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hadronic spectral densities from the lattice

a new route to QCD phenomenology



why we should look at hadronic spectral densities?

or, more explicitly,

what the hell do these obscure mathematical objects have to do with QCD phenomenology?



you might have heard many times people like me,
the Lattice Guy (LG), to say

LG: LQCD entered the precision era!

FLAG arXiv:2411.04268

Figure 9: Comparison of lattice results for fK±/fπ± . This ratio is obtained in pure QCD
including the isospin-breaking correction (see Sec. 5.3). The black squares and grey bands
indicate our averages in Eqs. (76) and (77).

this way the systematic uncertainties due to chiral and continuum extrapolations. With
respect to FNAL/MILC 14A they have increased the statistics and added three ensembles
at very fine lattice spacings, a ≃ 0.03 and 0.042 fm, including for the latter case also
a simulation at the physical value of the light-quark mass. The final result of their
analysis is fK±/fπ± = 1.1950(14)stat(

+0
−17)a2(2)FV (3)fπ,PDG(3)EM (2)Q2 , where the errors

are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic effects and sampling of the topological charge distribution.22

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of
fK±/fπ± is based on the same set of ensembles as FNAL/MILC 17 bar the ones at the
finest lattice spacings (namely, only a = 0.09–0.15 fm, scale set with fπ+ and relative
scale set with the Wilson flow [115, 365]) supplemented by some simulation points with
heavier quark masses. HPQCD employs a global fit based on continuum NLO SU(3)
χPT for the decay constants supplemented by a model for higher-order terms including
discretization and finite-volume effects (61 parameters for 39 data points supplemented by
Bayesian priors). Their final result is fK±/fπ± = 1.1916(15)stat(12)a2(1)FV (10), where
the errors are statistical, due to the continuum extrapolation, due to finite-volume effects
and the last error contains the combined uncertainties from the chiral extrapolation, the
scale-setting uncertainty, the experimental input in terms of fπ+ and from the uncertainty
in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-
bles, we assume a 100 % correlation among their statistical errors. A 100% correlation on
the total systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD
13A with the HISQ valence quarks.

22To form the average in Eq. (76), we have symmetrized the asymmetric systematic error and shifted the
central value by half the difference as will be done throughout this section.

73



you might have heard many times people like me,
the Lattice Guy (LG), to say

LG: LQCD entered the precision era!

FLAG arXiv:2411.04268

Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on χPT [330, 332–335] (blue circles). The black squares and grey bands indicate our
averages in Eqs. (72) and (73). The significance of the colours is explained in Sec. 2.

the relevant kinematical point q2 = 0 [349, 350], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the experimental data [38, 351],
while keeping at the same time the advantage of the high-precision determination of the
scalar form factor at the kinematical end-point q2

max = (MK −Mπ)
2 [352, 353] for the

interpolation at q2 = 0.
According to the colour codes reported in Tab. 16 and to the FLAG rules of Sec. 2.2,

the results FNAL/MILC 12I and RBC/UKQCD 15A with Nf = 2 + 1, and the results
ETM 16 and FNAL/MILC 18 with Nf = 2 + 1 + 1 dynamical flavours of fermions,
respectively, can enter the FLAG averages. Therefore, there is no new entry to form the
averages in Eqs. (72) and (73) in this edition.

At Nf = 2+1+1 the result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking effects, and includes simulations with three lattice spacings and physical
light-quark masses. These features lead to uncertainties due to the chiral extrapolation
and the discretization artifacts that are well below the statistical error. The remain-
ing largest systematic uncertainty comes from finite-size effects, which have been inves-
tigated in Ref. [354] using one-loop χPT (with and without taste-violating effects). In
Ref. [39], the FNAL/MILC collaboration presented a more precise determination of f+(0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size effects. The improvement of the precision with respect to FNAL/MILC
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Figure 3: Comparison of standard-model predictions of the muon anomalous magnetic moment with its
measured value. The panel above the dashed horizontal line shows a comparison of the world-average
measurement of aµ [1] denoted by a green band, with the standard-model prediction obtained here,
denoted by the red band. The latter is obtained by adding the value of aLO-HVP

µ computed in present work
to the results for all of the other contributions summarised in Ref. [2]. The panel below the line shows
the predictions for aLO-HVP

µ obtained in the data-driven approach using the most precise measurements of
the two-pion spectrum in electron-positron annihilation and ⌧ -decay experiments [23]. These correspond
to BaBar [15, 16], KLOE [17–20] and CMD-3 [4] for e+e� annihilation and Tau for ⌧ decays [21, 22].
The blue band shows the muon g � 2 Theory Initiative combination of the data-driven results [2] (White
paper), obtained prior to the publication of the CMD-3 measurement. That combination is currently being
reassessed. The error bars are SEM.

MUonE collaboration [44]. Finally, combinations of lattice and data-driven results, beyond the simple one
presented here, ought to be pursued, following e.g. the methods put forward in [45]. Investigations along
all of those lines are underway.

The precise measurement and standard-model prediction for the anomalous muon magnetic moment
reflect significant scientific progress. Experimentally, Fermilab’s “Muon g � 2” collaboration has already
measured aµ to 0.20 ppm, and plans to improve this to 0.10 ppm by the end of 2025. On the theoretical
side, physicists from around the world have performed complex calculations (see e.g. Ref. [2]), some based
on additional precise measurements, incorporating all aspects of the standard model and many quantum
field theory refinements. It is remarkable that QED, EW and QCD interactions, which require very di↵erent
computational tools, can be included together in a single calculation with such precision. The result for
aLO-HVP

µ presented here, combined with other contributions to aµ summarised in Ref. [2], provides a
standard-model prediction with a precision of 0.32 ppm. The agreement found between experiment and
theory to within less than one standard deviation at such a level of precision is a remarkable success for
the standard model and from a broader perspective, for renormalised quantum field theory.
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you might have heard many times people like me,
the Lattice Guy (LG), to say

LG: LQCD entered the precision era!

and maybe then you, the Pheno Guy (PG), said:

PG: come on! you are only able to compute fπ and
a couple of other things. what about inclusive
semileptonic B decays? non-leptonic decays?

FLAG arXiv:2411.04268

Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit

(which does not include |Vub/Vcb| from baryon modes nor |Vcb| from Bs → D
(∗)
s ℓν) is

(|Vcb|, |Vub|) = (39.46 ± 0.53, 3.60 ± 0.14) × 10−3 with a p-value of 0.66. The lattice and
experimental results that contribute to the various contours are the following. B → πℓν:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B → Dℓν: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B → D∗ℓν: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B → τν: lattice (Nf = 2 + 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs →
Kℓν/Bs → Dsℓν: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [586],
HPQCD 19 [134]) and experiment (LHCb [669]). Λb → pℓν/Λb → Λcℓν: lattice
(Detmold 15 [494]) and experiment (LHCb [649]). Bs → D∗

sℓν/Bs → Dsℓν: lattice
(HPQCD 19 [134] and HPQCD 19B [639]) and experiment (LHCb [626, 627]). The in-
clusive determinations are taken from Refs. [225, 308, 668] and read (|Vcb|, |Vub|)incl =
(42.16 ± 0.51, 4.13 ± 0.26)× 10−3.
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you might have heard many times people like me,
the Lattice Guy (LG), to say

LG: LQCD entered the precision era!

and maybe then you, the Pheno Guy (PG), said:

PG: come on! you are only able to compute fπ and
a couple of other things. what about inclusive
semileptonic B decays? non-leptonic decays?

LG: well, you know, we are working in euclidean
time, there are problems of analytical continuation,
. . .

PG: you can’t do it, right?

LG: ok, let’s see. . .

FLAG arXiv:2411.04268

Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit

(which does not include |Vub/Vcb| from baryon modes nor |Vcb| from Bs → D
(∗)
s ℓν) is

(|Vcb|, |Vub|) = (39.46 ± 0.53, 3.60 ± 0.14) × 10−3 with a p-value of 0.66. The lattice and
experimental results that contribute to the various contours are the following. B → πℓν:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B → Dℓν: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B → D∗ℓν: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B → τν: lattice (Nf = 2 + 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs →
Kℓν/Bs → Dsℓν: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [586],
HPQCD 19 [134]) and experiment (LHCb [669]). Λb → pℓν/Λb → Λcℓν: lattice
(Detmold 15 [494]) and experiment (LHCb [649]). Bs → D∗

sℓν/Bs → Dsℓν: lattice
(HPQCD 19 [134] and HPQCD 19B [639]) and experiment (LHCb [626, 627]). The in-
clusive determinations are taken from Refs. [225, 308, 668] and read (|Vcb|, |Vub|)incl =
(42.16 ± 0.51, 4.13 ± 0.26)× 10−3.

