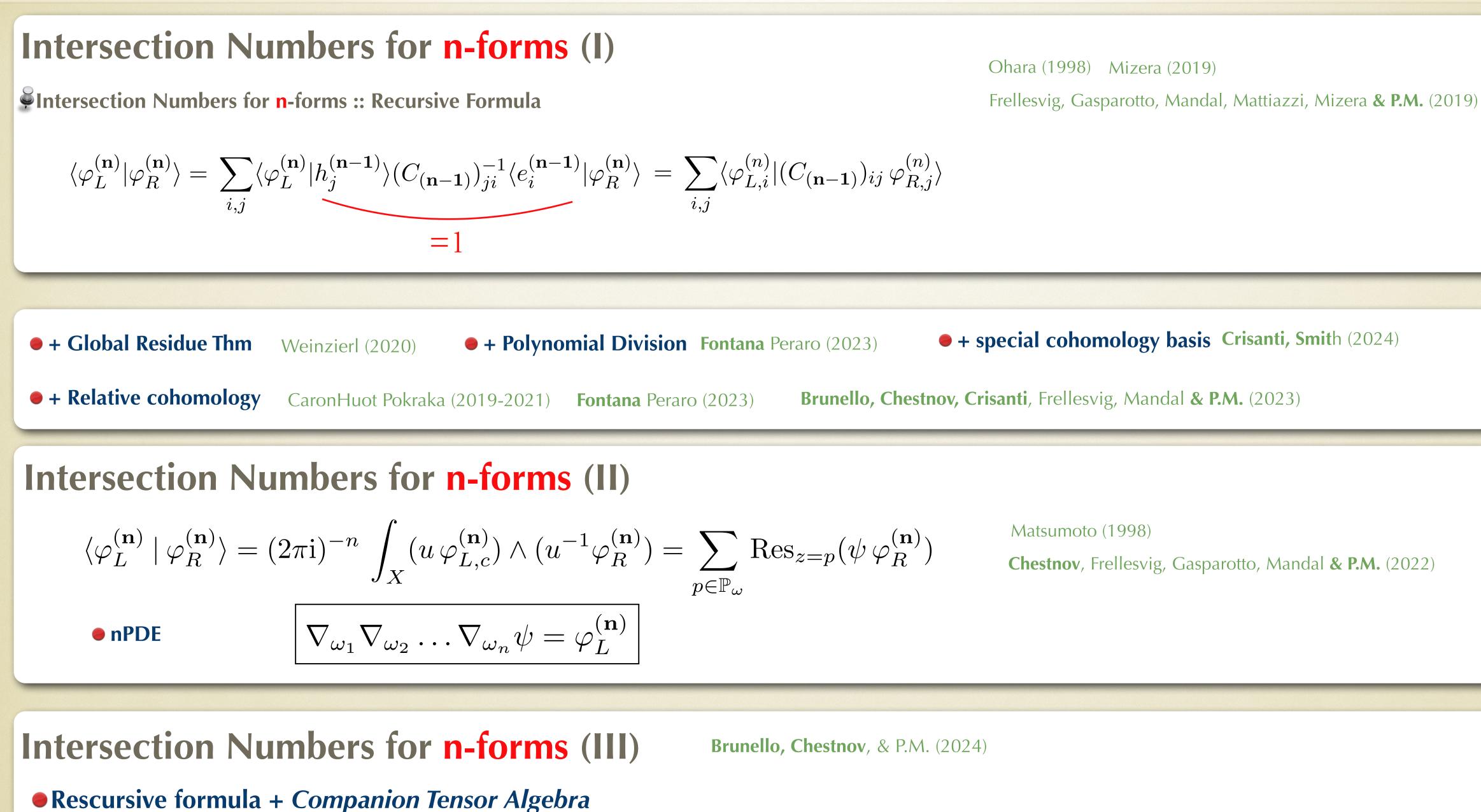


 $\nabla_{\omega}\psi_i = \varphi_L$, for $z \to z_i \in P(\omega)$

87



Intersection Numbers for n-forms :: Methods



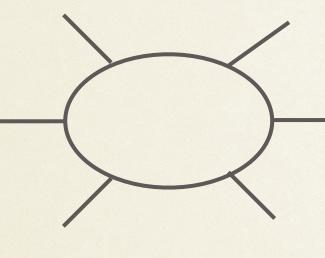
$$\varphi_{L,i}^{(n)}|(C_{(\mathbf{n-1})})_{ij}\,\varphi_{R,j}^{(n)}\rangle$$

$$\sum_{\omega} \operatorname{Res}_{z=p}(\psi \, \varphi_R^{(\mathbf{n})})$$

Feynman Integrals Decomposition / Projection

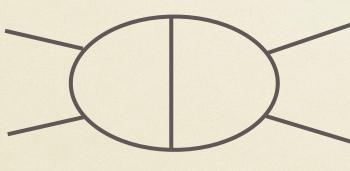
Complete decomposition @ 1- & 2-Loop

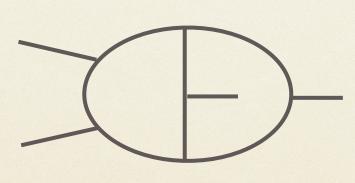
1-Loop 6-point



☑1-Loop 7-point

⊠2-loop 4-point

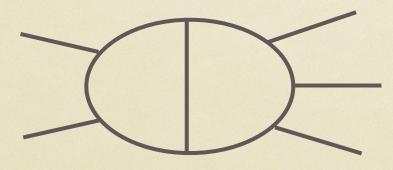




planar diagram

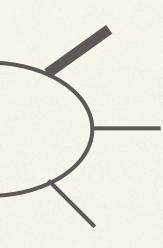
non-planar diagram

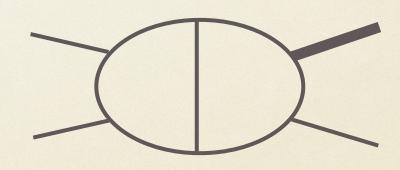
2-loop 5-point



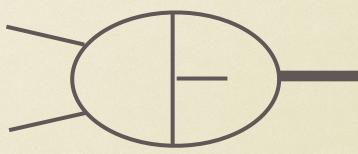
planar diagram

Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (2023)





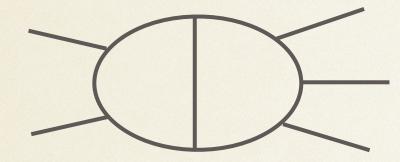
planar diagram



non-planar diagram

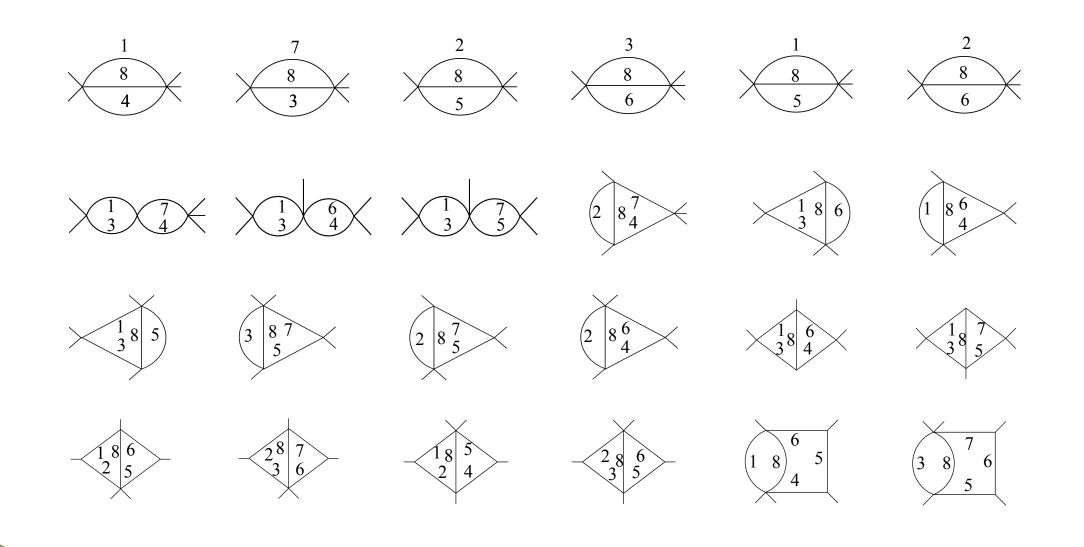
Complete decomposition @ 1- & 2-Loop

2-loop 5-point



$$I_{a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}} = \int d^{11}z \ u(a_{11}) = \int d^{1$$

