Digital SiPIN for Dual-readout calorimetry and the ASPiDeS program

R. Santoro on behalf of the ASPiDeS and HiDRa collaborations

Università dell'Insubria and INFN – Milano

IDEA: new baseline concept

A CONTRACT OF A

Beam pipe: $R \approx 1.0 \text{ cm}$

Highly transparent tracking

- Si pixel vertex detector (monolithic technology)
- Drift Chamber
- Si wrappers (strips)
- □ Dual-readout crystal ecal: \approx 22 X₀
- □ Thin superconducting solenoid: 3 T

Dual-readout calorimetry 2 m / 7 λ_{int}

- Muon chambers
 - \square µ-RWELL in return yoke

Dual-Readout: the principle

- Non compensating calorimeter (h/e<1): has a different response to electromagnetic (fem) and hadronic component (1-fem)
- The fem is energy dependent: it induces a nonlinear calorimetric response to hadrons and large fluctuations
- By reading two calorimetric signals (S and C) with different h/e, the fem can be measured event by event and the compensation can be achieved off-line

$$E_{S} = E\left(f_{em} + \left(\frac{h}{e}\right)_{S}(1 - f_{em})\right)$$

$$E_{C} = E\left(f_{em} + \left(\frac{h}{e}\right)_{C}(1 - f_{em})\right)$$

$$E = \frac{\left(E_{S} - \chi E_{C}\right)}{1 - \chi}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$It is detector dependent: it can be measured on beam tests$$

3rd IDEA Study Group meeting, 17/12/2024 **S. Lee et al, RevModPhys**, 90, 025002 (2018) DOI: 10.1103/RevModPhys.90.025002

R. Santorc

Dual-Readout in IDEA

- Almost 75 millions of 2 mm outer diameter stainless steel tubes
- In each tube there is a 1 mm diameter fibre connected to a SiPM
- □ Signals from 8-SiPMs grouped to reduce the number of channels to be read out

HiDRa project (supported by INFN) aims to identify a scalable and cost-effective solution to build a dualreadout calorimeter for IDEA.

HiDRa: High-Resolution Highly Granular Dual-Readout Demonstrator

64 x 16 stainless steel capillaries, 2 mm outer diameter, equipped with scintillating and clear fibres (alternated in rows) to apply the dual-readout method

The HiDRa prototype

Designed to be scalable and large enough to measure the hadronic performances

	hindudinini	hindiddiddidd	
advanti idili			l an
	n Antennationstander Dennationalisensensen	darda sera sida da d	
		41111111111 411111111	na analana analanina dalam Na mangana a
		orregizzieter	
	handahana		

The highly granular modules

Two central modules read out with 10k SiPMs (one per fibre)

Challenging integration requiring a precise assembly procedure and the use of compact components (i.e. SiPMs, services and mechanical) to fit in the back of the calorimeter

Integration of highly granular modules

SiPM with 10 μm pitch for scintillating and 15 μm pitch for Cherenkov light

Customised package with 8 SiPMs, 2 mm spaced (S16676-15 / S16676-10)

Analogue signals from 8 SiPMs connected in parallel

SiPM parameters (Hamamatsu datasheet)

Parameter	S16676-15(ES1)	S16676-10(ES1)
Effective photosensitive area (mm2)	1 x 1	1 x 1
Pixel pitch (mu)	15	10
Number of pixels	3443	7772
Recommended operating voltage (Vop)	+4 V	+5 V
PDE at the Vop (%)	32	18
Direct cross talk at the Vop (%)	<1	<1
Dark count rate (kHz)	60 (200 max)	60 (200 max)
Gain (10 ⁵)	3.6	1.8

3r

The EM-size prototype tested on beam (2021 and 2023)

- 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
- Brass capillaries: 2 mm outer diameter and 1.1 mm inner diameter
- EM-size prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

M6 M7 M8

 $M4 M \emptyset M 5$

M1 M2 M3

3rd IDEA Study Group meeting, 17/12/2024

We need single photons resolution and large dynamic range

${\tt CitiroclA-block-schema}$

We need single photons resolution and large dynamic range

CitiroclA-block-schema

HG equalisation

Dpp: used to convert ADC in Ph-e (monitored in all runs and for all SiPMs)

