

New SVT Background rates

Summary of results from latest back production G. Rizzo - Jan. 20-2011

INFN

SVT background from Dec 2011 production

- Results presented by R. Cenci in Frascati in Dec. 2011
 - independent check perfomed by C. Stella in TS confirmed these numbers
- Pairs: rates increase w.r.t. May 2011 production
- in LO-1-2 +40-20%
- x2.5-x4 in L3-4-5!!!!

Rad. Bhabha: rates are not small w,r,t to pairs (use May 2011 pairs as reference)

- LO-1-2-3 rates are 5-10-20-50% of pairs rates
- <u>L4-5 rates are high as pairs!</u>

<u>Touschek:</u> rates are not small w.r.t pairs (except in LO) from 1 to 3 times higher than pairs in L1-5 (use May 2011 pairs as reference)

<u>New back rates are not acceptable for the whole SVT (not only LO)!</u>

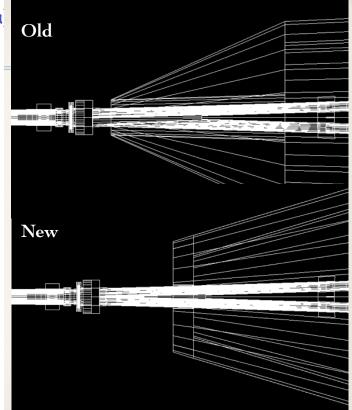
SVT Background - Dec 2011

										Ratio				
			pairs -			rad	Tousc	Tousc		total	Ratio			
			strip	pairs-	pairs -	bhabha -	HER -	LER -	Total -	strip rate	pairs			
			rateMay					strip rate		Dec	rate	Ratio rad		
			2011	-				Dec 2011		2011/pair	Dec/pair	bhabha /	Ratio	Ratio
		readout	Cenci	TS	Cenci	Cenci	Cenci	Cenci	Cenci	s rate	s rate	pairs	tousch /	pairs /
Layers	lato	pitch						MHz/cm2		Мау	Мау	May	pair May	total
0	1	50	23.3	24.3	32.2	0.96	0.52	1.73	35.41	1.52	1.38	0.04	0.10	0.91
0	2	50	29.9	24.3	40.6	1.6	1.45	4.37	48.02	1.61	1.36	0.05	0.19	0.85
1	phi	50	1.5	1.61	1.7	0.12	0.18	0.74	2.74	1.83	1.13	0.08	0.61	0.62
1	Z	100	0.7	0.93	0.85	0.083	0.19	0.77	1.893	2.70	1.21	0.12	1.37	0.45
2	phi	55	0.72	0.73	0.88	0.086	0.12	0.56	1.646	2.29	1.22	0.12	0.94	0.53
2	z	100	0.35	0.4	0.45	0.064	0.14	0.61	1.264	3.61	1.29	0.18	2.14	0.36
3	phi	100	0.19	0.19	0.44	0.084	0.055	0.31	0.889	4.68	2.32	0.44	1.92	0.49
3	z	100	0.097	0.12	0.27	0.056	0.055	0.29	0.671	6.92	2.78	0.58	3.56	0.40
4	phi	100	0.012	0.007	0.05	0.014	0.004	0.019	0.087	7.25	4.17	1.17	1.92	0.57
4	z	210	0.0076	0.0036	0.03	0.008	0.003	0.013	0.054	7.11	3.95	1.05	2.11	0.56
5	phi	100	0.006	0.005	0.019	0.006	0.002	0.009	0.036	6.00	3.17	1.00	1.83	0.53
5	Z	210	0.0041	0.0024	0.014	0.004	0.0016	0.007	0.0266	6.49	3.41	0.98	2.10	0.53
	=		•			•								
stri	in							max						
lengt								dead						
phi								time						
BaBa						Strip ra		due						