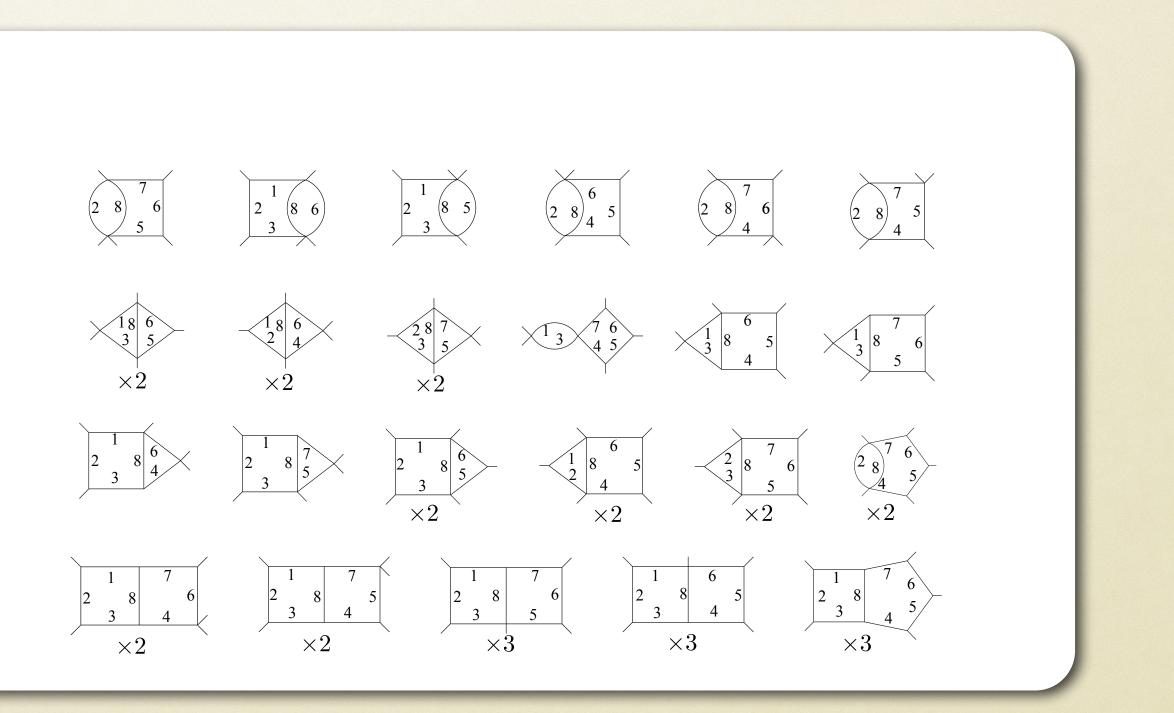
• 62 MIs and 47 sectors



Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (2023)

Brunello, Chestnov, & P.M. (2024)

$$(\mathbf{z})\frac{z_9^{-a_9}z_{10}^{-a_{10}}z_{11}^{-a_{11}}}{z_1^{a_1}z_2^{a_2}z_3^{a_3}z_4^{a_4}z_5^{a_5}z_6^{a_6}z_7^{a_7}z_8^{a_8}}$$



☑ (Numerical) decomposition **up to degree-20**

Intersections Numbers beyond Feynman Integrals

Intersections Numbers @ QM and QFT

Mapping integrals to Twisted Period Integrals

Applying Intersection Theory

Cacciatori **& P.M.** (2022)

Orthogonal Polynomials and Matrix Elements in QM

Case i)
$$I_{nm} \equiv \int_{\Gamma} P_n(z) P_m(z) f(z) dz$$
,

Case ii)
$$I_{nm} \equiv \langle n | \mathscr{O} | m \rangle = \int_{\Gamma} \Psi_n^*(z) \, \mathscr{O}(z) \, \Psi_m(z) \, f(z) \, dz$$

Master Decomposition formula

For the considered cases, we obtain:

corresponding to:

 $\varphi=c_1e_1,$ $I_{nm} = c_1 E_1$

Orthogonality-like integrals and matrix elements in QM belong to a finite dimensional vector space

Laguerre, Legendre, Tchebishev, Gegenbauer, Hermite

Harmonic oscillator, H-atom

in terms of just one basic form, $e_1 = dz$

(one master integral)

Green's Function and Kontsevich-Witten tau-function

Case iii)
$$G_n \equiv \frac{\int \mathscr{D}\phi \,\phi(x_1) \cdots \phi(x_n) \exp[-S_E]}{\int \mathscr{D}\phi \,\exp[-S_E]}$$
 Weinzierl Gasparott

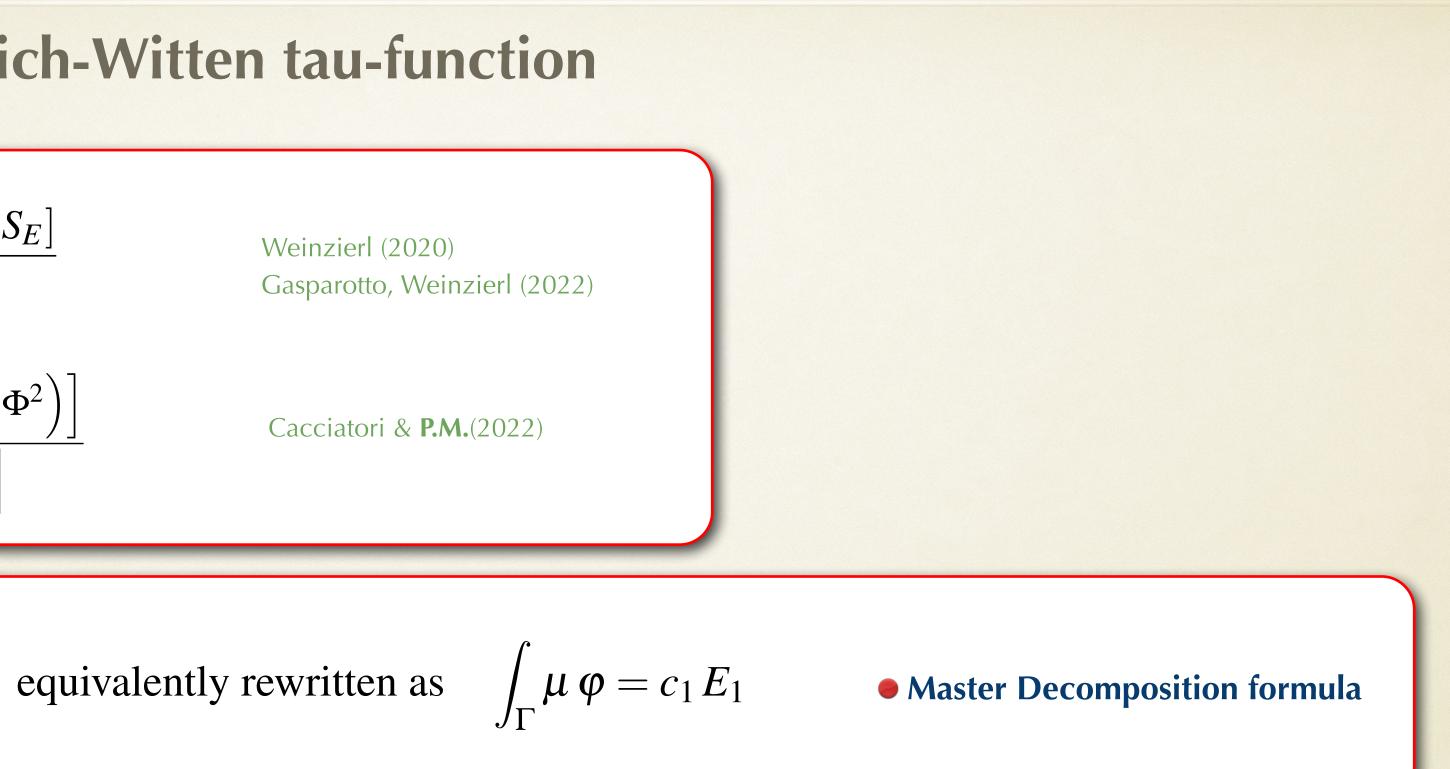
Case iv)
$$Z_{KW} \equiv \frac{\int d\Phi \exp\left[-\operatorname{Tr}\left(-\frac{i}{3!}\Phi^3 + \frac{\Lambda}{2}\Phi^2\right)\right]}{\int d\Phi \exp\left[-\operatorname{Tr}\left(\frac{\Lambda}{2}\Phi^2\right)\right]}$$

$$c_1 = \frac{\int_{\Gamma} \mu \, \varphi}{\int_{\Gamma} \mu \, e_1} \; ,$$

• Toy models univariate integrals

Green's functions and correlators in QFT are determined by intersection numbers

"Path integrals" belong to a finite dimensional vector space



Intersection Numbers @ Fourier Integrals

Brunello, Crisanti, Giroux, Smith & P.M. (2023)

Fourier integrals from Intersection Theory

Fourier integ

grals in Baikov representation as twisted periods

$$\tilde{f}(\{x_i\}) = \int f(\{q_i\}) \prod_{j=1}^{L} e^{iq_j \cdot x_j} \frac{d^D q_j}{(2\pi)^{D/2}} = \int_{C_R} u(\mathbf{z}) \varphi_L(\mathbf{z}) \qquad u(\mathbf{z}) = \kappa e^{ig(\mathbf{z})} B(\mathbf{z})^{\frac{D-L-E-1}{2}}$$
1: Feynman propagator in position-space
$$I_n = \int_{\mathcal{M}} d^D q \frac{e^{iq \cdot x}}{(q^2 + m^2 - i\varepsilon)^n}$$
2: Spectral gravitation wave form in KMOC formalism
$$I_{\beta_1,\beta_2} = \int_{\mathcal{M}} d^D q \frac{\delta(u_1 \cdot q)\delta(u_2 \cdot (q-k))q^{\nu_1} \dots q^{\nu_2 m} e^{-iq \cdot b}}{[q^2 - i\varepsilon]^{\beta_1}[(q-k)^2 - i\varepsilon]^{\beta_2}}$$

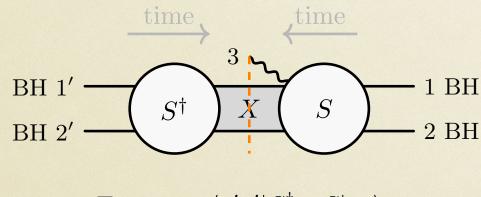
Application-

ds

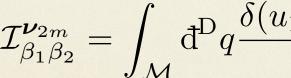
$$= \int_{C_R} u(\mathbf{z}) \varphi_L(\mathbf{z}) \qquad u(\mathbf{z}) = \kappa e^{ig(\mathbf{z})} B(\mathbf{z})^{\frac{D-L-E-1}{2}}$$

$$I_n = \int_{\mathcal{M}} d^D q \frac{e^{iq \cdot x}}{(q^2 + m^2 - i\varepsilon)^n}$$
formalism
$$\sum_{\substack{x = 1 \ x = 1 \$$