182



in QFT, in order to get a state, we have to probe the spectrum of the
hamiltonian by acting on the vacuum with interpolating operators

let’s chose an operator with the quantum numbers of the B-meson and
set the spatial momentum to zero,

|Ψ(t)⟩ =
∫

d3xOB(x) |0⟩

spectral densities from lattice correlators: the problems

• now we see the problems:

C(t) =

Z 1

0
dE ⇢L(E) e

�tE
+ �C(t) ,

• lattice correlators are unavoidably a↵ected by errors and, in this case,
the inverse Laplace-transform needed to extract the spectral densities
becomes an ill-posed numerical problem

• even in the ideal case in which these can be computed exactly, finite
volume spectral densities cannot be associated directly with physical
quantities (see max hansen’s talk)

• the finite volume hamiltonian has a discrete spectrum and,
consequently, the finite volume spectral densities are distributions,
sums of isolated �-function singularities

⇢L(E) =
1

L3

X

x

h0|O(0, x) �(E � HL) Ō(0)|0iL

=
X

n

wn(L) �(E � En(L))

H2
L � P 2

L H2
1 � P 2
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in minkowsky-time QM we have

|Ψ(t)⟩ = e−itH |Ψ⟩ =
∫ ∞

mB

dE e−itE δ(H − E) |Ψ⟩

the operatorial δ-function can be expressed in terms of states as

δ(H − E) =
∑

X(E)

|X(E)⟩⟨X(E)|

and we can use Fourier’s transform, a razor, to select any energy

∫ ∞

−∞

dt

2π
eitE⋆ |Ψ(t)⟩ =

∑

X(E⋆)

|X(E⋆)⟩⟨X(E⋆)|Ψ⟩
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=
X

n

wn(L) �(E � En(L))

H2
L � P 2

L H2
1 � P 2

1



in euclidean-time QM we have

|Ψ(t)⟩ = e−tH |Ψ⟩ =
∫ ∞

mB

dE e−tE δ(H − E) |Ψ⟩

the physics is untouched but we don’t have the Fourier transform!

we have, though, a very (too) efficient way to isolate single-particle
states

|Ψ(t)⟩ t 7→∞−→ e−tmB |B⟩ ⟨B|OB(0)|0⟩
2mB

×
{
1 +O(e−2tmπ )

}
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the given flavour quantum numbers, their correlation functions have the least signal/noise
problem in the Monte Carlo evaluation of the path integral [871, 1038].

Still restricting ourselves to isospin-symmetric QCD (isoQCD), we thus take it for
granted that the choice Mi, i � 2 is easy, and we do not need to discuss it in detail: the
pseudoscalar meson masses are very good choices, and some variations for heavy quarks
may provide further improvements.

The choice of M1 is more di�cult. From the point of view of physics, a natural choice
is the nucleon mass, M1 = Mnucl. Unfortunately it has a rather bad signal/noise problem
when quark masses are close to their physical values. The ratio of signal to noise of the
correlation function at time x0 from N measurements behaves as [871]

Rnucl
S/N

x0 large⇠
p

N exp(�(mnucl �
3

2
m⇡) x0) ⇡

p
N exp(�x0/0.27 fm) , (468)

where the numerical value of 0.27 fm uses the experimental masses. The behaviour in
practice, but at still favourably large quark masses, is illustrated in Fig. 51. Because
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Figure 51: E↵ective masses for Mproton [1039], M⌦ [1040], V (⇡ r0), V (⇡ r1) [712] and f⇡ [316]
on Nf = 2 CLS ensemble N6 with a = 0.045 fm, M⇡ = 340 MeV on a 483 96 lattice [316].
All e↵ective “masses” have been scaled such that the errors in the graph reflect directly the
errors of the determined scales. They are shifted vertically by arbitrary amounts. Figure from
Ref. [719]. Note that this example is at still favourably large quark masses. The situation
for Mproton becomes worse closer to the physical point, but may be changed by algorithmic
improvements.

this property leads to large statistical errors and it is further di�cult to control excited-
state contaminations when statistical errors are large, it is useful to search for alternative
physics scales. The community has gone this way, and we discuss some of them below.
For illustration, here we just give one example: the decay constants of leptonic ⇡ or K
decays have mass dimension one and can directly replace M1 above. Figure 51 demon-
strates their long and precise plateaux as a function of the Euclidean time. Advantages
and disadvantages of this choice and others are discussed more systematically in Sec. 11.4.
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Figure 9: Comparison of lattice results for fK±/fπ± . This ratio is obtained in pure QCD
including the isospin-breaking correction (see Sec. 5.3). The black squares and grey bands
indicate our averages in Eqs. (76) and (77).

this way the systematic uncertainties due to chiral and continuum extrapolations. With
respect to FNAL/MILC 14A they have increased the statistics and added three ensembles
at very fine lattice spacings, a ≃ 0.03 and 0.042 fm, including for the latter case also
a simulation at the physical value of the light-quark mass. The final result of their
analysis is fK±/fπ± = 1.1950(14)stat(

+0
−17)a2(2)FV (3)fπ,PDG(3)EM (2)Q2 , where the errors

are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic effects and sampling of the topological charge distribution.22

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of
fK±/fπ± is based on the same set of ensembles as FNAL/MILC 17 bar the ones at the
finest lattice spacings (namely, only a = 0.09–0.15 fm, scale set with fπ+ and relative
scale set with the Wilson flow [115, 365]) supplemented by some simulation points with
heavier quark masses. HPQCD employs a global fit based on continuum NLO SU(3)
χPT for the decay constants supplemented by a model for higher-order terms including
discretization and finite-volume effects (61 parameters for 39 data points supplemented by
Bayesian priors). Their final result is fK±/fπ± = 1.1916(15)stat(12)a2(1)FV (10), where
the errors are statistical, due to the continuum extrapolation, due to finite-volume effects
and the last error contains the combined uncertainties from the chiral extrapolation, the
scale-setting uncertainty, the experimental input in terms of fπ+ and from the uncertainty
in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-
bles, we assume a 100 % correlation among their statistical errors. A 100% correlation on
the total systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD
13A with the HISQ valence quarks.

22To form the average in Eq. (76), we have symmetrized the asymmetric systematic error and shifted the
central value by half the difference as will be done throughout this section.
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Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on χPT [330, 332–335] (blue circles). The black squares and grey bands indicate our
averages in Eqs. (72) and (73). The significance of the colours is explained in Sec. 2.

the relevant kinematical point q2 = 0 [349, 350], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the experimental data [38, 351],
while keeping at the same time the advantage of the high-precision determination of the
scalar form factor at the kinematical end-point q2

max = (MK −Mπ)
2 [352, 353] for the

interpolation at q2 = 0.
According to the colour codes reported in Tab. 16 and to the FLAG rules of Sec. 2.2,

the results FNAL/MILC 12I and RBC/UKQCD 15A with Nf = 2 + 1, and the results
ETM 16 and FNAL/MILC 18 with Nf = 2 + 1 + 1 dynamical flavours of fermions,
respectively, can enter the FLAG averages. Therefore, there is no new entry to form the
averages in Eqs. (72) and (73) in this edition.

At Nf = 2+1+1 the result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking effects, and includes simulations with three lattice spacings and physical
light-quark masses. These features lead to uncertainties due to the chiral extrapolation
and the discretization artifacts that are well below the statistical error. The remain-
ing largest systematic uncertainty comes from finite-size effects, which have been inves-
tigated in Ref. [354] using one-loop χPT (with and without taste-violating effects). In
Ref. [39], the FNAL/MILC collaboration presented a more precise determination of f+(0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size effects. The improvement of the precision with respect to FNAL/MILC

69



the HVP

• in order to calculate the HVP one needs

⇧
µ⌫

(k) =

Z
d
4
x e

ik·x
T h0|Jµ

QCD
(x)J

⌫
QCD(0)|0i

J
µ
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(x) =
X

f

qf  ̄f (x)�
µ
 f (x)

• what actually enters the calculation is

⇧
µ⌫

(k) =
⇣

k
µ

k
⌫ � g

µ⌫
k
2
⌘
⇧(k

2
)
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2
) = ⇧(k

2
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• through the formula

a
HV P
µ =

✓
↵

⇡

◆2 Z 1

0
ds f(s) ⇧̂(s)

where f(s) is a known function
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more on this later but, thinking in QCD+QED,
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Figure 3: Comparison of standard-model predictions of the muon anomalous magnetic moment with its
measured value. The panel above the dashed horizontal line shows a comparison of the world-average
measurement of aµ [1] denoted by a green band, with the standard-model prediction obtained here,
denoted by the red band. The latter is obtained by adding the value of aLO-HVP

µ computed in present work
to the results for all of the other contributions summarised in Ref. [2]. The panel below the line shows
the predictions for aLO-HVP

µ obtained in the data-driven approach using the most precise measurements of
the two-pion spectrum in electron-positron annihilation and ⌧ -decay experiments [23]. These correspond
to BaBar [15, 16], KLOE [17–20] and CMD-3 [4] for e+e� annihilation and Tau for ⌧ decays [21, 22].
The blue band shows the muon g � 2 Theory Initiative combination of the data-driven results [2] (White
paper), obtained prior to the publication of the CMD-3 measurement. That combination is currently being
reassessed. The error bars are SEM.