Pedestal width: used to measure the noise contribution to the energy resolution

We need single photons resolution and large dynamic range

Citiroc1A – block-schema

LG equalisation

Slope of the correlation plot provides the ADC to Ph-e conversion factor

Pedestal width measured selecting noise events in the HG

3rd IDEA Study Group meeting, 17/12/2024

digital sensors: the same cell cannot be fired twice 3rd IDEA Study Group meeting,

17/12/2024

R. Santorc

More on SiPIM linearity

Parameter	S14160-1315PS	
Effective photosensitive area (mm2)	1.3 x 1.3	
Pixel pitch (mu)	15	
Number of pixels	7284	

$$N_{\rm fired} = N_{\rm cells} \times \left[1 - \exp\left[-\frac{N_{\rm photons} \times {\rm PDE}}{N_{\rm cells}}\right]\right]$$

With 700 Ph-e (10% occupancy) in a single fibre -> 5% correction to the signal

Improved linearity after the correction

DR High granularity modules have demanding and sometimes competing requirements:

- □ SiPMs with:
 - □ High efficiency with single photon resolution
 - wide dynamic-range at fixed sensitive area to avoid non-linearity effects
- Readout coping with the SiPM dynamic range, preserving the single photon resolution
- \Box Time resolution < 100ps to add longitudinal segmentation
- Signal grouping from SiPMs to reduce the number of channels to be read-out, knowing that:
 - It reduces the multi-ph quality and the timing performance
 - It requires that all SiPMs in the group must operate in linear regime: no-way to correct for non-linearity (they sampling different regions of the shower profile and are not uniformly illuminated)

Are dSiPMs a valid option to be considered?

Digital (CMOS) SiPMs: readout functionalities implemented in the sensor substrate (e.g. binary counters, SPAD masking, TDCs ...)

M. Perenzoni et al. 2017 – IEEE JSSC

- SPAD array in CMOS technologies may offer the following benefits:
 - Front-end can be optimised to preserve signal integrity (especially useful for timing)
 - Easier linearisation and calibration direct digital output vs digital/analog (including noise + non uniformity)/digital conversion
 - The monolithic structure simplifies the assembly for large area detectors
 - Costs can be kept relatively low if the design is based on standard process

R. Santoro

ASPiDeS: A CMOS SPAD and Digital SiPM platform for high energy physics

- □ A 3-year long INFN project lead by Lodovico Ratti (2025-2027)
- Goal: implementation and characterization of monolithic dSiPMs based on standard CMOS technology (a 110 nm CMOS process) for high energy physics applications
 - The chip will provide digitized output signals with low power consumption, fast read-out and low cost
- Different requirements on the floor:
 - High dynamic range for dual-readout calorimetry
 - High PDE and low DCR for low-light detection applications (RICH, dark matter and neutrino physics)

Deliverables:

- Demonstrator of CMOS-SPAD monolithic sensor fulfilling the HiDRa requirements
- A prototype chip targeting low-light detection applications
- Test structure for cryogenic applications

dSiPIM specifications

Requirements	Dual readout calorimetry	Cherenkov (eg RICH, IACT)	Dark Matter	Neutrino
SiPM Unit area (mm²)	lxl	mm scale	10x10	6x6
Micro-cell pitch (um)	15-20	40-50	25-30	50-150
Macro-pixel area (μ m²)	500x500			
PDE (%)	>20	> 40	>45	>35
DCR (kHz)	<100 kHz/mm ²	very low for single pe detection	<0.1 Hz/mm² (at LN)	<0.2 Hz/mm² (at LN)
AP (%)	<1	few	Total Correlated Noise	<5%
Xtalk (%)	few	few	Probability (Xtalk + AP) < 60 %	<35%
Trigger	external, self	self, external	self	
Output data: light intensity	no. of fired cells in 1 or 2 time windows (10's of ns long)			
Output data: time	time of arrival of the first photon in the window, possibly of the last photon (TOT)	ToA and ToT	ToA and TOT	
Time resolution (ps)	<100	< 100 single pe		
Module size and form factor	strip with 8 units (1mm x 16 mm), pitch of 2 mm			
Connection	BGA			
INFN 3rd I	DEA Study Group meeting,			R. Santoro

17/12/2024

Demonstrator for DR calorimetry

- Single building block of 8 dSiPM (1x1mm²) and processing electronics in the common CMOS substrate
 - The SPAD electronic circuits will be kept to a minimum to guarantee high fill-factor
 - The inter-dSiPM spacing is used to accommodate the processing electronics
 - Each mm² dSiPM will be subdivided in sectors, each served by dedicated mixed analogue and digital electronics to improve timing performance