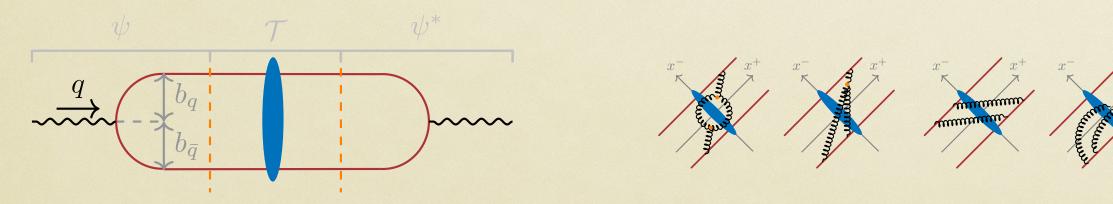
Application-2

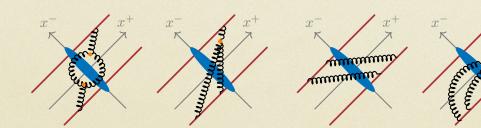


 $\operatorname{Exp}_{3} = {}_{\operatorname{in}} \langle 2'1' | S^{\dagger} a_{3} S | 12 \rangle_{\operatorname{in}}$



Application-3: QCD Color Dipole Scattering and Balitski-Kovchegov Equations





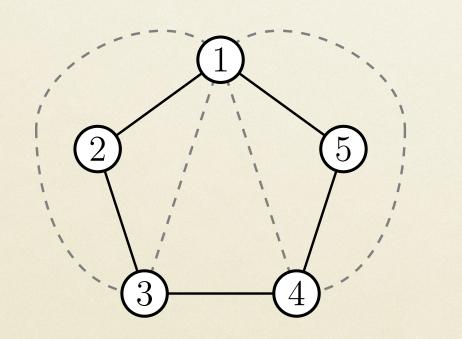
Brunello, Crisanti, Giroux, Smith & P.M. (2023)

$$I^{ij} = \int_{\mathbb{R}^{2D}} d^{D}q_{1} d^{D}q_{2} \frac{N_{I}^{ij}(q_{1}, q_{2})e^{i(q_{1} \cdot x_{1} + q_{2} \cdot x_{2})}}{q_{1}^{2}(q_{1}^{2}\tau + q_{2}^{2})} \qquad \qquad N_{I}^{ij} = q_{1}^{i}q_{2}^{j},$$

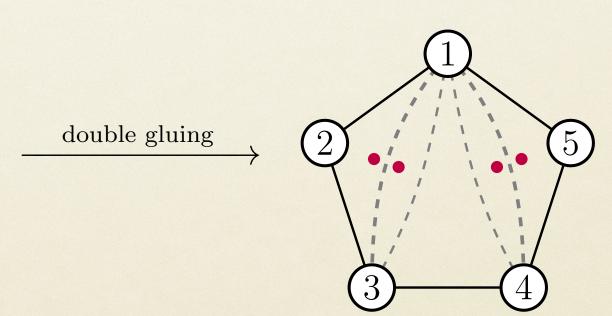
$$G^{ij} = \int_{\mathbb{R}^{2D}} d^{D}q_{1} d^{D}q_{2} \frac{N_{G}^{ij}(q_{1}, q_{2})e^{i(q_{1} \cdot x_{1} + q_{2} \cdot x_{2})}}{(q_{1} + q_{2})^{2}(q_{1}^{2}\tau + q_{2}^{2})} \qquad \qquad N_{G}^{ij} = \delta^{ij}(q_{1}^{2} - q_{2}^{2}) - \frac{2q_{1}^{i}(q_{1} + q_{2})^{j}}{u} + \frac{2q_{1}^{i}(q_{1} + q_{2})^{j}}{u}$$



Intersection Numbers @ Gluing Method in N=4 SYM



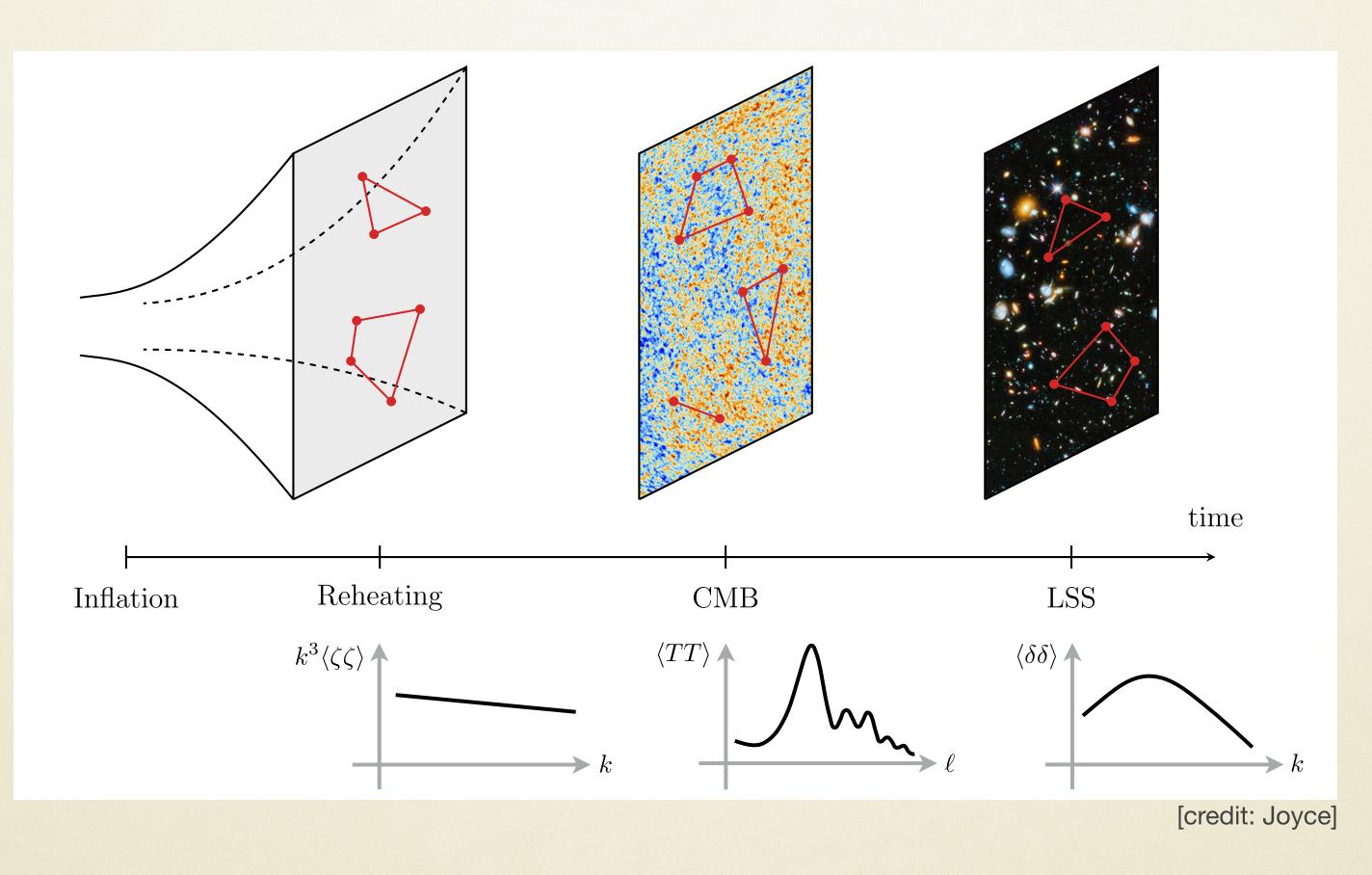
Crisanti, Eden, Gtottwald, Scherdin & P.M. (2024)



Intersection Numbers @ Cosmological Integrals

Benincasa, Brunello, Mandal, Vazão, & PM (2024)

Cosmological Correlators and Wavefunctions



- Initial conditions for structures in our universe
- Physics of Inflation
- Quantum Field Theory in Curved Spacetime

Cosmological Correlators and Wavefunctions

conformally coupled scalar field (with polynomial self-interactions), • Toy-model:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} R \phi^2 - \sum_{p>2} \frac{\lambda_p}{p!} \phi^p \right]$$

• Goal: correlation functions in an FRW cosmology.

$$\Psi_{\text{FRW}}(E_v, E_I) = \int_0^\infty \prod_v \mathrm{d}\omega_v \left(\prod_v \omega_v\right)^\varepsilon \Psi_{\text{flat}}(E_v + \omega_v, E_I)$$

• Twisted period integrals

$$I(C, D; n; \varepsilon) = \int_0^\infty dx_1 \cdots dx_m P(x) \prod_I (C_{Ij} x_j + D_I)^{-n_I + \varepsilon_I} =$$

The cosmological wavefunction satisfies a differential equation, which governs how it changes as the external kinematics are varied.