MUonE collaboration [44]. Finally, combinations of lattice and data-driven results, beyond the simple one
presented here, ought to be pursued, following e.g. the methods put forward in [45]. Investigations along
all of those lines are underway.

The precise measurement and standard-model prediction for the anomalous muon magnetic moment
reflect significant scientific progress. Experimentally, Fermilab’s “Muon g � 2” collaboration has already
measured aµ to 0.20 ppm, and plans to improve this to 0.10 ppm by the end of 2025. On the theoretical
side, physicists from around the world have performed complex calculations (see e.g. Ref. [2]), some based
on additional precise measurements, incorporating all aspects of the standard model and many quantum
field theory refinements. It is remarkable that QED, EW and QCD interactions, which require very di↵erent
computational tools, can be included together in a single calculation with such precision. The result for
aLO-HVP

µ presented here, combined with other contributions to aµ summarised in Ref. [2], provides a
standard-model prediction with a precision of 0.32 ppm. The agreement found between experiment and
theory to within less than one standard deviation at such a level of precision is a remarkable success for
the standard model and from a broader perspective, for renormalised quantum field theory.
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exclusive:

⟨D|Jα
W (0)|B⟩
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Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit

(which does not include |Vub/Vcb| from baryon modes nor |Vcb| from Bs → D
(∗)
s ℓν) is

(|Vcb|, |Vub|) = (39.46 ± 0.53, 3.60 ± 0.14) × 10−3 with a p-value of 0.66. The lattice and
experimental results that contribute to the various contours are the following. B → πℓν:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B → Dℓν: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B → D∗ℓν: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B → τν: lattice (Nf = 2 + 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs →
Kℓν/Bs → Dsℓν: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [586],
HPQCD 19 [134]) and experiment (LHCb [669]). Λb → pℓν/Λb → Λcℓν: lattice
(Detmold 15 [494]) and experiment (LHCb [649]). Bs → D∗

sℓν/Bs → Dsℓν: lattice
(HPQCD 19 [134] and HPQCD 19B [639]) and experiment (LHCb [626, 627]). The in-
clusive determinations are taken from Refs. [225, 308, 668] and read (|Vcb|, |Vub|)incl =
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inclusive:

dΓB 7→Xuℓν̄

dEℓ d|pX | ∝
∫ ∞

Eπ

dE Kαβ(E)Hαβ(E)

where the leptonic part can be seen as a smearing kernel

Kαβ(E) = Lαβ(E)θ(Emax − E)

for the hadronic spectral density

Hαβ(E) = ⟨B|Jα
W (0)δ(H − E)δ3(P − pX)Jβ

W (0)|B⟩

that we need for E ≫ Eπ =
√
m2

π + p2
X

FLAG arXiv:2411.04268

Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
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spectral densities are key objects in QFT

the Fourier transforms of Wightman’s functions in minkowsky space

W (x1, · · ·xn−1) = ⟨0|Ô1e
−iP̂ ·x1Ô2 · · · e−iP̂ ·xn−1Ôn|0⟩

ρ(p1, · · · pn−1) =

∫
dx1 · · · dxn−1

(2π)n−1
ei

∑
i pi·xi W (x1, · · ·xn−1)

= ⟨0|Ô1(2π)
3δ4(P̂ − p1)Ô2 · · · (2π)3δ4(P̂ − pn−1)Ôn|0⟩
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from their knowledge it is possible to study any hadronic process



the theoretical connection between

euclidean lattice correlators

spectral densities

and generic S-matrix elements

is known since a while!!
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Abstract. A Haag-Ruelle Scattering Theory for Euclidean Lattice Field Theories is 
developed. 

1. Introduction 

Euclidean lattice field theories are candidates for approximate models of particle 
physics. The particle aspects of these models, however, are usually analysed in a 
rather indirect way. One first considers the lattice model as an approximation to a 
continuum theory; by the Osterwalder-Schrader Theorem [9, 10], the continuum 
theory can be analytically extended to a Minkowski space quantum field theory. 
Then, provided there are single particle states, one finds by the methods of the 
general theory of quantized fields the corresponding incoming and outgoing 
multiparticle states (Haag-Ruelle theory [-1, 2, 3]). According to Hepp [4, 5], the 
scattering amplitudes can be written in terms of the time-ordered functions by the 
LSZ reduction formulae [-8]. In a last step the time ordered functions are 
approximated by lattice quantities. 

This indirect description of the particle content of Euclidean lattice field 
theories has severe conceptual and practical problems which originate essentially 
in the nonuniqueness of the lattice approximation of continuum quantities. This 
becomes especially clear in theories with a trivial continuum limit which one 
would like to use as effective theories up to some high energy cutoff. The indirect 
particle interpretation described above does not lead in a natural way to non-zero 
scattering amplitudes. 

Fortunately, as is well known, there is a quantum spin system which is 
associated directly to the Euclidean lattice model by the transfer matrix method. 
Moreover, in many cases these quantum spin systems have particle-like excita- 

* Work supported by DAAD, Deutscher Akademischer Austauschdienst. Partially supported by 
CNPq 



mathematically, the problem is reduced to that of an inverse laplace-transform

to be performed numerically

by starting from a finite and noisy set of input data

moreover. . .



Axiom W1: For each test function f , i.e. for a function with a compact support and continuous derivatives of any order,

there exists a set of operators O1(f), · · · , On(f) which, together with their adjoints, are defined on a dense subset of the

Hilbert state space, containing the vacuum. The fields O are operator-valued tempered distributions. The Hilbert state

space is spanned by the field polynomials acting on the vacuum (cyclicity condition).

spectral densities are distributions and must be
smeared

this is particularly important on finite volumes
where

ρL(E) =
∑

n

wn(L) δ (En(L)− E)

spectral densities from lattice correlators: the problems

• now we see the problems:

C(t) =

Z 1

0
dE ⇢L(E) e

�tE
+ �C(t) ,

• lattice correlators are unavoidably a↵ected by errors and, in this case,
the inverse Laplace-transform needed to extract the spectral densities
becomes an ill-posed numerical problem

• even in the ideal case in which these can be computed exactly, finite
volume spectral densities cannot be associated directly with physical
quantities (see max hansen’s talk)

• the finite volume hamiltonian has a discrete spectrum and,
consequently, the finite volume spectral densities are distributions,
sums of isolated �-function singularities

⇢L(E) =
1

L3

X

x

h0|O(0, x) �(E � HL) Ō(0)|0iL

=
X

n

wn(L) �(E � En(L))

H2
L � P 2

L H2
1 � P 2

1



 

Extraction of spectral densities from lattice correlators
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Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X

x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as
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having all this in mind, we developed a method (that my friend j.bulava then called HLT) that allows
to extract smeared spectral densities from lattice correlators

Γσ(L) =

∫ ∞

E0

dE Kσ(E)ρL(E) , Γ = lim
σ 7→0

lim
L7→∞

Γσ(L)



other methods are available on the market
a.rothkopf EPJ Web Conf. 274, 01004 (2022)

j.bulava PoS LATTICE2022 (2023) 231

. . .

and whenever i have a student named alessandro i devise a new one. . .
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Teaching to extract spectral densities from lattice correlators to a
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Abstract We present a new supervised deep-learning
approach to the problem of the extraction of smeared spec-
tral densities from Euclidean lattice correlators. A distinctive
feature of our method is a model-independent training strat-
egy that we implement by parametrizing the training sets
over a functional space spanned by Chebyshev polynomials.
The other distinctive feature is a reliable estimate of the sys-
tematic uncertainties that we achieve by introducing several
ensembles of machines, the broad audience of the title. By
training an ensemble of machines with the same number of
neurons over training sets of fixed dimensions and complex-
ity, we manage to provide a reliable estimate of the system-
atic errors by studying numerically the asymptotic limits of
infinitely large networks and training sets. The method has
been validated on a very large set of random mock data and
also in the case of lattice QCD data. We extracted the strange-
strange connected contribution to the smeared R-ratio from
a lattice QCD correlator produced by the ETM Collabora-
tion and compared the results of the new method with the
ones previously obtained with the HLT method by finding
a remarkably good agreement between the two totally unre-
lated approaches.