			phi as								time								
			BaBar, z						Strip rate		due								
			as in						KHz	shapi	to								
			design			avera		Strip rate	including	ng	analo			N hit in dead	Efficienc	Offline	Online		
			Bosi	Area strip	Area strip	ge		KHz	ganging z	time	g 2.4		Efficien	time analog	y (1/1+N)	time	time	offline	online
			Dec	SuperB	SuperB	gangi	Strip rate	including x	and x 5	analo	* tau	N hit in dead	су	including	including	window	window	occupa	occupa
Lá	iyers	lato	2001 cm	cm2	old cm2	ng	KHz	5 safety	safety	g ns	ns	time analog	(1/1+N)	ganging	ganging	ns	ns	ncy	ncy
	0	1	1.77	8.84E-03	8.84E-03	1	3.13E+02	1.56E+03	1.56E+03	25	60	9.39E-02	0.91	9.39E-02	0.91	60	300	0.094	0.469
	0	2	1.77	8.84E-03	8.84E-03	1	4.24E+02	2.12E+03	2.12E+03	25	60	1.27E-01	0.89	1.27E-01	0.89	60	300	0.127	0.637
	1	phi	11.10	5.55E-02	5.37E-02	1	1.47E+02	7.35E+02	7.35E+02	100	240	1.76E-01	0.85	1.76E-01	0.85	100	300	0.074	0.221
	1	Z	3.99	3.99E-02	4.00E-02	1.3	7.57E+01	3.79E+02	4.92E+02	100	240	9.09E-02	0.92	1.18E-01	0.89	100	300	0.049	0.148
	2	phi	13.22	7.27E-02	6.50E-02	1	1.07E+02	5.35E+02	5.35E+02	100	240	1.28E-01	0.89	1.28E-01	0.89	100	300	0.053	0.160
	2	Z	4.80	4.80E-02	4.80E-02	1.3	6.07E+01	3.03E+02	3.94E+02	100	240	7.28E-02	0.93	9.46E-02	0.91	100	300	0.039	0.118
	3	phi	19.22	1.92E-01	1.91E-01	1	1.70E+02	8.51E+02	8.51E+02	200	480	4.08E-01	0.71	4.08E-01	0.71	150	300	0.128	0.255
	3	Z	7.01	7.01E-02	7.00E-02	1.3	4.70E+01	2.35E+02	3.05E+02	200	480	1.13E-01	0.90	1.47E-01	0.87	150	300	0.046	0.092
	4	phi	29.92	2.99E-01	2.92E-01	1	2.54E+01	1.27E+02	1.27E+02	500	1200	1.52E-01	0.87	1.52E-01	0.87	400	1000	0.051	0.127
	4	Z	5.14	1.08E-01	1.04E-01	2.3	5.62E+00	2.81E+01	6.46E+01	500	1200	3.37E-02	0.97	7.75E-02	0.93	400	1000	0.026	0.065
	5	phi	38.06	3.81E-01	3.75E-01	1	1.35E+01	6.75E+01	6.75E+01	1000	2400	1.62E-01	0.86	1.62E-01	0.86	800	1000	0.054	0.068
	5	Z	5.14	1.08E-01	1.04E-01	2.3	2.77E+00	1.38E+01	3.18E+01	1000	2400	3.32E-02	0.97	7.64E-02	0.93	800	1000	0.025	0.032

SVT background from Dec 2011 production

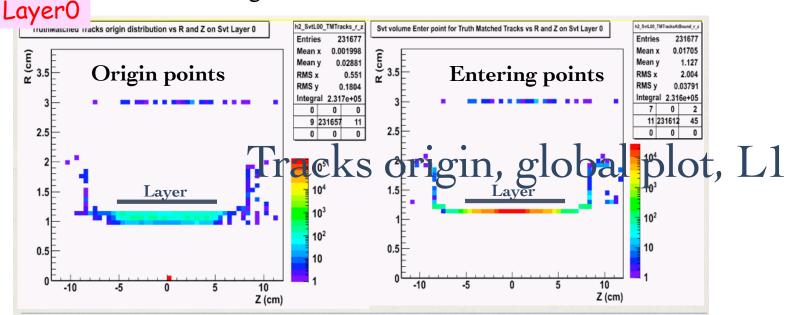
New back rates are not acceptable for the whole SVT (not only LO):