Arkani-Hamed, Benincasa, Postnikov Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel Benincasa, Vazao

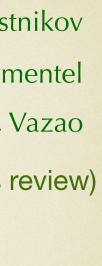
(see Beinincasa et al.'s review)

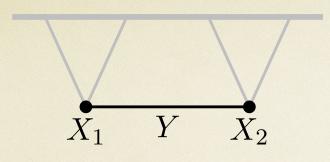
 $a(\eta) = (\eta/\eta_0)^{-(1+\varepsilon)}$

rational function of E_v and E_I ("energies" associated with the vertices and the internal edges)

Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel

102





$$f = \int dz_1 \wedge dz_2 \frac{(z_1 z_2)^{\epsilon}}{(z_1 + y_1 + 1)(z_2 + y_2 + 1)(z_1 + z_2 + y_1 + y_2)}$$

• Twisted Period Integrals

$$I = \int_{\mathcal{C}} u(z_1, z_2) \varphi(z_1, z_2) \qquad u = (z_1 z_2)^{\epsilon} (D_1 D_2 D_3)^{\gamma}$$

 γ is a regulator

$$\omega = d \log(u) = \omega_1 dz_1 + \omega_2 dz_2 \qquad \qquad \omega_1 = \frac{\gamma(2y_1 + y_2 + 2z_1 + z_2 + 1)}{(y_1 + z_1 + 1)(y_1 + y_2 + z_1 + z_2)} + \frac{\epsilon}{z_1} \qquad \qquad \omega_2 = \frac{\gamma(y_1 + 2y_2 + z_1 + 2z_2 + 1)}{(y_2 + z_2 + 1)(y_1 + y_2 + z_1 + z_2)} + \frac{\epsilon}{z_2}$$

• Number of MIs = dimH and bases choice

$$\omega_2 = 0$$
 $\nu_2 = 2$
 $e^{(2)} = h^{(2)} = \left\{\frac{1}{D_1}, \frac{1}{D_2}\right\}$
• 2 MIs in the internal layer

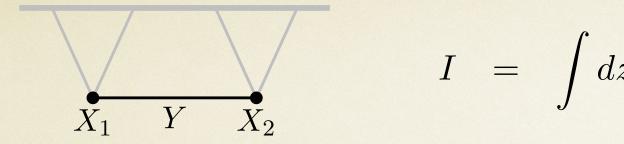
$$\begin{cases} \omega_1 = 0 \\ \omega_2 = 0 \end{cases} \quad \nu_{21} = 4 \qquad e^{(21)} = h^{(21)} = \left\{ \frac{1}{\epsilon D_3^2}, \frac{1}{D_1 D_3}, \frac{1}{D_2 D_3}, \frac{1}{D_1 D_2 D_3} \right\} \quad \bullet \text{ 4 MIs in the external layer}$$

$$C = \begin{pmatrix} \frac{(\gamma+\epsilon)^2}{\gamma(\gamma^2-1)\epsilon^2(3\gamma+2\epsilon)} & -\frac{\gamma+\epsilon}{(\gamma-1)\gamma\epsilon(3\gamma+2\epsilon)} & -\frac{\gamma+\epsilon}{(\gamma-1)\gamma\epsilon(3\gamma+2\epsilon)} & \frac{1}{\gamma\epsilon-\gamma^2\epsilon} \\ -\frac{\gamma+\epsilon}{\gamma(\gamma+1)\epsilon(3\gamma+2\epsilon)} & \frac{2(\gamma+\epsilon)^2}{\gamma^2(2\gamma+\epsilon)(3\gamma+2\epsilon)} & \frac{1}{3\gamma^2+2\gamma\epsilon} & \frac{1}{\gamma^2} \\ -\frac{\gamma+\epsilon}{\gamma(\gamma+1)\epsilon(3\gamma+2\epsilon)} & \frac{1}{3\gamma^2+2\gamma\epsilon} & \frac{2(\gamma+\epsilon)^2}{\gamma^2(2\gamma+\epsilon)(3\gamma+2\epsilon)} & \frac{1}{\gamma^2} \\ -\frac{1}{\gamma^2\epsilon+\gamma\epsilon} & \frac{1}{\gamma^2} & \frac{1}{\gamma^2} & \frac{1}{\gamma^2} \end{pmatrix}$$

Intersection Matrix

Brunello & P.M. (2023)

$$D_1 = (z_1 + y_1 + 1), \quad D_2 = (z_2 + y_2 + 1), \quad D_3 = (z_1 + z_2 + y_3)$$



$$I = \int dz_1 \wedge dz_2 \frac{(z_1 z_2)^{\epsilon}}{(z_1 + y_1 + 1)(z_2 + y_2 + 1)(z_1 + z_2 + y_1 + y_2)}$$

• 4 MIs
$$e^{(21)} = \begin{cases} \frac{1}{\epsilon D_3^2}, \frac{1}{D_1 D_3}, \frac{1}{D_2 D_3}, \frac{1}{D_1 D_2 L_3} \end{cases}$$

1 1

System of Differential Equations

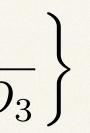
$$\partial_x \langle e_i | = \Omega_{ij} \langle e_j |$$

after taking the limit
$$\gamma \to 0$$
:

em $\Omega_{y_1} = \begin{pmatrix} \frac{2\epsilon}{y_1 + y_2 + 1} & 0 & 0 & 0 \\ -\frac{\epsilon}{y_1 + 1} & \frac{\epsilon}{y_1 + 1} & 0 & 0 \\ \frac{\epsilon}{y_1} & 0 & \frac{\epsilon}{y_1} & 0 \\ \frac{\epsilon}{y_1(y_1 + 1)} & 0 & \frac{\epsilon}{y_1(y_1 + 1)} & \frac{\epsilon}{y_1 + 1} \end{pmatrix}$ Canonical system

Cohomology-based methods for cosmological correlations @ tree level MDifferential Equations for cosmological correlations @ tree level

Brunello & P.M. (2023)



Master Decomposition Formula

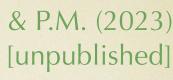
 $\Omega_{ij} = \langle (\partial_x + \sigma_x) e_i | h_k \rangle (\mathbf{C}^{-1})_{kj}$

$$\Omega_{y_2} = \begin{pmatrix} \frac{2\epsilon}{y_1 + y_2 + 1} & 0 & 0 & 0\\ \frac{\epsilon}{y_2} & \frac{\epsilon}{y_2} & 0 & 0\\ -\frac{\epsilon}{y_2 + 1} & 0 & \frac{\epsilon}{y_2 + 1} & 0\\ \frac{\epsilon}{y_2(y_2 + 1)} & \frac{\epsilon}{y_2(y_2 + 1)} & 0 & \frac{\epsilon}{y_2 + 1} \end{pmatrix}$$

Pokraka et al. (2023)

Gasparotto, Mazloumi, Xu (2024)

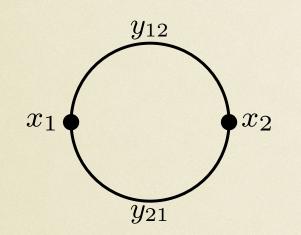
Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel (2023)



Cosmological Integrals @ 1-loop

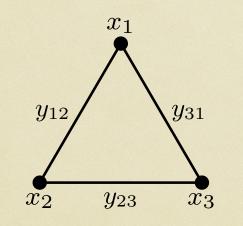
- Mapping cosmological integrals to QFT-like integrals in momentum space, with semi-integer denominator powers
- From momentum-space to Baikov representation to cast them as twisted period integrals

• Two-site graph



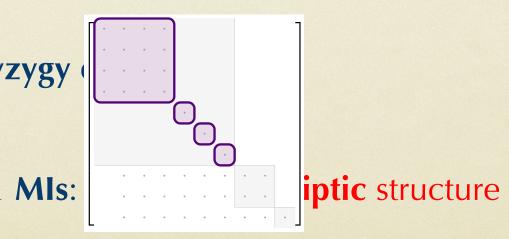
M Linear algebra from **Algebraic Geometry and Syzygy equations M**Linear algebra from **Intersection Theory** \mathbf{M} (y-integration) Canonical Differential Equations for $\nu = 6$ MIs: polylog structure **☑**(y-integration) **Analytic solution** Site-weight x-integration: Mellin Transform and Method of Brackets **Malytic solution:** back of a envelope result

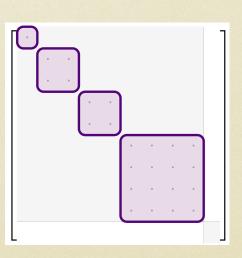
Three-site graph



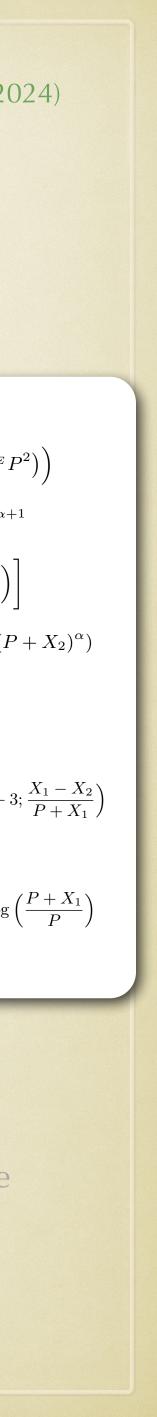
MLinear algebra from **Algebraic Geometry and Syzygy M**Linear algebra from **Intersection Theory** \mathbf{M} (y-integration) **Differential Equations for** $\nu = 41$ **MIs**:

$$\begin{split} \mathcal{I}_{(2,1)} &= \frac{2^{-3-2\alpha} \pi^{3/2} (X_1 + X_2)^{1+2\alpha} \csc(\pi\alpha)^2 \Gamma\left(-\frac{1}{2} - \alpha\right)}{\Gamma[-\alpha]} \left(2 - \frac{1}{\epsilon} - \log\left(4\pi e^{\gamma_E}\right)^2 + \frac{\pi^{3/2} \csc^2(\pi\alpha)}{8(\alpha + 1)^2 P} \left[-4\sqrt{\pi} \left((P + X_1)^{\alpha + 1} - 2(X_1 - P)^{\alpha + 1}\right)(P + X_2)^{\alpha}\right)^2 - \frac{4^{-\alpha} \Gamma\left(-\alpha - \frac{1}{2}\right)(X_1 + X_2)^{2\alpha + 2}}{\Gamma\left(-\alpha\right)} {}_2F_1\left(1, -2(\alpha + 1); -\alpha; \frac{P + X_1}{X_1 + X_2}\right)^2 + \frac{\pi^2 \csc(\pi\alpha) \csc(2\pi\alpha)(P + X_1)^{\alpha}}{4\alpha + 2} \left[-2(P + X_1)((P - X_2)^{\alpha} + (-1)^{\alpha}(X_1 - X_2)(P + X_1)^{\alpha} {}_2F_1\left(1 - \alpha, -2\alpha; 1 - 2\alpha; \frac{X_1 - X_2}{P + X_1}\right) + (X_1 + X_2)(P + X_1)^{\alpha} {}_2F_1\left(1 - \alpha, -2\alpha; 1 - 2\alpha; \frac{X_1 + X_2}{P + X_1}\right)\right] - \frac{\pi^{5/2} 4^{-\alpha - 1} \csc(\pi\alpha) \csc(2\pi\alpha)}{\Gamma(-\alpha) \Gamma\left(\alpha + \frac{3}{2}\right)(P + X_1)} \left[(-1)^{\alpha}(X_1 - X_2)^{2\alpha + 2} {}_3F_2\left(1, 1, \alpha + 2; 2, 2\alpha + 3; \frac{X_1 + X_2}{P + X_1}\right)\right] + \frac{\pi^{5/2} 2^{-2\alpha - 1} \csc(\pi\alpha) \csc(2\pi\alpha) \left((-1)^{\alpha} (X_1 - X_2)^{2\alpha + 1} + (X_1 + X_2)^{2\alpha + 1}\right)}{\Gamma(-\alpha) \Gamma\left(\alpha + \frac{3}{2}\right)} \log + (X_1 \leftrightarrow X_2). \end{split}$$





elliptic sector (4x4)-block



De Rham Thm & Vector Spaces Isomorphism

Vector Space of differential n-forms (twisted cocycles)

Vector Space of Feynman Integrals

Vector Space of **Twisted Period Integrals**

Vector Space of integration contours (twisted cycles)

De Rahm Co-Homology $\nu = \dim H$

> Ring of **Differential operators** (w.r.t. external variables) **D-Modules**

6

106

Differential Space of Twisted Period Integrals: Annihilators and D-modules

•Annihilators of Twisted Period Integral I Anr

Systems of Differential equations for twisted period integrals:

- to compute them
- to detect/investigate their symmetries

Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

$$\mathbf{n}(I) \ni \mathbf{A}_p: \quad \mathbf{A}_p \cdot I = 0$$

p = order of the differential operator

Differential Space of Twisted Period Integrals: Annihilators and D-modules

•Annihilators of Twisted Period Integral *I* Ann

• (Twisted) Griffiths' theorem if I =(twisted) period

Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

$$\mathbf{n}(I) \ni \mathbf{A}_{p} : \mathbf{A}_{p} \cdot I = 0$$

od integral, $\exists d\gamma(I) : \int_{\Gamma} d\gamma(I) = 0$
 $\int_{\Gamma} \operatorname{Griffiths}_{(\operatorname{Vanhove, De La})}$

Differential Space of Twisted Period Integrals: Annihilators and D-modules • Annihilators of Twisted Period Integral I Anı • (Twisted) Griffiths' theorem if I =(twisted) perio **A New Algorithm to build Annihilators:** Annihilators from Griffiths' theorem $\mathbf{A}_{p} \equiv \mathbf{D}_{p} + \mathbf{D}_{p-1}$ Conjecture Annihilators as D-module Generators D-module basis: Standard monomials (Std) form Macaulay system solving

Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

$$\mathbf{n}(I) \ni \mathbf{A}_{p}: \quad \mathbf{A}_{p} \cdot I = 0$$

od integral,
$$\exists d\gamma(I): \quad \int_{\Gamma} d\gamma(I) = 0 \qquad \qquad \begin{array}{c} \text{Griffiths} \\ \text{(Vanhove, De La} \end{array}$$

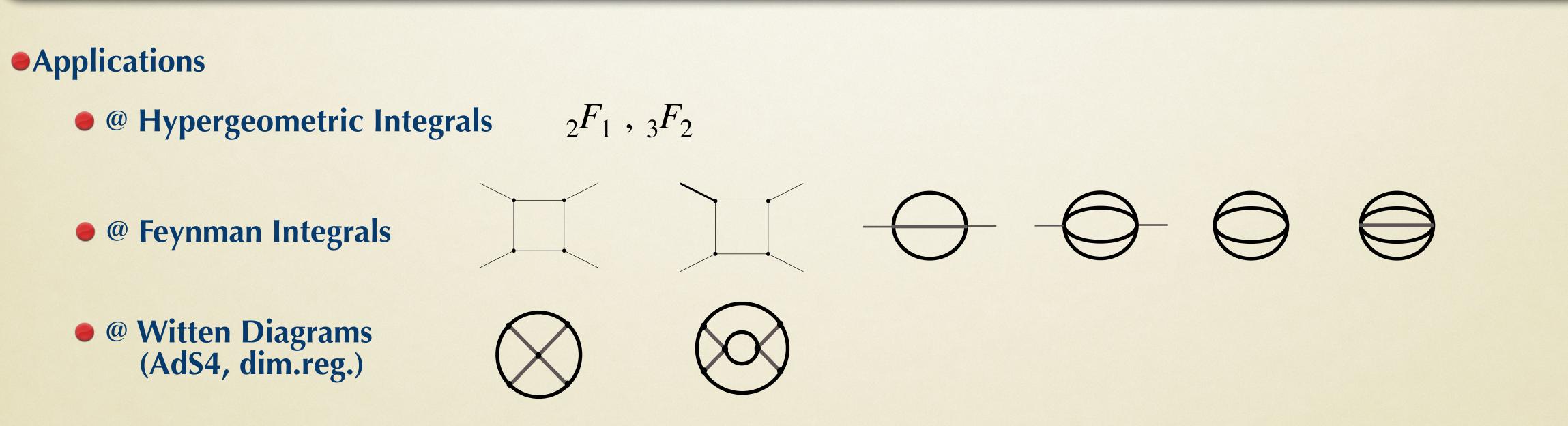
$$\mathbf{A}_p \cdot I = \int_{\Gamma} d\gamma(I) = 0$$

 $\mathbf{A}_{p} \cdot I = 0 \quad \Rightarrow \quad \partial_{x_{1}}^{(i_{1})} \cdots \partial_{x_{n}}^{(i_{n})} (\mathbf{A}_{p} \cdot I) = 0$ Macaulay system

rank = # of Std

Differential Space of Twisted Period Integrals: Annihilators and D-modules

rank = dim(de Rham Co-homology groups) = # of master integrals = order of PF operator <====>



Extending Gel'Fand Kapranov Zelevinski's theorem to restricted integrals

Chestnov, Flieger, Matsubara-Heo, Takayama, Torres Bobadilla, & P.M. (soon)

[exact dependence on dimensional/regulating parameters, and no surface-term involved]

Proving the conjecture <==> D-module ~ De Rham Cohomology Group

To Conclude:

A unifying vision on Calculus in Fundamental Physics

Twisted Period Integrals									
Area High-energy Physics and String theory		General Relativity	Cosmology	Algebraic and Differential Geometry					
Target	Scattering Amplitudes	Interaction Hamiltonians	Correlator Functions	Euler-Mellin Integrals					

Underpinning Correspondence: Physics vs Math

PHYSICS	Quantum Field Theory	Feynman Integrals	Integrals Vector Space	Master Integrals	Integration by Parts Identities	Differential Equations	Quadratic Integral Relations
MATH	Differential and Algebraic Geometry	Twisted Period Integrals	Co- Homology Groups	Master Forms and Contours	Contiguity Relations	Pfaffian Systems	Riemann Twisted Period Relations