1 Introduction

The problem of the extraction of hadronic spectral densities
from Euclidean correlators, computed from numerical lattice
QCD simulations, has attracted a lot of attention since many
years (see Refs. [1–30], the works on the subject of which we
are aware of, and Refs. [31,32] for recent reviews). At zero
temperature, the theoretical and phenomenological impor-
tance of hadronic spectral densities, strongly emphasized in

a e-mail: michele.buzzicotti@roma2.infn.it
b e-mail: alessandro.desantis@roma2.infn.it (corresponding author)
c e-mail: nazario.tantalo@roma2.infn.it

the context of lattice field theory in Refs. [1,11,13,14,17–
19], is associated with the fact that from their knowledge it
is possible to extract all the information needed to study the
scattering of hadrons and, more generally, their interactions.

From the mathematical perspective, the problem of the
extraction of spectral densities from lattice correlators is
equivalent to that of an inverse Laplace-transform operation,
to be performed numerically by starting from a discrete and
finite set of noisy input data. This is a notoriously ill-posed
numerical problem that, in the case of lattice field theory
correlators, gets even more complicated because lattice sim-
ulations have necessarily to be performed on finite volumes
where the spectral densities are badly-behaving distributions.

In Ref. [14], together with M. Hansen and A. Lupo, one
of the authors of the present paper proposed a method to
cope with the problem of the extraction of spectral densities
from lattice correlators that allows to take into account the
fact that distributions have to be smeared with sufficiently
well-behaved test functions. Once smeared, finite volume
spectral densities become numerically manageable and the
problem of taking their infinite volume limit is mathemat-
ically well defined. The method of Ref. [14] (HLT method
in short) has been further refined in Ref. [21] where it has
been validated by performing very stringent tests within the
two-dimensional O(3) non-linear σ -model.

In this paper we present a new method for the extraction
of smeared spectral densities from lattice correlators that is
based on a supervised deep-learning approach.

The idea of using machine-learning techniques to address
the problem of the extraction of spectral densities from lattice
correlators is certainly not original (see e.g. Refs. [15,16,
22–29]). The great potential of properly-trained deep neural
networks in addressing this problem is pretty evident from
the previous works on the subject. These findings strongly
motivated us to develop an approach that can be used to obtain

0123456789().: V,-vol 123



let’s see how the HLT method works. . .



ρ(E) = ⟨F |O2 δ (H − E)δ3 (P − p)O1|I⟩

C(t) =

∫ ∞

E0

dE e−tE ρ(E)

t = aτ , τ = 1, · · · , T

K(∞) = 0 , K(∞) ∈ L2[E0,∞]

K(E) =

∞∑

τ=1

gτ e
−aτE

∫ ∞

E0

dE K(E) ρ(E) = lim
T 7→∞

T∑

τ=1

gτ C(aτ)



we have seen that the hadronic quantities that have been computed very precisely on the lattice are
matrix elements of local operators between single-particle states and/or the vacuum . . .

∫ ∞

2mπ

dE K(E)R(E) = lim
T 7→∞

T∑

τ=1

gτ C(aτ)

C(t) =

∫
d3x ⟨0|J i

em(x)J
i
em(0)|0⟩

C(t) ∼ e−2mπit 7→ e−2mπt

gt ∼ emµit 7→ emµt

BMW arXiv:2407.10913

175 180 185 190 195 200 205 210 215

aµ ⇥ 1010 � 11659000

Tau

KLOE

CMD-3

BaBar

White paper

BMW ’20

This work

Experimental avg.

FNAL 2023

BNL 2006

0.9�

4.0�

5.2�

Figure 3: Comparison of standard-model predictions of the muon anomalous magnetic moment with its
measured value. The panel above the dashed horizontal line shows a comparison of the world-average
measurement of aµ [1] denoted by a green band, with the standard-model prediction obtained here,
denoted by the red band. The latter is obtained by adding the value of aLO-HVP

µ computed in present work
to the results for all of the other contributions summarised in Ref. [2]. The panel below the line shows
the predictions for aLO-HVP

µ obtained in the data-driven approach using the most precise measurements of
the two-pion spectrum in electron-positron annihilation and ⌧ -decay experiments [23]. These correspond
to BaBar [15, 16], KLOE [17–20] and CMD-3 [4] for e+e� annihilation and Tau for ⌧ decays [21, 22].
The blue band shows the muon g � 2 Theory Initiative combination of the data-driven results [2] (White
paper), obtained prior to the publication of the CMD-3 measurement. That combination is currently being
reassessed. The error bars are SEM.

MUonE collaboration [44]. Finally, combinations of lattice and data-driven results, beyond the simple one
presented here, ought to be pursued, following e.g. the methods put forward in [45]. Investigations along
all of those lines are underway.

The precise measurement and standard-model prediction for the anomalous muon magnetic moment
reflect significant scientific progress. Experimentally, Fermilab’s “Muon g � 2” collaboration has already
measured aµ to 0.20 ppm, and plans to improve this to 0.10 ppm by the end of 2025. On the theoretical
side, physicists from around the world have performed complex calculations (see e.g. Ref. [2]), some based
on additional precise measurements, incorporating all aspects of the standard model and many quantum
field theory refinements. It is remarkable that QED, EW and QCD interactions, which require very di↵erent
computational tools, can be included together in a single calculation with such precision. The result for
aLO-HVP

µ presented here, combined with other contributions to aµ summarised in Ref. [2], provides a
standard-model prediction with a precision of 0.32 ppm. The agreement found between experiment and
theory to within less than one standard deviation at such a level of precision is a remarkable success for
the standard model and from a broader perspective, for renormalised quantum field theory.
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but, actually, also integrals of euclidean correlators times coefficients that, when there are no problems
of analytical continuation, are smooth and well behaving



An[g] =

∫ ∞

E0

dE wn(E)

∣∣∣∣∣K(E)−
T∑

τ=1

gτ e
−τaE

∣∣∣∣∣

2

dn[g] =

√
An[g]

An[0]

∫ ∞

E0

dE K(E) ρ(E) = lim
T 7→∞

T∑

τ=1

gτ C(aτ)

in general, the coefficients are all but smooth. . .

The coe�cients gn(Eı)
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• Strong fluctuations of the coe�cients gn(Eı).

• Fluctuations gets stronger and stronger as the regulator ‡ decreases.

• If the correlator C(t) is known with some uncertainty ”C(t), the resulting error
on the spectral density (assuming for simplicity no time-correlations)

�fl(Eı) =
Ûÿ

n

[gn(Eı) ”C(na)]2 BLOWS UP!!

This is the (in)famous inverse LT problem 16
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An[g] =

∫ ∞

E0

dE wn(E)

∣∣∣∣∣K(E)−
T∑

τ=1

gτ e
−τaE

∣∣∣∣∣

2

dn[g] =

√
An[g]

An[0]

∫ ∞

E0

dE K(E) ρ(E) = lim
T 7→∞

T∑

τ=1

gτ C(aτ)

in general, the coefficients are all but smooth. . .

and the correlators are noisy!!

ETMC, Ds 7→ Xℓν̄
13
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FIG. 7. From top to bottom we show the correlators defined
in Eq. (50) for i = 1, . . . , 5. The data have been obtained
from the B64 ensemble and correspond to the dominating
contribution c̄s at spatial momentum (mDs!)2 = 0.43 GeV2,
or equivalently |!| = 0.33. The red points correspond to
the separation tsnk � tsrc = 56a ' 4.5 fm while the light-
blue points to tsnk � tsrc = 48a ' 3.9 fm. The solid ver-
tical lines mark the points corresponding to the condition
tsnk � t = 0 � tsrc = 12a ' 1 fm, i.e. to the values of t
(t = 32a red dataset and t = 24a blue dataset) such that the
two separations between each interpolating operator and the
closer current are equal. The vertical dashed and solid black
lines correspond, respectively, to tsrc and to the position of
the current that we kept fixed.

extracted the information needed to compute the cor-
relators Cµ⌫(tsnk, t, tsrc,!

