
Non-Conventional Computing for HEP

Challenges and opportunities from novel computing technologies

Stefano Carrazza

New Frontiers in Theoretical Physics - XXXVIII Convegno Nazionale di Fisica Teorica

Cortona, May 22th, 2025

Physics context: Hadronic collisions at the LHC

Monte Carlo event simulation is computationally very intensive.

Furthermore, HEP experimentation is fundamentally stochastic, therefore an increase in data

collection will impact the MC production and therefore the computing consumption.
1

Parton-level Monte Carlo generators

Theoretical predictions in hep-ph are based on:

∑
a,b

∫ 1

xmin

dx1dx2 |Mab({pn})|2 J n
m({pn}) fa(x1, Q2)fb(x2, Q

2),

a multi-dimensional integral where:

• |M| is the matrix element,

• fi(x,Q
2) are Parton Distribution

Functions (PDFs),

• {pn} phase space for n particles,

• J n
m jet function for n particles to m.

⇒ Procedure driven by the integration algorithm.

2

Monte Carlo generator pipeline

Schematically, a MC generator can be divided into modules:

⇒ Final goal: efficient runtime and low memory usage.
3

What about hardware?

3

Defining hardware acceleration

R&D software for new technologies, such as hardware accelerators:

Moving from general purpose devices ⇒ application specific

4

Hardware accelerators in HEP

2019 2020 2021 2022 2023 2024

Hardware Acceleration for PDFs
arXiv:1909.10547

VegasFlow
arXiv:2002.12921

Qibo
arXiv:2009.01845

PDFFlow
arXiv:2009.06635

PDF on QPU
arXiv:2011.13934

MadFlow
arXiv:2106.10279

MC events via QGAN
arXiv:2110.06933

Quantum simulation with JIT
arXiv:2203.08826

FPGA for QPU control
arXiv:2112.02933

MadFlow + device-specific opt.
arXiv:2211.14056

Drivers for QPU control
arXiv:2308.06313

RFSoC FPGA for QPU
arXiv:2308.07679

QC for HEP

HEP-MC

‎Hardware
‎acceleration for HEP

‎CPUs & GPUs

‎Parton distribution functions

‎Monte Carlo integration

‎Monte Carlo event generation

‎FPGA
‎Monte Carlo simulation

‎Quantum Optimal Control

‎QPU

‎Parton distribution functions

‎Artificial MC events from quantum GAN

‎Multi-variable integration 5

MC event generation on GPU

Example: Parton Distribution Functions

 Parton distribution functions
(Machine Learning)

6

Parton distribution functions � arXiv:2109.02653

An unbiased determination of PDFs and its uncertainties are crucial for predictions.

The NNPDF approach uses neural networks and a full machine learning training framework:

xfk(x)(x,Q
2
0;θ) = Akx

1−αk(1− x)βkNNk(x;θ), k = {g, u, ū, d, d̄, s, s̄, c+}.
7

https://arxiv.org/abs/2109.02653

Boosting NNPDF fits on GPU � arXiv:2410.16248

PDF determination requires:

• Uncertainty estimation through multiple fits of Monte Carlo replicas.

• Prediction evaluation through convolutions with matrix elements and evolution operators.

σpp→X =
∑
k,l

∑
δ,γ

W̃kl,δ,γfk(xδ, Q
2
0)fl(xγ , Q

2
0)

Both operations are parallelized on GPU. 8

https://arxiv.org/abs/2410.16248

Boosting NNPDF fits on GPU - Results � arXiv:2410.16248

Significant reduction in PDF training time on GPUs (e.g., NVIDIA H100):

Up to 80% runtime improvement when compared to CPU performance (sequential):

Increase of models per hours → better hyper parameter fine tuning → better PDFs

9

https://arxiv.org/abs/2410.16248

PDF Interpolation on GPU: PDFFlow � arXiv:2009.06635

PDF interpolation and inference on GPU is required for MC simulation:

The LHAPDF implementation on GPU (PDFFlow) enables this possibility. 10

https://arxiv.org/abs/2009.06635

Example 2: Event generation

 Event generation
11

GPU-aware integration wrapper: VegasFlow � arXiv:2010.09341

Combine PDFFlow and VegasFlow (MC integrator, 10.1016/j.cpc.2020.107376)

Born diagram for qq̄ → b̄t Born diagram for qQ → qQH

0 5 10 15 20 25
Time (minutes)

MG5_aMC@NLO
36 active CPU cores

VegasFlow
36 active CPU cores

VegasFlow
Titan V

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.002 pb
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

✓ Best speed-up at LO: 19x

✓ Best speed-up at NLO: 9x

0 10 20 30 40

Time (seconds)

Fortran+LHAPDF
i7 6700K

VegasFlow+PDFFlow
(i7) RTX 2080

VegasFlow+PDFFlow
(Xeon) 2x V100

VegasFlow+PDFFlow
(i9) TITAN V

6.5

0.42

0.53

0.34

46

15.2

7.4

5.1

MC integration of VFH Higgs @13 TeV µF = pT,j1

VFH LO

VFH NLO

Time per iteration

(C) consumer-grade

(P) professional-grade hardware

CPU implementation: LHAPDF + Fortran code

GPU implementation: PDFFlow + VegasFlow 12

https://arxiv.org/abs/2010.09341
https://www.sciencedirect.com/science/article/pii/S0010465520301624

Beyond process-dependent code: MadFlow � arXiv:2106.10279

Extend MadGraph interface to write the program combining PDFFlow+VegasFlow and MadGraph.

13

https://arxiv.org/abs/2106.10279

Beyond hardware agnostic code: overoptimization � arXiv:2211.14056

Easily extensible and interfaceable with other languages (C++, Cuda, Fortran, Rust).

Since in this case the bottleneck is created by the sheer amount of diagrams, we can write a transpiler

so that we can convert them in CUDA code that gets compiled before running the process.

14

https://arxiv.org/abs/2211.14056

What about quantum hardware?

14

Software and Quantum Computing

Simulation

• required to develop algorithms

• complete introspection

• require noise modeling

Hardware

• limited (in many senses)

• requires calibration

• final validation 15

The real-world...

16

Qubits and Quantum Circuits

The quantum circuit model considers a sequence of unitary quantum gates:

|ψ′⟩ = U2U1 |ψ⟩ → |ψ⟩ U1 U2 |ψ′⟩

The final state |ψ′⟩ is given by:

ψ′(σ) =
∑
σ′

U1U2(σ,σ
′)ψ(σ1, . . . σ

′
i1 , . . . , σ

′
iNtargets

, . . . , σN),

17

Quantum gates

• Single-qubit gates

• Pauli gates

• Hadamard gate

• Phase shift gate

• Rotation gates

• Two-qubit gates

• Controlled gates

• Swap gate

• fSim gate

• Three-qubit gates

• Toffoli

18

Pauli gates

X gate

The X gate acts like the classical NOT gate,

it is represented by the σx matrix,

σx =

(
0 1

1 0

)

therefore

|0⟩ X |1⟩

|1⟩ X |0⟩

Z gate

The Z gate flips the sign of |1⟩, it is
represented by the σz matrix,

σz =

(
1 0

0 −1

)

therefore

|0⟩ Z |0⟩

|1⟩ Z − |1⟩

19

Hadamard gate

The Hadamard gate (H gate) is defined as

H =
1√
2

(
1 1

1 −1

)

Therefore it creates a superposition of states

|0⟩ H
|0⟩+ |1⟩√

2
≡ |+⟩

|1⟩ H
|0⟩ − |1⟩√

2
≡ |−⟩

Measurement (M) gate:

Lets consider the following circuit:

|0⟩ H

When measuring the final state we obtain 0 or 1 each with 50% probability.
20

Quantum Middleware � arXiv:2009.01845

21

https://arxiv.org/abs/2009.01845

Quantum Middleware � arXiv:2009.01845

Qibo
Implementation

Language API

Quantum annealing

Quantum computing

Quantum information

Simulation
backends

Qibojit Efficient thanks to
custom operators

Numpy Lightweight, fits any
CPU

Clifford Specialized in
Clifford circuits

Qulacs Interface

TensorFlow

Pytorch

Qibotn TensorNetwork
simulator

Hybrid QML with
automatic
differentiation

Cloud
backends

IBM

QRC-TII

AWS

Hardware
backend

Qibolab

Control drivers

Convert gates to pulses

Compiler

Applications

Qiboml

Qibochem

Qibosoq

Qibocal

Characterization

Validation

Verification

 RFSoCs

22

https://arxiv.org/abs/2009.01845

Quantum Simulation � arXiv:2203.08826

Classical quantum simulation is an important tool for algorithm design:

Simulation strategies are limited by memory and performance.

23

https://arxiv.org/abs/2203.08826

Quantum Control and Calibration � arXiv:2308.06313

24

https://arxiv.org/abs/2308.06313

Algorithms for QPUs

Applications

25

Hybrid quantum-classical algorithms

26

Quantum computing for Theoretical Modelling in HEP � arXiv:2307.03236

Goal:

Design new algorithms for QFT and Hadronic

physics observables, identify advantage from

quantum computing methods.

How?

• Designing hybrid quantum-classical

methods using classical quantum

simulation.

• Deploying classical quantum simulation

techniques on HPC infrastructure.

QC4HEP WG

27

https://arxiv.org/abs/2307.03236

MC simulation on QPU

Example: Parton Distribution Functions

 Parton distribution functions
(Machine Learning)

28

Quantum Regression for PDFs � arXiv:2011.13934

29

https://arxiv.org/abs/2011.13934

Porting PDFs to QPU � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1 Define a quantum circuit: U(θ, x)|0⟩⊗n = |ψ(θ, x)⟩

2 Uw(α, x) = Rz(α3 log(x) + α4)Ry(α1 log(x) + α2)

3 Using zi(θ, x) = ⟨ψ(θ, x)|Zi|ψ(θ, x)⟩:

qPDFi(x,Q0, θ) =
1− zi(θ, x)

1 + zi(θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1Results from classical quantum simulation and hardware execution (IBM) are promising:

30

https://arxiv.org/abs/2011.13934

Quantum PDFs regression on QPU � arXiv:2011.13934

31

https://arxiv.org/abs/2011.13934

Example: Monte Carlo Integration / Sampling

 Monte Carlo Integration
32

Monte Carlo simulation on QPU � arXiv:2308.05657, 2110.06933

QPUs can be used to parametrize integrands and integrals via:

Evaluate loss
functionData

Optimizer updates
parameters

Evaluate derivatives

Inject information into the Circuit

Target integral

Fit the integrand with the
derivative of the circuit

0.210

0.220

0.230

I u
(Q

2)

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio

Approximation
Target result

Quantum GANs:

QPUs can sample Monte Carlo

events using quantum generative

adversarial architectures:

33

https://arxiv.org/abs/2308.05657
https://arxiv.org/abs/2110.06933

Outlook

Conclusion: Embracing Non-Conventional Computing

• HEP’s intense computing needs drive exploration of novel technologies.

• GPUs are delivering significant speedups in MC generation and analysis (PDFFlow ,

VegasFlow , MadFlow).

• Hardware-aware software optimization maximizes GPU potential.

• Quantum Computing offers future possibilities for theoretical modeling and data analysis.

• Frameworks like Qibo facilitate quantum algorithm development for HEP.

• Hybrid quantum-classical approaches are key for near-term quantum applications.

• Continued progress in non-conventional computing is vital for HEP’s future.

34

Thank you!

34

	MC event generation on GPU
	Algorithms for QPUs
	MC simulation on QPU
	Outlook