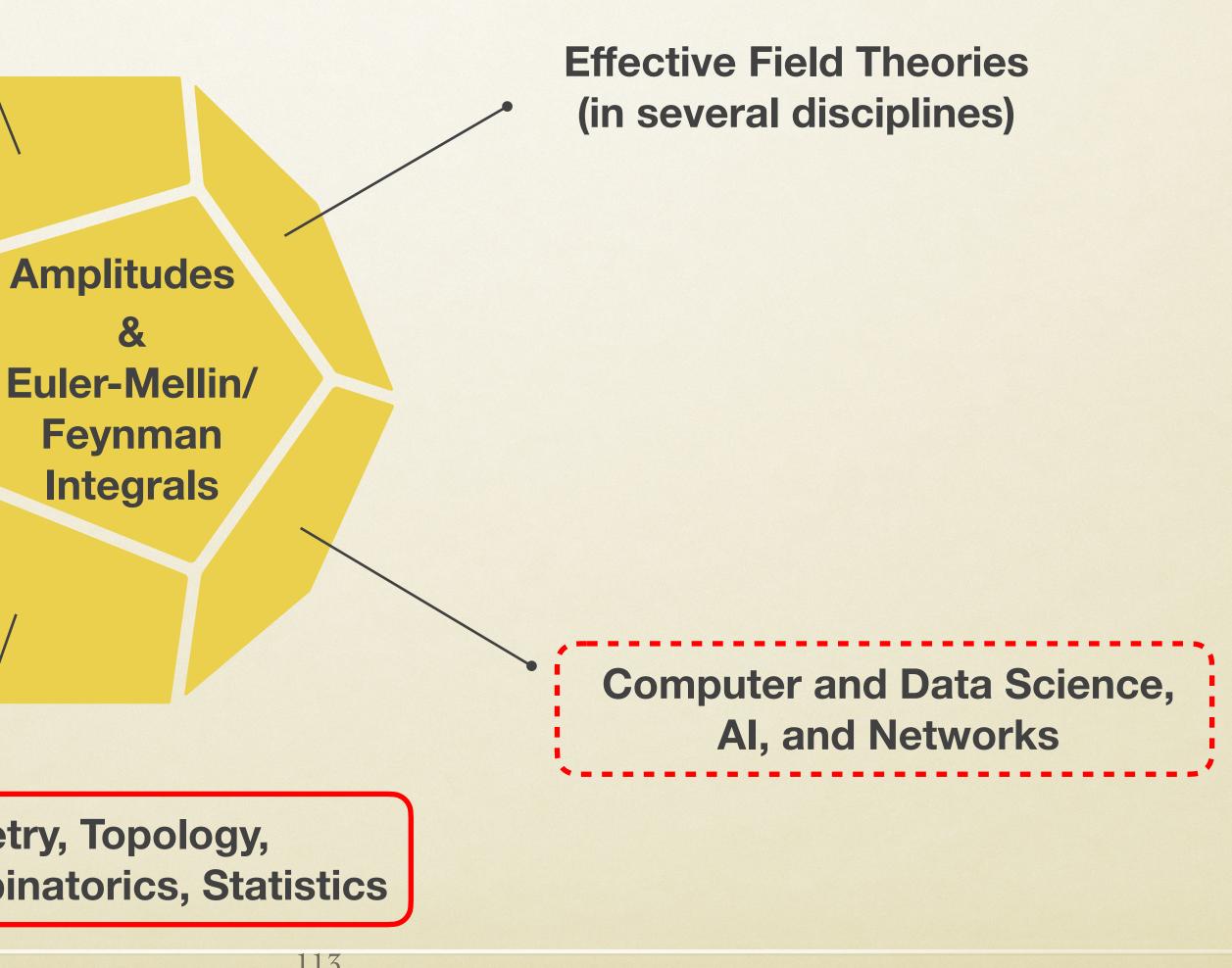
Scattering Amplitudes & Multiloop Calculus: interdisciplinary toolbox

&

Particles, Fields, & Strings

General Relativity, **Gravitational Waves** & Cosmology

> Analysis, Geometry, Topology, **Number Theory, Combinatorics, Statistics**



Summary

• Feynman Integrals and Scattering Amplitudes

Multi-loop Calculus from Quantum Field Theory to Effective Filed Theory of Gravity Precision Gravitational Wave Physics: PM and PN corrections

• The ubiquitous De Rahm Theory

Intersection Theory for Twisted de Rham co-homology

Vector Space Structures

Vector-space dimensions = dimension of co-homology group = counting holes = number of independent Integrals Intersection Numbers ~ Scalar Product for Feynman (Twisted Period) Integrals

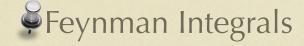
Differential Space Structure

Annihilators and D-Modules Somorphism of D-Module vs de Rham cohomology group

General algorithm for Physics and Math applications

key: Co-Homology Group Isomorphisms

Triggering interdisciplinarity: interwinement between Fundamental Physics, Geometry and Statistics: fluxes ~ period integrals ~ statistical moments

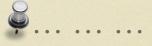


Euler-Mellin Integrals Orthogonal polynomials QM Matrix Elements Fourier integrals

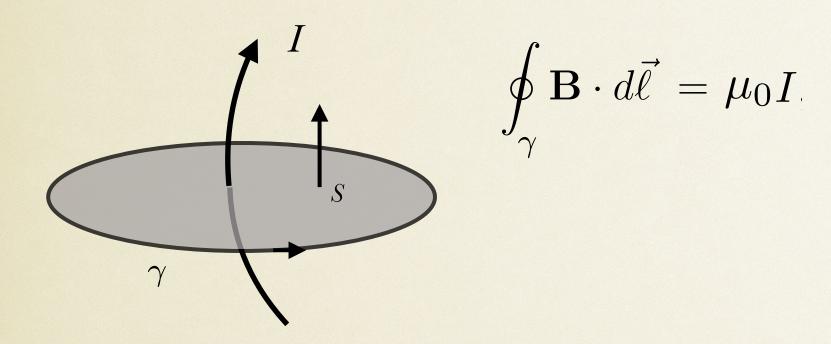
D-modules & GKZ theory Gluing methods in N=4 SYM Green's functions in QFT

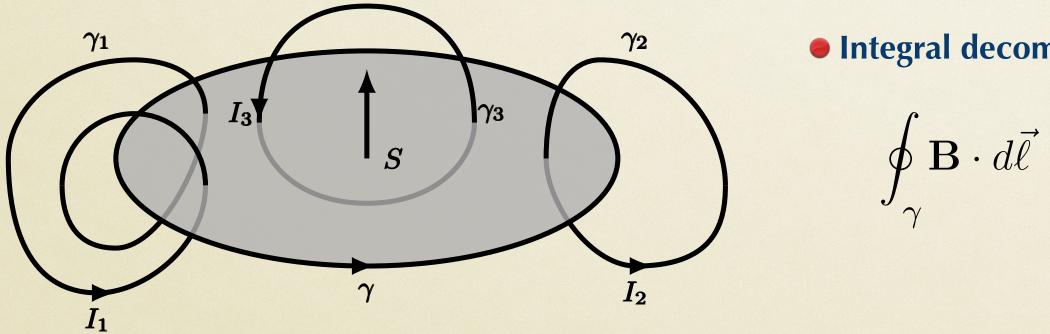
Analyticity & Unitarity vs Differential and Algebraic Geometry, Topology, Number Theory, Combinatorics, Statistics

Correlator functions in Cosmology



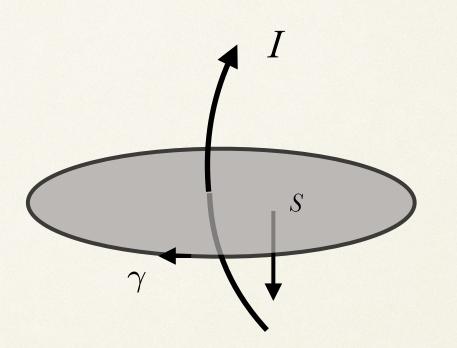
Ampere's Law





 $\text{Link}(\gamma_1, \gamma) = +2$, $\text{Link}(\gamma_2, \gamma) = -1$, and $\text{Link}(\gamma_3, \gamma) = 0$

Cacciatori & P.M.



 $\oint_{\gamma} \mathbf{B} \cdot d\vec{\ell} = -\mu_0 I.$

Integral decomposition by geometry

$$= \sum_{k} (\pm n_{k}) \oint_{\gamma_{k}} \mathbf{B} \cdot d\vec{\ell} = \mu_{0} \sum_{k} (\pm n_{k}) I_{k}$$
Master Contributions

Gauss' Linking Number

 $n_k = \operatorname{Link}(\gamma_k, \gamma)$

The unreasonable effectiveness of mathematics E. Wigner

Wigner was referring to the mysterious phenomenon in which areas of pure mathematics, originally constructed without regard to application, are suddenly discovered to be exactly what is required to describe the structure of the physical world.

M. Berry

Based on:

- **PM**, Mizera *Feynman Integral and Intersection Theory* JHEP 1902 (2019) 139 [arXiv: 1810.03818]
- Frellesvig, Gasparotto, Laporta, Mandal, PM, Mattiazzi, Mizera Decomposition of Feynman Integrals in the Maximal Cut by Intersection Numbers JHEP 1095 (2019) 153 [arXiv: 1901.11510]
- Frellesvig, Gasparotto, Mandal, PM, Mattiazzi, Mizera
 Vector Space of Feynman Integrals and Multivariate Intersection Numbers
 Phys. Rev. Lett. 123 (2019) 20, 201602 [arXiv 1907.02000]
- Frellesvig, Gasparotto, Laporta, Mandal, PM, Mattiazzi, Mizera Decomposition of Feynman Integrals by Multivariate Intersection Numbers. JHEP 03 (2021) 027 [arXiv 2008.04823]
- Chestnov, Gasparotto, Mandal, PM, Matsubara-Heo, Munch, Takayama Macaulay Matrix for Feynman Integrals: linear relations and intersection numbers. JHEP09 (2022) 187 [arXiv: 2204.12983]
- Cacciatori & PM,
 Intersection Numbers in Quantum Mechanics and Field Theory.
 2211.03729 [hep-th].
- Brunello, Chestnov, Crisanti, Frellesvig, Mandal & PM Intersection Numbers, Polynomial Division & Relative Cohomology JHEP09(2024)015 [arXiv: 2401.01897]
- Brunello, Crisanti, Giroux, Smith & PM, Fourier Calculus from Intersection Theory Phys.Rev.D 109 (2024) 9, 094047 [arXiv: 2311.14432]
- Brunello, Chestnov, & PM, Intersection Numbers from Companion Tensor Algebra 2408.16668 [hep-th].
- Benincasa, Brunello, Mandal, Vazão, & PM,
 On one-loop corrections to the Bunch-Davies wavefunction of the universe 2408.16386 [hep-th].
- Crisanti, Eden, Gottwald, Sheredin, & PM, Gluing via Intersection Theory 2411.07330 [hep-th], accepted by PRL