2) in the interesting region of

the parameter space, i.e. for values of tsrc and tsnk such
that the systematic errors associated with the asymp-
totic limits T 7! 1, tsrc 7! �1 and tsnk 7! 1 can
be kept under control. An example of this analysis is
shown in Figure 7. The figure shows the five ampu-

tated correlators Ŷ(i)
c̄s (t,!2) extracted on the B64 ensem-

ble from the quark-connected contraction of the correla-
tor Cµ⌫

c̄s (tsnk, t, tsrc,!
2) (see Figure 2) for two di↵erent

values of the separation tsnk � tsrc between the inter-
polating operators and for (mDs

!)2 = 0.43 GeV2. In
both cases we set tsrc = �12a ' �1 fm while we set
tsnk = 36a ' 2.9 fm in the case of the light-blue points
and tsnk = 44a ' 3.5 fm in the case of the red points.
The solid vertical lines mark the points corresponding to
the condition tsnk � t = 0 � tsrc = 12a, i.e. the values
of t (t = 32a red dataset and t = 24a light-blue dataset)
such that the two separations between each interpolating
operator and the closer current are equal. As it can be
seen, the light-blue and red datasets are fully compat-
ible within the statistical errors up to values of t such
that tsnk � t = a. The separation 0 � tsrc between the
interpolating operator of the initial state and the first
weak current has been fixed at ' 1 fm, a distance of
the same order of the time separation where the plateau
of the e↵ective mass of the correlator C(t) sets in (see
Figure 6). Then, by relying on the symmetries of our
four-points correlator, we studied the dependence of our
results upon tsrc and tsnk by varying the distance tsnk� t
between P (xsnk) and the weak current inserted at time
t. From this analysis, that we repeated for all consid-
ered values of the momenta ! (see following sections)
and also for the other flavor channels, we concluded that
the systematic errors associated with the tsrc 7! �1 and
tsnk 7! 1 limits are negligible with respect to the sta-
tistical errors of our correlators. Our estimates of the
systematic errors associated with finite size e↵ects, i.e.
with the T 7! 1 and L 7! 1 limits, will be discussed in
details in the following sections.

In order to extract the decay rate and the lepton-energy
moments we used the data corresponding to the larger
separation, i.e. to tsnk � tsrc ' 4.5 fm, that we kept fixed
in physical units on the di↵erent gauge ensembles. With
this choice the systematics associated with the asymp-
totic limits can safely be neglected w.r.t the statistical
errors and, moreover, we can use larger values of N to
reconstruct the smearing kernels according to Eq. (35)
and, hence, to study the systematics associated with the
N 7! 1 limits (see section VII).
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under control the cuto↵ e↵ects on our physical observ-
ables. Indeed, the decay rate and the lepton-energy
moments are on-shell quantities that probe the QCD
spectrum for energies smaller than mDs

. Therefore, in
principle, to keep under control cuto↵ e↵ects, given our
O(a)-improved lattice setup, it would be enough to have
(amDs)

2 ⌧ 1 on the finer simulated lattices and, in fact,
this condition is satisfied in our case (see Table I). On
the other hand, given our representations of the decay
rate and of the lepton-energy moments (see Eqs. (33)
and (41)), it is important to avoid large errors in the

approximation of the smearing kernels ⇥
(p)
� (!max � !0)

for !0 � 1/(amDs
) that could enhance the cuto↵ e↵ects

by interfering with the distortions of the lattice spectral
densities Z(p)(!0,!

2; a) at energies of the order of the
lattice cuto↵. Actually, in our approach (see Ref. [6] for
a di↵erent possibility) the limits

d�(p)(�)

d!2
= lim

a 7!0
lim

N 7!1
lim
� 7!0

d�(p)(�; a, N,⌃)

d!2
, (86)

where

d�(p)(�; a, N,⌃)

d!2
=

�̄ |!|3�p
NX

n=1

g(p)
n (N ;⌃) Ẑ(p)(an,!2; a) , (87)

have to be taken by first performing the � 7! 0 and
N 7! 1 limits, that can safely be interchanged and that
we perform jointly with the so-called stability analysis
procedure (see below), and then by performing the con-
tinuum extrapolation. Notice that the dependence upon
the parameter ↵ disappears after performing the N 7! 1
limit because, according to the Stone-Weierstrass theo-
rem, the systematic error associated with the imperfect
reconstruction of the smearing kernel at finite N can be
made arbitrarily small by increasing N for any definition
of the L2-norm and therefore, in our language, for any

definition of the functional A
(p)
↵ [g]. Unfortunately, this

is not the case for the statistical error

�stat


1

�̄

d�(p)(�; a, N,⌃)

d!2

�
=
q

B(p)[g(p)(N ;⌃)] . (88)

Within the HLT algorithm statistical errors are tamed
by implementing the regularization mechanism originally
proposed by Backus and Gilbert in Ref. [39]. This is
done by introducing the so-called trade-o↵ parameter �
and by adding the term proportional to the error func-
tional in Eq. (80). There are two facts that have to be
considered in order to understand the rôle of the trade-
o↵ parameter within the HLT algorithm. The first is
that the Backus-Gilbert regularization is statistically un-
biased : in the idealized situation in which the correla-
tors Ẑ(p)(an,!2; a) have no errors the functional B(p)[g]
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FIG. 8. Stability analysis for the contribution p = 0 to the
total decay rate for the c̄s channel with smearing parameter
�mDs = 120 MeV, spatial momentum |!| = 0.38, sigmoid
kernel and D96 ensemble. See the main text for the complete
description and interpretation of the figure. Top panel : study
of the limit N 7! 1 by changing � at fixed ↵ = 0. Bottom
panel : study of the dependence on ↵, i.e. on the definition
of the norm functional of Eq. (81), by changing � at fixed
N = 43.

is identically zero and, therefore, the same result is ob-
tained for any value of �. The second fact is that, for
small values of the smearing parameter �, the coe�cients
obtained by solving Eq. (83) with increasingly smaller
values of � tend to become huge in magnitude and os-
cillating in sign [9]. Consequently, by using these coe�-
cients in Eq. (87), the statistical errors on the di↵erential
decay rate tend to be unacceptably large and, moreover,
the estimates of the central values cannot be trusted in
this regime because even tiny rounding errors on the lat-
tice correlators Ẑ(p)(an,!2; a) get enormously enhanced.
The stability analysis, introduced in Ref. [40] (see also
Refs. [17–19, 41]), is a procedure that allows to perform
the � 7! 0 and N 7! 1 limits appearing in Eq. (86) by
leveraging on these two facts.

An example of stability analysis is shown in Figure 8.

The data correspond to the d�
(0)
c̄s (�; a, N,⌃)/d!2 contri-

bution to the decay rate evaluated on the D96 ensemble
for �mDs

= 120 MeV and |!| = 0.38. The di↵erential
decay rate is plotted as a function of the variable

d(p) (N ;⌃) =

vuutA
(p)
0

⇥
g(p)(N ;⌃)

⇤

A
(p)
0 [0]

, (89)

measuring the deviation of the reconstructed kernel

⇥
(p)
� (!max � !0; N,⌃) from the target one. By choosing

increasingly smaller values of � one gets smaller values
of d(p) (N ;⌃) and, therefore, smaller systematic errors
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FIG. 9. The plots of this figure have been obtained by using
the same data of Figure 8. The top-panel shows the di↵erence
between the approximated and the exact kernels for N = 43
and for the three norms ↵ = 0, ↵ = 1 and ↵ = 2�. The
coe�cients that define the approximations in the plot are as-
sociated with the points in correspondence of the red vertical
dashed line in Figure 8 and, therefore, to di↵erent approxima-
tions at fixed d(p)(N ;⌃) ' 0.08. The vertical dashed red and
black lines correspond to the lightest state in the spectrum,

!min =
q

r2
s̄s�conn + !2, and to the parameter !th, respec-

tively. The error in the approximation of the kernel in the
gray area, !0 < !th, is irrelevant for the physical result. The
vertical dotted green line corresponds to !max. The bottom-
panel shows the direct comparison between the approximated
and exact kernels.

on the di↵erential decay rate. Conversely, by reducing
d(p) (N ;⌃) the statistical errors rapidly increase. In the
top panel we show the data corresponding to ↵ = 0 and
to increasingly larger values of N . As it can be seen, for
su�ciently small values of d(p) (N ;⌃) and for N > 13
the results for the di↵erential decay rate become inde-
pendent upon N within the statistical errors. This means
that by using N = 43 on this ensemble, the systematic
error associated with the N 7! 1 limit is totally irrele-
vant w.r.t the statistical errors of our results. This fact is
corroborated by the results shown in the bottom-panel,
that correspond to N = 43 and to di↵erent values of the
norm parameter ↵. As it can be seen, there is no signifi-
cant dependence upon the choice of the norm parameter
and this is another evidence that, within the statistical
errors, the onset of the N 7! 1 limit has been reached.