3rd IDEA Study Group meeting, 17/12/2024

Demonstrator for DR calorimetry

- Single building block of 8 dSiPM (1x1mm²) and processing electronics in the common CMOS substrate
 - The SPAD electronic circuits will be kept to a minimum to guarantee high fill-factor
 - The inter-dSiPM spacing is used to accommodate the processing electronics
 - Each mm² dSiPM will be subdivided in sectors, each served by dedicated mixed analogue and digital electronics to improve timing performance
- Processing electronics:
 - Fully digital output obtained through a completely digital processing chain (or, mixed analogue and digital approach, through current or charge integration and A/D conversion)
 - Time of arrival of the first bunch of photons and bunch duration with better than 100 ps resolution
 - Possibility of individual micro-cell enabling
 - Threshold adjustment capabilities for noise rejection
 - Asynchronous counting over a more than three decade wide dynamic range of simultaneously firing micro-cells (order of a few thousands, 15-20 μm pitch)

A test chip (ASAPLF110) with the same technology of interest is available from a previous project:

- □ 110 nm CIS technology;
- 136 pads involving supplies, voltage references and I/O digital signals.
- fully digital detection system embedding various SPAD arrays with different readout circuits;
- availability of single sensors enabling direct extraction of the I-V characteristics featured by the SPADs
- in-chip time to digital converter for DCR and afterpulsing characterization
- digital SiPMs based on a parallel counter architecture

- Breakdown voltage
 - DCRVS voltage using 500 ms long gate windows
 - Scan performed with dV = 10 mV
 - Vb defined as the minimum voltage with DCR > 0 (Vb measured with IV-curves is 500 mV lower)

Breakdown voltage

DRC @ 21V: measured with two methods

- Count rates measured in 30k windows (1 ms long): average value is the DCR contaminated by AP (DCR standard)
- Assuming DCR follows Poisson distribution, I'm measuring the probability of having 0 counts in 1ms long windows (µ of the Poisson distribution)

- Breakdown voltage
- DRC @ 21V: measured with two methods
- DCR VS bias voltage

- Breakdown voltage
- DRC @ 21V: measured with two methods
- DCR VS bias voltage
- 🗆 AP @ 21V
 - We count spurious pulses N_{tot} (DCR + AP) in gated windows
 - □ If DCR follow the Poissonian statistic, the μ of the distribution is measured by counting the number of empty windows and we can also estimate the N_{DCR}
 - □ AP is defined as follows:

$$AP = \frac{N_{tot} - N_{DCR}}{N_{tot}} = \frac{N_{tot} - \lambda \Delta T_{Tot}}{N_{tot}}, \ \lambda = \left(\frac{\mu}{\Delta T}\right), \ \Delta T = \text{single integrating window}$$

R. Santoro

11DIC

First measurements performed on the ASAPLF110

- Breakdown voltage
- DRC @ 21V: measured with two methods
- DCR VS bias voltage
- 🗆 AP @ 21V

3rd IDEA Study Group meeting, 17/12/2024

- Breakdown voltage
- DRC @ 21V: measured with two methods
- DCR VS bias voltage
- 🗆 AP @ 21V
- PDE and Cross talk will come soon

- HiDRa aims to build a dual readout calorimeter large enough to contain hadronic showers, using a scalable and cost-effective solution for the IDEA detector concept
- The highly granular modules, equipped with SiPMs, set challenging requirements in terms of readout, calibration technique and linearity correction
- Although SiPMs are the baseline solution, monolithic CMOS SPAD array (dSiPM) may have a strong impact for this detector R&D
- ASPIDES aims to design and characterise a demonstrator that meets the HiDRa requirements and will provide test structures of wider interest for high energy physics applications: stay tunes!

Integration and signal integrity

- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

CitiroclA-block-schema

Customised package with 8 SiPMs, 2 mm spaced (S16676-15 / S16676-10)

SiPM with 10 μm pitch for scintillating and 15 μm putch for Cherenkov light (better PDE)

15 μm pitch SiPM operated at \approx + 6 V Over-Voltage

ASAP110LF chip – Array A2

Array 2 (A2) cell:

- The avalanche is quenched by a passive network
- The monostable circuit modifies the duration of the sensor pulse (400 ps, 750 ps, 2 ns, transparent mode).
- A 10 bit counter automatically counts the pulses.

NDIC