- Mandal, PM, Patil, Steinhoff,
 Gravitational spin-orbit Hamiltonian at NNNLO in the post-Newtonian framework
 JHEP 03 (2023) 130
- Mandal, PM, Patil, Steinhoff,
 Gravitational quadratic in spin Hamiltonian at NNNLO in the post-Newtonian framework
 JHEP 07 (2023) 128
- Mandal, PM, Patil, Silva, Steinhoff,
 Gravitoelctric dynamical tides at second post-Newtonian framework
 JHEP 11 (2023) 067
- Mandal, PM, Patil, Silva, Steinhoff,
 Renormalizing Love: tidal effects at third post-Newtonian framework
 JHEP 02 (2024) 188
- Mandal, PM, Patil, Silva, Steinhoff,
 Radiating Love: adiabatic tidal fluxes and modes up to NNL post-Newtonian order JHEP 05 (2025) 008
- Bini, Damour, Geralico, Laporta, PM,
 Gravitational dynamics at O(G^6): perturbative gravitational scattering meets experimental mathematics
 2008.09389 [gr-qc]
- Bini, Damour, Geralico, Laporta, PM,
 Gravitational scattering at seventh order in G: non-local contribution at the sixth Post-Newtonian order
 Pays Rev D 103 (2021) 4, 044038

Acknowledgements

For collaboration and discussions:

G. Brunello, R. Patil, D. Bini, T. Damour, S. Cacciatori,

S. Mizera, H. Frellesvig, M. Mandal, F. Gasparotto, S. Laporta,

S. Matsubara-Heo, N. Takayama,

V. Chestnov, G. Crisanti, S. Smith, M. Giroux, W. Flieger,

W. J. Torres, J. Ronca,

P. Benincasa, F. Vazao, B. Eden, M. Gottwald, T. Scherdin

Extra Slides

i) Orthogonal Polynomials

Laguerre $L_n^{(\rho)}$, Legendre P_n , Tchebyshev T_n , Gegenbauer $C_n^{(\rho)}$, and Hermite H_n polynomials:

$$I_{nm} \equiv \int_{\Gamma} \mu P_n P_m dz = f_n \,\delta_{nm} = \int_{\Gamma} \mu \,\varphi = c_1 E_1$$

	Туре	U	V	\hat{e}_i	C -matrix	00	E_1	<i>C</i> ₁
		VI	V	c_l		$ ho_0$		
	$L_n^{(\rho)}$	$z^{\rho} \exp(-z)$	1	1	ρ	_	$\Gamma(1+\rho)$	$(\rho+1)(\rho+2)\cdots(\rho+n)/n!$
	P_n	$(z^2 - 1)^{\rho}$	1	1	$2\rho/(4\rho^2 - 1)$	0	2	1/(2n+1)
	T_n	$(1-z^2)^{\rho}$	1	1	$2\rho/(4\rho^2 - 1)$	-1/2	π	1/2
	$C_n^{(\rho)}$	$(1-z^2)^{\rho-1/2}$	1	1	$(1-2\rho)/(4\rho(\rho-1))$	_	$\sqrt{\pi}\Gamma(1/2+ ho)/\Gamma(1+ ho)$	$\rho(2\rho(2\rho+1)\cdots(2\rho+n-1))/((n+\rho)n!)$
	H_n	$z^{\rho} \exp(-z^2)$	2	1, 1/z	diagonal $(1/2, 1/\rho)$	0	$\sqrt{\pi}$	$2^{n}n!$
5								

$$\varphi \equiv P_n P_m dz$$

Let us observe that, in the case of Hermite polynomials, v = 2, yielding $\varphi = c_1 e_1 + c_2 e_2$, but $c_2 = 0$, due to the adopted basis

ii) Matrix Elements in QM

Harmonic Oscillator. (for unitary mass and pulsation, $m = 1 = \omega$)

$$\langle z | n \rangle = \psi_n(z) = e^{-\frac{z^2}{2}} W_n(z), \quad \text{with} \quad W_n(z) \equiv N_n H_n(z), \qquad N_n \equiv 1/\sqrt{(2^n n! \sqrt{\pi})}$$

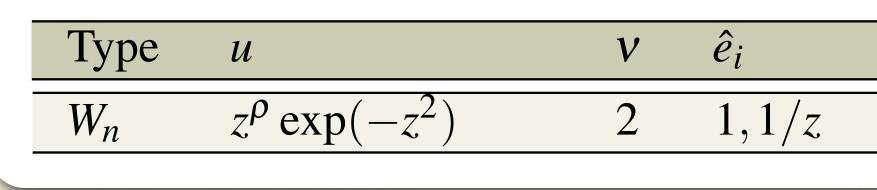
erator

$$\int_{-\infty}^{\infty} dz \,\psi_n(z) z^k \,\psi_n(z) = \int_{\Gamma} \mu \,\varphi = c_1 E_1, \quad \text{with} \qquad \mu \equiv e^{-z^2}, \quad \text{and} \quad \varphi \equiv W_n(z) z^k W_n(z) dz.$$

$$\frac{\overline{\text{Type } u} \quad v \quad \hat{e}_i \quad \mathbf{C} - \text{matrix} \quad \rho_0 \quad E_1}{W_n \quad z^\rho \exp(-z^2) \quad 2 \quad 1, 1/z \quad \text{diagonal}(1/2, 1/\rho) \quad 0 \quad \sqrt{\pi}}$$

Position ope

$$\langle m|z^k|n\rangle = \int_{-\infty}^{\infty} dz \,\psi_m(z) \, z^k \,\psi_n(z) = \int_{\Gamma} \mu \,\varphi = c_1 E_1 \,, \text{ with }$$



ii) Matrix Elements in QM

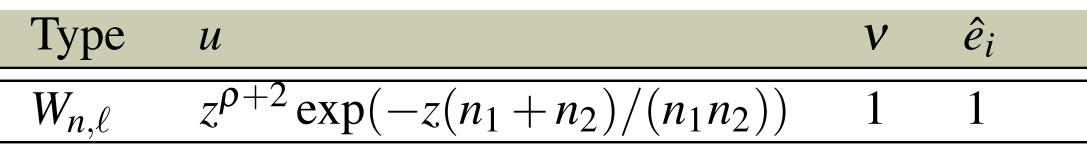
Hydrogen Atom. (for unitary Bohr radius $a_0 = 1$)

$$\langle z|n,\ell \rangle = R_{n,\ell}(z) = e^{-\frac{z}{n}} W_{n,\ell}(z) , \quad \text{with} \qquad W_{n,\ell}(z) \equiv N_{n\ell} \left(\frac{2z}{n}\right)^{\ell} L_{(n-\ell-1)}^{2\ell+1}\left(\frac{2z}{n}\right) \qquad N_{n\ell} = (2/n)^{3/2} \sqrt{(n-\ell-1)!/(2n(n-\ell-1)!)}$$

Position operator

$$\langle n_1, \ell | z^k | n_2, \ell \rangle = \int_0^\infty dz z^2 R_{n_1,\ell}(z) z^k R_{n_2,\ell}(z) = \int_{\Gamma} \mu \, \varphi = c_1 E_1 \,, \quad \text{with} \quad \mu \equiv z^2 e^{-z \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, \text{ and } \varphi \equiv W_{n_1,\ell}(z) z^k W_{n_2,\ell}(z)$$

$$\frac{u \qquad v \quad \hat{e}_i \qquad \mathbf{C} - \text{matrix} \qquad \rho_0 \qquad E_1}{z^{\rho+2} \exp(-z(n_1+n_2)/(n_1n_2)) \qquad 1 \qquad 1 \qquad (n_1 n_2/(n_1+n_2))^2 (2+\rho) \qquad 0 \qquad 2(n_1 n_2/(n_1+n_2))^3$$



i) Green's Function

Single field, ϕ^4 -theory

real scalar field $\phi(x)$ $S_E \equiv S_0 + \varepsilon S_1$, with $S_0 = (\gamma/2) \phi^2(x)$

$$\int \mathscr{D}\phi \,\phi(x_1)\cdots \phi(x_n) \,e^{-S_E} = G_n \int \mathscr{D}\phi \,e^{-S_E}$$

 $\int_{\Gamma} \mu \,\phi = G_n E_1 \,, \quad ext{with} \qquad \mu \equiv e^{-S_E} \,,$

Free theory. The *n*-point Green's function $G_n^{(0)}$

$$\phi(a$$

Туре	U	ν	\hat{e}_i	C -matrix
$G_n^{(0)}$	$z^{\rho} \exp(-\gamma z^2/2)$	2	1, 1/z	diagonal

, and
$$S_1 = \phi^4(x)$$

$$\varphi \equiv \phi(x_1) \cdots \phi(x_n) \mathscr{D}\phi , \quad E_1 \equiv \int_{\Gamma} \mu \, e_1 \,, \quad \text{and} \quad e_1 \equiv \mathscr{D}\phi$$

$$) \equiv z \qquad \mu \equiv e^{-S_0} \qquad \varphi = z^n \, dz$$

$$x \qquad \rho_0 \qquad E_1 \qquad c_1$$

$$(n-1)!!/\gamma^{n/2}$$

for even n

ii) Kontsevich-Witten tau-function

$$Z_{KW} \equiv \frac{\int d\Phi \exp\left[-\operatorname{Tr}\left(-\frac{i}{3!}\Phi^3 + \frac{\Lambda}{2}\Phi^2\right)\right]}{\int d\Phi \exp\left[-\operatorname{Tr}\left(\frac{\Lambda}{2}\Phi^2\right)\right]}$$