In order to quote the central value, the statistical er-
ror and to estimate the residual systematic error on the
di↵erential decay rate we search for a plateau-region in
which the results do not show any significant dependence
upon d(p) (N ;⌃). The absence of such a plateau-region
would prevent us from quoting a result but, in the case
of our data, a plateau-region is clearly visible for all con-

tributions, all flavor channels, all considered values of �
and of !. In the case shown in Figure 8, we extracted
our estimate of the physical di↵erential decay rate, i.e.
the � 7! 0 and N 7! 1 result, from the red dataset, cor-
responding to ↵ = 0 and N = 43, that clearly exhibits
a plateau on the left of the vertical red line. For any
point in the plateau-region the systematic error on the
di↵erential decay rate can safely be neglected w.r.t. the
corresponding statistical error. Nevertheless, in order to
quantify a possible residual systematic error, we select
two points. The first point, whose coe�cients are de-

noted by g
(p)
? , is selected at the beginning of the plateau-

region (the red vertical line in Figure 8). We then select

a second point, whose coe�cients are denoted by g
(p)
?? ,

corresponding to the condition

A
(p)
↵

h
g

(p)
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i
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h
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(p)
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i , (90)

and therefore to a (ten times) better reconstruction of
the smearing kernel (the black vertical line in Figure 8).
From these two points we obtain a conservative estimate
of the residual systematic error associated with our re-
sults as we are now going to explain.

Let us consider a given quantity O for which we have
di↵erent determinations Oi that we expect to di↵er by
an amount comparable to the systematic error. In order
to obtain a data-driven estimate of this systematic error
we consider the pull variables

Pij
sys =

Oi �Oj

�ij
, (91)

where �ij is a conservative estimate of the error of the
di↵erence Oi � Oj (depending upon the observable we
consider either the error of one of the terms or the sum
in quadrature of the errors of the two terms). We then
estimate the systematic error by using the formula

�sys = max
ij

"
|Oi �Oj | erf

✓Pij
sysp
2

◆#
. (92)

The error-function weights the di↵erence with a (rough)
estimate of the probability that the observed value is not
due to a fluctuation. To ensure a reliable estimate of the
systematic error, the observables Oi must have di↵erent
sensitivities to the given systematic error. For example,
in the case of FSE we considered the determinations of
our observables obtained on significantly di↵erent physi-
cal volumes.

In the case of the HLT stability analysis we estimate both
the statistical errors and the central values of our results
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Figure 9. Left: numerical results for ρε(E) for the Gaussian kernel and the spectral density
including up to six-particle contributions (solid lines) smeared with the same kernel at different
values of ε/(E − 2m"). Right: results for ρ(E) after extrapolation ε→ 0, together with the exact
two-particle contribution (light dashed line), the two-, four-, and six-particle contributions (dark
solid line), and the 2-loop perturbative result (dark dotted line). Statistical and systematic errors
due to the finite volume, continuum limit, and ε→ 0 extrapolation are combined in quadrature as
described in the text.

6 Conclusions

The aim of the preceding sections is to verify the procedure of ref. [1] for numerically
computing smeared spectral densities (with an a priori specified smearing kernel) from
lattice field theory correlation functions. In this regard the two-dimensional O(3) model
usefully provides exact results against which the estimates can be checked. These checks,
which are presented in figures 6 and 9, are satisfied and compare both ρε(E) at finite ε

and the results from ε→ 0 extrapolations to determine ρ(E) deep into the inelastic region
where finite-volume methods have not yet been developed. The highest energy considered
here is E = 40m", at which ρ(E) is determined with a relative accuracy of 5% and differs
significantly from the exact two-particle contribution ρ(2)(E) given in eq. (2.6).

Apart from the ‘usual’ sources of systematic error due to the finite lattice spacing and
finite-volume spacetime, we must also consider the imperfect reconstruction of the smearing
kernel due to the finite number of input time slices and their associated statistical errors.
All sources of systematic error have been estimated and included in figures 6 and 9 where
the statistical and systematic errors are added in quadrature. Generally the errors due to
the finite lattice extent are the largest source of systematic uncertainty, and are typically
less than or comparable to the statistical errors.

The determination of ρε(E) becomes increasingly difficult for smaller smearing widths
ε at fixed energy E, and increasing E with fixed ε. As is evident from the right two panels
of figure 6, it is difficult to achieve precise results outside of the elastic region for ε ! m/2
with the Gaussian smearing kernel. Better is to exploit the smoothness of ρ(E) and scale
ε ∝ (E − 2m), so that an equal proportion of the smearing kernel ‘leaks’ down to the two
particle threshold at each energy. This enables the determination of ρ(E) in figure 9, which
is the main result of this work.
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the R-ratio in the non-linear O(3) sigma-model in two dimensions
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We present a first-principles lattice QCD investigation of the R ratio between the eþe− cross section into
hadrons and into muons. By using the method of Ref. [1], that allows one to extract smeared spectral
densities from Euclidean correlators, we compute the R ratio convoluted with Gaussian smearing kernels of
widths of about 600 MeV and central energies from 220 MeV up to 2.5 GeV. Our theoretical results are
compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of R-ratio
experimental measurements with the same kernels and, by centering the Gaussians in the region around the
ρ-resonance peak, a tension of about 3 standard deviations is observed. From the phenomenological
perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections, and
this might affect the observed tension. From the methodological perspective, our calculation demonstrates
that it is possible to study the R ratio in Gaussian energy bins on the lattice at the level of accuracy required
in order to perform precision tests of the standard model.
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Introduction.—The R ratio between the eþe− cross
section into hadrons with that into muons plays a funda-
mental rôle in particle physics since its introduction in
Ref. [3]. In recent years, the importance of the R ratio has
been mainly associated with the fact that its knowledge, as
a function of the center-of-mass energy of the electrons,
allows one to predict the leading hadronic contribution

(HVP) to the muon anomalous magnetic moment (aμ) via a
dispersive approach. The dispersive determinations of
aHVPμ , reviewed in detail in Ref. [4], are in strong tension
(about 4 standard deviations) with the experimental deter-
mination of aμ. On the other hand, lattice determinations of
(partial) contributions to aHVPμ , obtained without any
reference to the experimental measurements of R, are in
much better agreement with the aμ experiment [5].
The focus of this Letter is R, smeared with Gaussian

kernels, and not aμ.—The experiments that measure R are
radically different from those that measure aμ, and more-
over, R is an energy-dependent probe of the theory while aμ
is natively a low-energy observable. For these reasons a
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We present the results of a first-principles theoretical study of the inclusive semileptonic decays of
the Ds meson. We performed a state-of-the-art lattice QCD calculation by taking into account all
sources of systematic errors. A detailed discussion of our lattice calculation, demonstrating that in-
clusive semileptonic decays can nowadays be studied on the lattice at a phenomenologically relevant
level of accuracy, is the subject of a companion paper [1]. Here we focus on the phenomenological
implications of our results. Using the current best estimates of the relevant Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements, our theoretical predictions for the decay rate and for the first two
lepton-energy moments are in very good agreement with the corresponding experimental measure-
ments. We also argue that, while the inclusive Ds channel is not yet competitive with the exclusive
channels in the |Vcs| determination, the situation can be significantly improved in the near future.
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FIG. 3. Comparison of R�(E) (blue points) and Rexp
� (E)

(red points) as functions of E for � = 0.44 GeV (first row),
� = 0.53 GeV (second row) and � = 0.63 GeV (third row).

and � = 0.63 GeV) of the continuum extrapolations of
the di↵erent contributions to R�(E) and, in the follow-
ing, concentrate on the comparison of our first-principles
determination with the experimental results Rexp

� (E).

