Dynamics across quantum phase transitions in Rydberg atom arrays

Simone Notarnicola, University of Padova

New Frontiers in Theoretical Physics - XXXVIII Convegno Nazionale di Fisica Teorica

Palazzone della Scuola Normale Superiore di Pisa, Cortona

May, 21st 2025

https://quantum.dfa.unipd.it/ https://qcsc.dfa.unipd.it/

Main goal of quantum processors:

- Assemble quantum many-body states
- Preserve and manipulate their information

-

Main goal of quantum processors:

- Assemble quantum many-body states
- Preserve and manipulate their information

Applications:

- Preparation of phases of matter
- Quantum dynamics
- Solution of combinatorial problems

-

Main goal of quantum processors:

Assemble quantum many-body states

Preserve and manipulate their information

Impressive breakthroughs on different platforms: Trapped ions, neutral atoms, superconducting qubits, photons

Applications:

- Preparation of phases of matter
- Quantum dynamics
- Solution of combinatorial problems

Main goal of quantum processors:

Assemble quantum many-body states

Preserve and manipulate their information

Impressive breakthroughs on different platforms: Trapped ions, neutral atoms, superconducting qubits, photons

Noisy Intermediate Scale Quantum era

Analog platforms

Dynamics under effective Hamiltonians

Digital platforms

Gate-based state preparation

Applications:

- Preparation of phases of matter
- Quantum dynamics
- Solution of combinatorial problems

Semeghini et al, Science (2021) Harvard

Omran et al, Nature (2019) Google

Main goal of quantum processors:

Assemble quantum many-body states

Preserve and manipulate their information

Impressive breakthroughs on different platforms: Trapped ions, neutral atoms, superconducting qubits, photons

Noisy Intermediate Scale Quantum era

Analog platforms

Dynamics under effective Hamiltonians

Digital platforms

Gate-based state preparation

Early Fault Tolerant Quantum Computing era

Logical protocols

Operations on logical qubits

Applications:

- Preparation of phases of matter
- Quantum dynamics
- Solution of combinatorial problems

Semeghini et al, Science (2021) Harvard

Omran et al, Nature (2019) Google

Bluvstein et al, Nature (2024) Harvard

X

N

X

X

Outline

quera.com

Outline

✓ Rydberg atom arrays

✓ Tree Tensor Networks

 \checkmark

✓ Boundary frustration in the striated phase of the Rydberg atom square lattice

Conclusions \checkmark

$\textbf{Qubit} \equiv \textbf{atom}$

 $Rb \ \mathbf{70}^{1}s \sim \mathbf{10}^{-6}m \quad |r\rangle$

Rb $5^{1}s \sim 10^{-10}m |g\rangle$ —

$\textbf{Qubit} \equiv \textbf{atom}$

$$Rb \ \mathbf{70^{1}s} \sim \mathbf{10^{-6}m} \quad |r\rangle \quad \stackrel{\frown}{\longrightarrow} \quad \Omega$$
$$Rb \ \mathbf{5^{1}s} \sim \mathbf{10^{-10}m} \quad |g\rangle \quad \stackrel{\frown}{\longrightarrow} \quad \Omega$$

$$H_{Ryd} = \left(\frac{\Omega}{2}\sum_{i} (|g_i\rangle\langle r_i| + h.c.)\right) - \left(\Delta\sum_{i} n_i\right)$$

Quantum driver

Chemical potential

Rescaled Hamiltonian: $\frac{\Delta}{\Omega} \equiv \Delta$

 $\textbf{Qubit} \equiv \textbf{atom}$

$$H_{Ryd} = \left(\frac{\Omega}{2}\sum_{i} (|g_i\rangle\langle r_i| + h.c.)\right) - \left(\Delta\sum_{i} n_i\right) + \left(\sum_{i< j} V_{ij} n_i n_j\right)$$

Quantum driver

Chemical potential

Van der Waals

interactions

Rescaled Hamiltonian: $\frac{\Delta}{\Omega} \equiv \Delta$

$\textbf{Qubit} \equiv \textbf{atom}$

- Isotropic interactions
- $d \sim 4 \,\mu\mathrm{m}$
- No simultaneous excitations if $d < R_b$ (blockade radius)

$$H_{Ryd} = \frac{\Omega}{2} \sum_{i} (|g_i\rangle\langle r_i| + h.c.) - \Delta \sum_{i} n_i + \sum_{i < j} V_{ij} n_i n_j$$

Quantum driver

Chemical potential

Van der Waals interactions

Rescaled Hamiltonian: $\frac{\Delta}{\Omega} \equiv \Delta$

$\textbf{Qubit} \equiv \textbf{atom}$

- Isotropic interactions
- $d \sim 4 \,\mu\mathrm{m}$
- No simultaneous excitations if $d < R_b$ (blockade radius)

Quantum driver

Chemical potential

Van der Waals interactions

Rescaled Hamiltonian: $\frac{\Delta}{\Omega} \equiv \Delta$

Lattice loading with one atom per tweezer

$\textbf{Qubit} \equiv \textbf{atom}$

- Isotropic interactions
- $d \sim 4 \,\mu\mathrm{m}$
- No simultaneous excitations if $d < R_b$ (blockade radius)

Quantum driver

Chemical potential

Van der Waals interactions

Lattice loading with one atom per tweezer

S. Ebadi et al., Nature 595, (2021)

$\textbf{Qubit} \equiv \textbf{atom}$

- Isotropic interactions
- $d \sim 4 \,\mu \mathrm{m}$ -
- No simultaneous excitations if $d < R_b$ -(blockade radius)