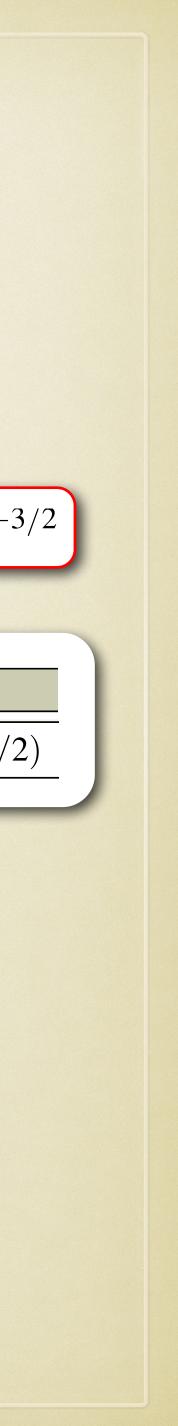
• Univariate Model

Itzykson-Zuber (1992)

$$Z_{KW} = \sum_{n=0}^{\infty} Z_{KW}^{(n)}, \qquad \int_{\Gamma} \mu \, \varphi = c_1 E_1, \qquad c_1 = Z_{KW}^{(n)}, \qquad N_n \equiv \varepsilon^{2n}, \qquad \varepsilon \equiv i/(3!)(\Lambda/2)^{-2}, \qquad \frac{u}{z^{\rho} \exp(-z^2)}, \qquad 2 = 1, 1/z \quad \text{diagonal}(1/2, 1/\rho), \qquad 0 \quad \text{not needed}, \qquad (-2/9)^n (\Lambda^{-3n}/(2n)!) \prod_{j=0}^{3n-1} (j+1/2)^{-2}, \qquad (-2/9)^n (\Lambda^{-3n}/(2n)!) \prod_{j=0}^{3n-1} (j+1/2$$

$$Z_{KW} = \sum_{n=0}^{\infty} Z_{KW}^{(n)}. \qquad \int_{\Gamma} \mu \, \varphi = c_1 E_1 \qquad c_1 = Z_{KW}^{(n)}. \qquad \varphi \equiv N_n z^{6n}, \qquad N_n \equiv \varepsilon^{2n} \qquad \varepsilon \equiv i/(3!)(\Lambda/2)^{-2}.$$

$$\frac{\overline{\text{Type } u}}{Z_{KW}^{(n)} - z^{\rho} \exp(-z^2)} \qquad 2 - 1, 1/z \quad \text{diagonal}(1/2, 1/\rho) \qquad 0 \quad \text{not needed} \qquad (-2/9)^n (\Lambda^{-3n}/(2n)!) \prod_{j=0}^{3n-1} (j+1/2)^{-2}.$$



GKZ Hypergeometric Systems

Euler-Mellin Integral / A-Hypergeometric function

$$f_{\Gamma}(z) = \int_{\Gamma} g(z; x)^{\beta_0} x_1^{-\beta_1} \cdots x_n^{-\beta_n} \frac{\mathrm{d}x}{x}$$

 $\frac{\mathrm{d}x}{x} := \frac{\mathrm{d}x_1}{x_1} \wedge \dots \wedge \frac{\mathrm{d}x_n}{x_n}$

$$g(z;x) = \sum_{i=1}^{N} z_i x^{\alpha_i}$$

$$x^{\alpha_i} := x_1^{\alpha_{i,1}} \cdots x_n^{\alpha_{i,n}}$$

• Gelfand-Kapranov-Zelevinsky (GKZ) system of PDEs

$$E_j f_{\Gamma}(z) = 0 ,$$
$$\Box_u f_{\Gamma}(z) = 0 ,$$

Generators

$$E_{j} = \sum_{i=1}^{N} a_{j,i} z_{i} \frac{\partial}{\partial z_{i}} - \beta_{j},$$
$$\Box_{u} = \prod_{u_{i}>0} \left(\frac{\partial}{\partial z_{i}}\right)^{u_{i}} - \prod_{u_{i}<0} \beta_{u_{i}}$$

Bernstein, Saito, Sturmfels, Takayama, Matsubara-Heo, Agostini, Fevola, Sattelberger, Tellen,

$$u(\mathbf{x}) = g(z, x)^{\beta_0} x_1^{-\beta_1} \cdots x_n^{-\beta_n}$$

$$A = (a_1 \dots a_N)$$
 $(n+1) \times N$ matrix $a_i := (1, \alpha_i)$

$$\operatorname{Ker}(A) = \left\{ u = (u_1, \dots, u_N) \in \mathbb{Z}^N \mid \sum_{j=1}^N u_j \, a_j = \mathbf{0} \right\}$$

$$j = 1, \ldots, n+1$$

 $\left(\frac{\partial}{\partial z_i}\right)^{-u_i}, \quad \forall u \in \operatorname{Ker}(A).$ $-u_i$

GKZ D-Module and De Rham Cohomolgy group

• Weyl Algebra: $E_j \square_u$ can be regarded as elements of a Weyl algebra

 $\mathcal{D}_N = \mathbb{C}[z_1, \ldots, z_N] \langle \partial_1, \ldots$

GKZ system as the left \mathcal{D}_N -module $\mathcal{D}_N/H_A(\beta)$ $H_A(\beta) = \sum_{j=1}^{n+1} \mathcal{D}_N \cdot .$

• Standard Monomials $Std := \{\partial^k\}$ found by Groebner basis

The holonomic rank equals the number of independent solutions to the system of PDEs

 $r = n! \cdot \operatorname{vol}(\Delta_A)$

 $\mathcal{D}_N/H_A(\beta) \simeq \mathbb{H}^n$

Isomorphism

GKZ D-module

$$\langle \partial_N \rangle$$
, $[\partial_i, \partial_j] = 0$, $[\partial_i, z_j] = \delta_{ij}$

$$E_j + \sum_{u \in \operatorname{Ker}(A)} \mathcal{D}_N \cdot \Box_u$$

sis Hibi, Nishiyama, Takayama (2017)

— nth-Cohomology group

Intersection Numbers for n-forms (V) from Pfaffian D-module systems

Let $\{e_i\}_{i=1}^r$ be a basis for \mathbb{H}^n and $\{h_i\}_{i=1}^r$ a basis for $\mathbb{H}^{n\vee}$ $\varphi \in \mathbb{H}^n$ in terms of $\{e_i\}_{i=1}^r$

• Thm : Isomorphism

nth-Cohomology group ~ Euler-Mellin Integrals

s for $\mathbb{H}^{n\vee}$ Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)

Intersection Numbers for n-forms (V) from Pfaffian D-module systems

Let $\{e_i\}_{i=1}^r$ be a basis for \mathbb{H}^n and $\{h_i\}_{i=1}^r$ a basis for $\mathbb{H}^{n\vee}$ $\varphi \in \mathbb{H}^n$ in terms of $\{e_i\}_{i=1}^r$

Thm : Isomorphism

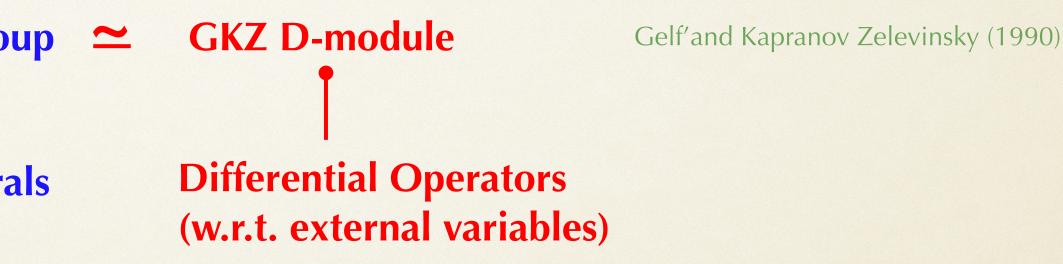
nth-Cohomology group 🗢 **Euler-Mellin Integrals**

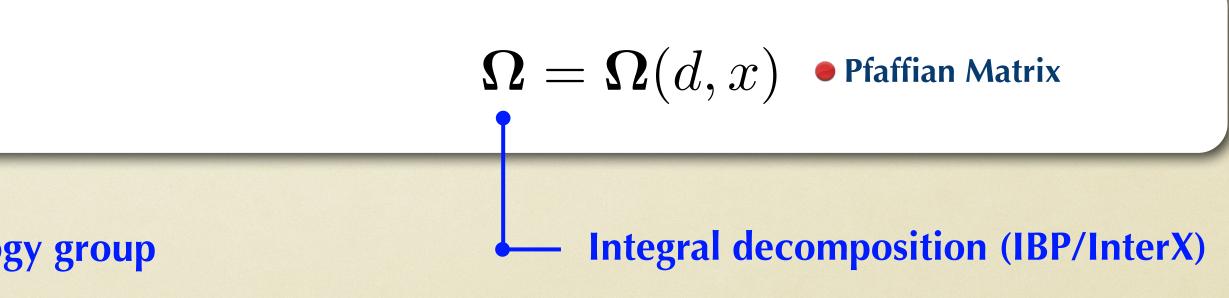
Pfaffian Systems: for Master Integrals (alias Master forms)

$$\partial_x \langle e_i | = \Omega_{ij} \langle e_j |$$

Basis of the Cohomolog

Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)





Intersection Numbers for n-forms (V) from Pfaffian D-module systems

Let $\{e_i\}_{i=1}^r$ be a basis for \mathbb{H}^n and $\{h_i\}_{i=1}^r$ a basis for $\mathbb{H}^{n\vee}$ $\varphi \in \mathbb{H}^n$ in terms of $\{e_i\}_{i=1}^r$

Thm : Isomorphism

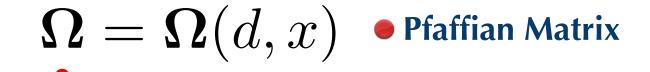
nth-Cohomology group 🗢 **Euler-Mellin Integrals**

Pfaffian Systems: for Master Integrals (alias Master forms) & for D-operators (alias Std mon's)

$$\partial_x \langle e_i | = \Omega_{ij} \langle e_j |$$

Basis of the D-Operators

Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)



Macaulay Matrix method

Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022) Chestnov,,, Munch, Matsubara-Heo, Takayama & P.M. (2023)