This is done in FIG. 3 where the plots show R�(E)
(blue points) and Rexp

� (E) (red points) as functions of
E for � = 0.44 GeV (first row), � = 0.53 GeV (second
row) and � = 0.63 GeV (third row). Our quoted final
errors include the estimates of the systematics associ-
ated with continuum extrapolations, with finite-volume
e↵ects and also the ones coming from the spectral re-
construction algorithm, see FIG. 4. In order to properly
interpret FIG. 3 it is very important to realize that the
information contained into R�(E) and R�(E0) for central
energies such that |E � E0| ⌧ � is essentially the same.
Moreover, our theoretical results at di↵erent values of E
and � are obtained from the same correlators and, there-
fore, are correlated (a table with the numerical results
and their correlation matrix is provided in the supple-
mentary material). It is also very important to stress
that our lattice simulations have been calibrated by us-
ing hadron masses to fix the quark masses and the lattice
spacing and, therefore, R�(E) is a theoretical prediction
obtained without using any input coming from Rexp

� (E).
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FIG. 4. Error budget for R�(E) at � = 0.44 GeV (first
row), � = 0.53 GeV (second row) and � = 0.63 GeV (third
row). The red points correspond to the total relative error,
��(E)/R�(E). The black points are the statistical errors
combined in quadrature with the systematics errors coming
from the spectral reconstruction algorithm, �̄�(E), divided
by R�(E). The violet and orange points are, respectively, our
estimates of the relative systematics errors associated with the
continuum extrapolations, �a

�(E)/R�(E), and finite volume
e↵ects, �L

� (E)/R�(E).

In view of these observations, and of the fact that the ex-
traction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the over-
all agreement between the theoretical and experimental
data quite remarkable.

Although our theoretical errors, ��(E), are still sub-
stantially larger than the experimental ones, �exp

� (E),
there is a tension between R�(E) and Rexp

� (E) when the
smearing Gaussian is centred in the region around the
⇢ resonance. This can be better appreciated in FIG. 5
where, for E < 1.3 GeV, the plots on the left show the
relative di↵erence R�(E)/Rexp

� (E)�1 while those on the
right show the “pull”

⌃�(E) =
R�(E) � Rexp

� (E)q
[��(E)]

2
+ [�exp

� (E)]
2

. (7)

Before ascribing this tension, of about three standard
deviations, to new physics or to underestimated experi-
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We present a lattice determination of the inclusive decay rate of the process τ ↦ Xusντ in which the τ
lepton decays into a generic hadronic state Xus with ūs flavor quantum numbers. Our results have been
obtained in nf ¼ 2þ 1þ 1 isosymmetric QCD with full nonperturbative accuracy, without any operator
product expansion approximation and, except for the presently missing long-distance isospin-breaking
corrections, include a solid estimate of all sources of theoretical uncertainties. This has been possible by
using the Hansen-Lupo-Tantalo method [M. Hansen et al., Phys. Rev. D 99, 094508 (2019)] that we have
already successfully applied [A. Evangelista et al., Phys. Rev. D 108, 074513 (2023)] to compute the
inclusive decay rate of the process τ ↦ Xudντ in the ūd flavor channel. By combining our first-principles
theoretical results with the presently available experimental data, we extract the Cabibbo-Kobayashi-
Maskawa matrix element jVusj, the Cabibbo angle, with a 0.9% accuracy, dominated by the experimental
error.

DOI: 10.1103/PhysRevLett.132.261901

Introduction.—The hadronic decays of the τ lepton
represent very important probes of both the leptonic and
hadronic flavor sectors of the standard model. A particu-
larly interesting test is the one associated with the Cabibbo
angle, more precisely, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVusj, that can be extracted from
both exclusive and inclusive hadronic τ decays and then
compared with independent determinations coming from

hadronic decays. Currently, the most precise determina-
tions of jVusj are obtained from semileptonic kaon decays,
jVusjKl3

¼ 0.2232ð6Þ, and from the ratio of the leptonic
decay rates of kaons and pions, jVusjK=πl2 ¼ 0.2254ð5Þ
[1,2]. The two determinations exhibit a tension at the level
of 2.8 standard deviations (SD).
The exclusive decay rate Γðτ ↦ KντÞ can be computed

very precisely in QCD. Indeed, by neglecting long-distance
QED radiative corrections, the nonperturbative input
needed to compute Γðτ ↦ KντÞ is the same needed to
compute the decay rate ΓðK ↦ lν̄lÞ, namely, the leptonic
decay constant fK . By combining the world average of the
lattice QCD results for fK given in Ref. [1] with the average
of the presently available experimental measurements of
Γðτ ↦ KντÞ, Ref. [3] quotes jVusjτ-excl ¼ 0.2219ð17Þ, a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 261901 (2024)

0031-9007=24=132(26)=261901(9) 261901-1 Published by the American Physical Society

HIP-2025-10/TH

Inclusive semileptonic decays of the Ds meson:
Lattice QCD confronts experiments

Alessandro De Santis ,1, 2 Antonio Evangelista ,3 Roberto Frezzotti ,3 Giuseppe Gagliardi ,4, 5

Paolo Gambino ,6 Marco Garofalo ,7 Christiane Franziska Groß ,7 Bartosz Kostrzewa ,7

Vittorio Lubicz ,4, 5 Francesca Margari ,3 Marco Panero ,6, 8 Francesco Sanfilippo ,5

Silvano Simula ,5 Antonio Smecca ,9 Nazario Tantalo ,3 and Carsten Urbach 7

1Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

2GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany

3Dipartimento di Fisica & INFN, Università di Roma “Tor Vergata”,
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We present the results of a first-principles theoretical study of the inclusive semileptonic decays of
the Ds meson. We performed a state-of-the-art lattice QCD calculation by taking into account all
sources of systematic errors. A detailed discussion of our lattice calculation, demonstrating that in-
clusive semileptonic decays can nowadays be studied on the lattice at a phenomenologically relevant
level of accuracy, is the subject of a companion paper [1]. Here we focus on the phenomenological
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lepton-energy moments are in very good agreement with the corresponding experimental measure-
ments. We also argue that, while the inclusive Ds channel is not yet competitive with the exclusive
channels in the |Vcs| determination, the situation can be significantly improved in the near future.
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FIG. 3. Comparison between our determination of |Vus| (red
data-point) and existing estimates based on ⌧ -decay analy-
ses, or from other decay channels. The lower part of the fig-
ure shows the predictions for |Vus| obtained assuming CKM-
unitarity.

In FIG. 3 we compare our determination of |Vus| with
the other existing direct determinations as well as with
various determinations obtained by assuming the unitar-
ity of the CKM matrix, i.e. |Vus| =

p
1 � |Vud|2. As the

figure shows, our determination of |Vus| from inclusive ⌧
decay is in good agreement with both |Vus|⌧�OPE�1 and
|Vus|⌧�OPE�2, while it is smaller (of about 2 SD) than
the determination of Ref. [10] which, however, mostly re-
lies on the experimental value of the exclusive ⌧ ! K⌫`
decay.

Our current estimate of |Vus| has been obtained by
neglecting long distance isospin breaking corrections.
These, instead, have been taken into account in the de-
terminations |Vus|K/⇡`2

and |Vus|K`3
from leptonic and

semileptonic decays [20–29]. The current di↵erence be-
tween our result in Eq. (17) and the determinations of
|Vus| from leptonic and semileptonic decays is at the level
of 3.3 and 2.2 SD, respectively. We note that in order to
fully reconcile the 3.3 SD di↵erence w.r.t. |Vus|K/⇡`2

one
needs an isospin breaking correction

�R(⌧)
us = 2

⇢ |Vus|⌧�latt�incl

|Vus|K/⇡`2

� 1

�
= �0.058(18) (18)

on R
(⌧)
us . At the current level of the theoretical preci-

sion a first principles calculation of �R
(⌧)
us on the lattice

is needed. Once this calculation will be performed, ex-
perimental uncertainties will wholly govern the determi-
nation of |Vus| from inclusive ⌧ decays.

CONCLUSIONS

In this work we have extracted for the first time
|Vus| from inclusive hadronic ⌧ decays with full non-
perturbative accuracy and with a 0.9% relative error
that, currently, is dominated by the experimental un-
certainty.

Our iso-symmetric QCD result has been obtained with-
out any perturbative approximation but is in fairly good
agreement with previous estimates obtained by using
OPE techniques. Therefore, our result confirms the
previously observed tension of about 3 SD between ⌧ -
inclusive and purely hadronic determinations of |Vus|
which can no longer be attributed to the OPE approxi-
mation.

The origin of this tension can possibly be ascribed to
the long distance isospin breaking corrections, that have
been taken into account in the determinations of |Vus|
coming from kaons and pions leptonic decays but that,
as in all previous determinations coming from inclusive
hadronic ⌧ decays, we have presently neglected. In fact,
having obtained a fully non-perturbative result with sub-
percent accuracy in iso-summetric QCD, further progress
on the study of inclusive hadronic ⌧ decays can only be
done by computing these corrections from first principles.
We have already started a series of projects dedicated to
this challenging task.