Lattice loading

Van der Waals interactions

S. Ebadi et al., Nature 595, (2021)

Ground state phase diagram

Negative detuning \rightarrow

Disordered phase With no localized excitations

Ground state phase diagram

Negative detuning → Disordered phase With no localized excitations

Positive detuning \rightarrow

Charge density waves With localized excitations

Negative detuning → Disordered phase With no localized excitations

Positive detuning → Charge density waves With localized excitations

Smaller spacing $a \rightarrow$ Lower excitation density

Negative detuning → Disordered phase With no localized excitations

Positive detuning → Charge density waves With localized excitations

Smaller spacing $a \rightarrow$ Lower excitation density

Negative detuning → Disordered phase With no localized excitations

Positive detuning → Charge density waves With localized excitations

Smaller spacing $a \rightarrow$ Lower excitation density

Tree Tensor Networks

Tree Tensor Networks

Efficient method to compress information when correlations fastly decay in space

Bond dimension *m*:

maximum amount of mutual information between subsystems

Tree Tensor Networks

Efficient method to compress information when correlations fastly decay in space

Bond dimension *m*:

maximum amount of mutual information between subsystems

Tree Tensor Networks: suited for high-dimensional systems

- Ground state, dynamics
- Closed/open systems
- Condensed matter, high energy physics, optimization problems

Experimental realization

Experimental realization

Cloud available analog quantum processor

Coherence throughout the full computation Field-programmable qubit arrays (FPQA[™])

Programmable connectivity of near-arbitrary qubit layout

5.73 µm $p_{fill}\sim 99.5\%$ 0 0 \bigcirc

Experimental realization

All atoms in the

ground state

 Δ_i

 au_{Ω}

Т

 t_0

 au_{Δ}

 $\Omega_i = \Omega_f = 0$

 t_f

- Compute the ground state of H_{Ryd}
- Measure *n* local Rydberg excitation density

- Compute the ground state of H_{Ryd}
- Measure *n* local Rydberg excitation density

Disordered phase Low density of excitations **Striated phase** Density-wave phase

Degeneracy with	• • • •	0 0 0	0000	0000
even x even	0000	0000	• • • •	0 0 0
lattice sizes	• • • •	0 0 0	0000	0000
	0000	0000	• • • •	0 0 0

Degeneracy with	• • • •	0 0 0	0000	0000
even x even	0000	0000	• • • •	0 0 0
lattice sizes	• • • •	0 0 0	0000	0000
	0000	0000	• • • •	0 0 0

Degeneracy with	• • • •	0 • 0 •	0000	0000
even x even	0000	0000	• • • •	0 0 0
lattice sizes	• • • •	0 0 0	0000	0000
	0000	0000	• • • •	0 0 0

Ordered phase

Domains with diagonal interface

Even size:

- Discontinuous staggered magnetization
- Singlet formed by the two degenerate ground states

Even size:

- Discontinuous staggered magnetization
- Singlet formed by the two degenerate ground states

Odd size:

- Unique, ordered ground state

Even size:

- Discontinuous staggered magnetization
- Singlet formed by the two degenerate ground states

Odd size:

- Unique, ordered ground state

Degeneracy is not broken anymore by the boundary

Disordered phase

Low density of excitations No density-wave order

Ordered phase

Twofold degenerate state Domains with diagonal interface

Degeneracy is not broken anymore by the boundary

Disordered phase

Low density of excitations No density-wave order

Intermediate regime Competing domains enucleated by the corners

Ordered phase Twofold degenerate state Domains with diagonal interface

The striated order emerges around the same Δ in the even and odd case

The striated order emerges around the same Δ in the even and odd case

Ground state

 $\Delta = 1.8$

 $\Delta = 3.0$

 $\Delta_{\rm f} = 3.0$

Disagreement in the singlet phase between numerical ground state and experiment!

8.

0

5

x

10

y

u

10

'n

0

5

x

0.5 u

Ω

5

x

10

Agreement Numerical dynamics -Experiment

и

 2π

0.02

0.5

1.0

1.5

Δ

2.0

2.5

3.0

- Discontinuity in the staggered magnetization

- Discontinuity in the staggered magnetization
- Transition between the singlet and the triplet striated ground state

- Discontinuity in the staggered magnetization
- Transition between the singlet and the triplet striated ground state
- Avoided level crossing, exponentially small gap

- Discontinuity in the staggered magnetization
- Transition between the singlet and the triplet striated ground state
- Avoided level crossing, exponentially small gap
- The time scale to prepare the ordered ground state is not experimentally accessible

Conclusions

- Relevance of quantum simulators to observe quantum many body physics not accessible numerically

- Relevance of quantum simulators to observe quantum many body physics not accessible numerically
- Two-dimensional square Rydberg lattice as a rich quantum simulation platform

- Relevance of quantum simulators to observe quantum many body physics not accessible numerically
- Two-dimensional square Rydberg lattice as a rich quantum simulation platform
- Boundary frustration changes the nature of the transitions

Conclusions

- Relevance of quantum simulators to observe quantum many body physics not accessible numerically
- Two-dimensional square Rydberg lattice as a rich quantum simulation platform
- Boundary frustration changes the nature of the transitions
- Interplay between experiment and numerical simulations

Luka Pavesic

Pietro Silvi

Simone Montangero

Thank you for your attention

Daniel Jaschke

Marco Di Liberto

M. Lukin

Striated phase – experimental results

Rydberg atom arrays – phase diagram

