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𝐿ଶ Rank 𝑑 ⋅ 𝑚ଶ tensors 
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Bond dimension 𝒎:
maximum amount of mutual information between 
subsystems

Tree Tensor Networks

𝐴

𝐵

Tree Tensor Networks: suited for high-dimensional systems

• Ground state, dynamics

• Closed/open systems

• Condensed matter, high energy physics, optimization problems
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5.73 𝜇m

Δ௜ Ω௜ = Ω௙ = 0

= 2.5 MHz

All atoms in the 
ground state

Δ௖

Disordered
phase

Ordered phase

𝑝௙௜௟௟ ∼ 99.5%

Cloud available analog quantum processor

Experimental realization

Fixed spacing 𝑎
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Disordered phase
Low density of excitations

Striated phase
Density-wave phase

• Compute the ground state of 𝐻ோ௬ௗ

• Measure 𝑛 local Rydberg excitation density
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No density-wave order
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- The time scale to prepare the ordered
ground state is not experimentally
accessible
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magnetization

- Avoided level crossing, exponentially
small gap
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Conclusions

- Boundary frustration changes the nature of the transitions

- Interplay between experiment and numerical simulations

- Relevance of quantum simulators to observe quantum many body physics
not accessible numerically

- Two-dimensional square Rydberg lattice as a rich quantum simulation platform
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Tensor Network methods

1-D local Hamiltonian 𝐻෡ = ∑ ℎ෠௜௜

B

iℎ෠௜

ℓ𝐴
𝜕𝐴

|𝛹⟩
Local correlations

(exponential decaying) 

Area laws of 
entanglement

- Tree-tensor network: binary, 
hierarchical tensor structure

- Competitive computational 
complexity

physical 
lattice

PhD Thesis, T. 
Felser

- Dynamics: 

𝑇௧ାௗ௧ ≃ e
ି௜ௗ௧ ு೐೑೑ ௧ା

೏೟

మ
 

௄௥௬௟𝑇௧

|𝛹⟩

|𝛹றൿ

𝐻

𝐻௘௙௙

𝑇

TTN algorithm

- Ground state:

min{𝑇ற𝐻௘௙௙𝑇}

𝐿 For a 2-D system 
𝜕𝐴 ∼ 𝐿 → 𝑆 ∼ exp (𝐿)

TN in 2-D

Needed compromise between:
- Computational complexity 
- Accuracy
Several geometries: 

MERA

PEPS

Sequential tensor manipulation
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Rydberg atom arrays – phase diagram