On the other hand, we also noticed that in order to
fully reabsorb the observed tension a rather large (of the
order of 5%) isospin breaking correction would be needed.
In the light of this observation we think that it is im-
portant to investigate the possibility that experimental
uncertainties on the ⌧ inclusive hadronic decay rate have
been underestimated and, at the same time, to speculate
about possible new physics scenarios that could explain
this puzzle.
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FIG. 2. Examples of continuum (a 7! 0), and � 7! 0 ex-

trapolations of �̄�1d�(0)/d!2 in the c̄s channel at |!| = 0.28.
Top: data at four lattice spacings (black points) for �mDs =
100 MeV and the continuum-extrapolated value (red). Bot-
tom: the red point represents the result of the � 7! 0 extrap-
olation based on a joint fit of the continuum limit results ob-
tained using the so-called “sigmoid” (blue points) and “error-
function” (orange points) representations of ⇥�(x), defined at
the beginning of Section VII of the companion paper [1]. For
details on the procedures used to perform the two limits, see
Sec. VIII-A of Ref. [1].

using the Wilson-Clover Twisted-Mass discretization for
fermionic fields [41–43], at four values of the lattice spac-
ing (a � 0.049 fm) and three values of the physical vol-
ume (L  7.6 fm).

In the companion paper [1] we provide a detailed descrip-
tion of all the steps of the numerical calculation, includ-
ing a thorough discussion of the specific implementation
of the HLT algorithm. Here, before discussing the phe-
nomenological implications of our results, we illustrate in
Figure 2 the quality of the data we use for the contin-
uum and � 7! 0 extrapolations of �̄�1d�(0)/d!2 in the
dominant c̄ s channel at |!| = 0.28. The top panel shows
results for � = 100MeV/mDs at four values of the lattice
spacings (black points) and the continuum-extrapolated
value (red point), obtained by combining multiple fits
using the Bayesian Model Average approach in Ref. [1].
The bottom panel demonstrates the � 7! 0 limit for two
di↵erent definitions of the kernel ⇥�(x) (blue and orange
points), which coincide as � 7! 0. The red point is the
result of a combined � 7! 0 fit guided by the theoretical
asymptotic formulae derived in Ref. [1].

f̄g c̄s c̄d

1014 ⇥ �f̄g [GeV] 8.53(55) 12.60(93)

�M1,f̄g/�c̄s [GeV] 0.453(24) 0.731(61)

�M2,f̄g/�c̄s [GeV2] 0.223(11) 0.416(43)

TABLE I. Our final determinations of the decay rate and
the first two lepton-energy moments for the two dominating
channels.

RESULTS

The total decay rate � is obtained by adding the integrals
over !2 of the di↵erential decay rates obtained in the dif-
ferent flavour channels. In the companion paper [1] we
have computed the �ūs contribution to the total rate and
shown that, at the present level of accuracy, it is negligi-
ble w.r.t. the statistical uncertainties of the dominating
�c̄s and �c̄d contributions. We have also discussed how
to interpolate and integrate the results for the c̄s and c̄d
flavor channels that are shown in Figure 3 together with
the associated error-budgets. The calculation of the first
two leptonic moments is carried out in a similar way.

Our final results are reported in Table I and, by using
the PDG [34] values |Vcs|PDG = 0.975(6) and |Vcd|PDG =
0.221(4), we get

� = |Vcs|2 �c̄s + |Vcd|2 �c̄d = 8.72(56) ⇥ 10�14 GeV ,

M1 =

�M1,c̄s

�c̄s
+ |Vcd|2

|Vcs|2
�M1,c̄d

�c̄s

1 + |Vcd|2
|Vcs|2

�c̄d

�c̄s

= 0.456(22) GeV ,

M2 =

�M2,c̄s

�c̄s
+ |Vcd|2

|Vcs|2
�M2,c̄d

�c̄s

1 + |Vcd|2
|Vcs|2

�c̄d

�c̄s

= 0.227(10) GeV2 . (7)

Our results can be compared with experimental measure-
ments from the CLEO [32] and BES-III [33] collabora-
tions, as well as their combined average [34]:

�CLEO = 8.56(55) ⇥ 10�14 GeV, (8)

�BES�III = 8.27(22) ⇥ 10�14 GeV, (9)

�average = 8.31(20) ⇥ 10�14 GeV, (10)

which are in excellent agreement with our theoretical pre-
diction in Eq. (7), as shown in the left panel of Figure 4.
For the first two leptonic moments, the experimental re-
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We present the results of a first-principles theoretical study of the inclusive semileptonic decays of
the Ds meson. We performed a state-of-the-art lattice QCD calculation by taking into account all
sources of systematic errors. A detailed discussion of our lattice calculation, demonstrating that in-
clusive semileptonic decays can nowadays be studied on the lattice at a phenomenologically relevant
level of accuracy, is the subject of a companion paper [1]. Here we focus on the phenomenological
implications of our results. Using the current best estimates of the relevant Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements, our theoretical predictions for the decay rate and for the first two
lepton-energy moments are in very good agreement with the corresponding experimental measure-
ments. We also argue that, while the inclusive Ds channel is not yet competitive with the exclusive
channels in the |Vcs| determination, the situation can be significantly improved in the near future.
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FIG. 3. Top: contributions to the di↵erential decay rate of
the dominant c̄s and c̄d channels (multiplied by the squared
moduli of the corresponding CKM elements), shown together
with a cubic-spline interpolation to the simulated momenta.
Middle/Bottom: error budgets for the c̄s and c̄d channels, re-
spectively. Red and blue points represent the total (�tot) and
statistical (�stat) errors, while the green, purple, yellow, and
black points represent the error associated with the infinite-
volume (�L), continuum-limit (�a), � 7! 0 (��) extrapola-
tion, and with the HLT-reconstruction (�HLT), respectively.
The dominant source of error is statistical.
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FIG. 4. Comparison between the experimental results from
Refs. [32–34, 44] and our theoretical prediction (red points),
for the decay rate (left-panel) and for the first (middle-panel)
and second (right-panel) lepton moment.

sults by the CLEO and BES-III collaborations are:

MCLEO
1 = 0.456(11) GeV, (11)

MBES�III
1 = 0.439(9) GeV, (12)

Maverage
1 = 0.446(7) GeV, (13)

for M1, and

MCLEO
2 = 0.239(12) GeV2, (14)

MBES�III
2 = 0.222(5) GeV2, (15)

Maverage
2 = 0.2245(46) GeV2, (16)

for M2. We have obtained these results by repeating also
in the case of the BES-III data the analysis performed in
Ref. [44] in the case of the CLEO results. Like for the
decay rate, the agreement of our theoretical predictions
of Eq. (7) with the experimental results is excellent, as
the middle- and right-panel of Figure 4 show.

A complementary analysis that can be carried out is to
convert the comparison between lattice and experiments
into a determination of the CKM matrix elements. In
principle, the relations in Eq. (7) about M1 and M2, af-
ter setting the left-hand side respectively to Maverage

1 or
Maverage

2 , can be solved for the ratio |Vcd|2/|Vcs|2. How-
ever, since for both l = 1, 2 the �Ml,c̄s/�c̄s contribution
alone (which is CKM-independent) already agrees with
the experimental result Maverage

l within uncertainties
(see Table I), there is essentially no remaining “room” for
extracting |Vcd|2/|Vcs|2 at better than the 100%-level of
precision. In other words, the measured moments are en-
tirely saturated, within errors, by the CKM-independent
part of the theoretical predictions. This also implies
that, currently, the comparison between lattice and ex-
periments for these two observables remains essentially
una↵ected by moderate variations in the CKM param-
eters. Therefore, since this is the very first time that
lattice QCD confronts experiments on these quantities,
the observed agreement is remarkable.
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to summarize

the bring-home message from the LG to the PG is:

we have realized that axiomatic field theory opened a new route to QCD phenomenology!

ANY AMPLITUDE can be written in terms of euclidean correlators as

An 7→m =
∑

t1,...tn+m

gt1,...tn+m
C(t1, · · · , tm)

and is therefore computable and the spectral-density approach WORKS!
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gt1,...tn+m C(t1, · · · , tm)

a new route has been opened. . .

but this doesn’t mean that it will be a comfortable journey. . .

therefore, it is even more important than before to

invest on as much precise as possible lattice calculations in order to

exploit the full discovery potential of past and future experiments!