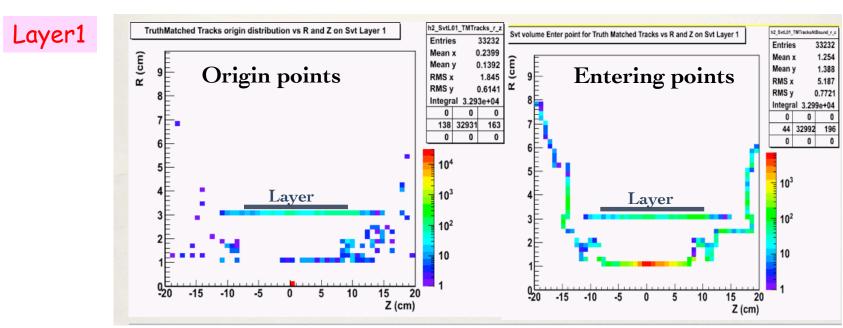

- With new numbers offline occupancy (to be used in reconstruction) is too high for L1-5: 7-5-12-5-5% in r-phi and 5-5-5-2.5-2.5% in z.
 - In BaBar the average offline occupancy in 2003 was ~0.7-0.6-0.4% in L1-2-3 ~ 0.1% L4-5
 - Tests performed in 2003 for the high lumi running of BaBar, performed with BaBar x5 background occupancy (~3-4% in L1-2-3 and <1% in L4-5), indicate BaBar reco code start to have problems with this level of background.
 - My guess is that in SuperB reco code cannot handle an offline occupancy 10 times higher (L1-2-3) and 25-50 times higher (L4-5) than what we had in BaBar.
 - What should be a reasonable limit for offline occupancy is not easy to evaluate. Asked reco experts.
 - Dave Brown answer: ~5% occu. is MAYBE still ok, 10% not acceptable!
 - Still need to check if 5% is the right limit.
 - Note: Online occupancy in BaBar is x5 w,r,t offline occu. In SuperB online occupancy is x1.5-x5 w.r.t offline (time window varies with layers)
- Efficiency due to analog dead time < 90% in all layers (r-phi)!

Differences in Bruno: Dec vs May production

- 1. B field (1.5 T) active only in +/-20cm in Dec production
 - In May production B field was ON everywhere inside the beam line for pairs and OFF for Rad Bhabha production.
 - New pairs production in Jan with B field extended in +/-40 cm. Strip rate back down by a factor 2 in Layers 3-4-5. Still a factor ~ 2 higher than in May. Layer 0-1-2 still as in dec (+40%-20% w.r.t May).
 - See table in next pages (checks by Cenci and Stella
- 2. Shields shape different ______ consistent with new IR design view, forward
- 3. Material of criostats. now inserted
- New plot of origin point for gradient the angular acceptance that hit SVT are now produces (for a constraint) to understand better the origin of avoid of around the pipes, SVT background.

constant tungsten thickness


•New area around pipes is now unshielded



Pairs with extended B field

LAYERS L0 phi	May2011 [MHz/cm2] 2photons 23.3	Dec 2011 [MHz/cm2] 2photons 32.2	Dec 2phc Ext. 32.4		Dec 2011 [MHz/cm2] Rad Bhabha 0.96	[MHz/cm2]	Cardo ar Dec 2011 Jukon Hizanaj Touso-LER h 1.73	1 Laver	'3-4-5 w	.r.t Dec	prod.
L0 z	29.9	40.6	40.8		1.6	1.45	4.37				
L1 phi	1.5	1.7	1.74		0.12	0.18	0.74				
L1 z	0.7	0.85	0.82		0.083	0.19	0.77				
L2 phi	0.72	0.88	0.84		0.086	12	0.56				
L2 z	0.35	0.45	0.42		0.064	0.14	0.61				
L3 phi	0.194	0.44	0.26		0.084	0.055	0.31				
L3 z	0.097	0.27	0.14	1.044	0.056	0.055	0.29				
L4 phi	0.012	0.05	0.021		0.014	0.004	0.019				
L4 z	0.0076	0.03	0.014	1	0.008	0.003	0.013				
L5 phi	0.006	0.019	0.011	1	0.006	0.002	0 009				
L5 z	0.0041	0.014	0.007	76	0.004	0.0016	0.007				
			Layer	Pitch φ (-45) μm		2011 Dec Strip φ (-45) Rate (Mhz/cm^2)	2012 Jan Strip φ (-45) Rate (Mhz/cm^2)	Pitch Z (+45) μm	2011 May Strip Z (+45) Rate (Mhz/cm^2)	2011 Dec Strip Z (+45) Rate (Mhz/cm^2)	2012 Jar Strip Z (+45) Rat (Mhz/cm^
			0	50	25.71	29.92	30.25	50	25.71	29.92	30.18
			1	50	1.61	1.90	1.88	100	0.93	1.08	1.06
			2	55	0.73	0.87	0.86	100	0.40	0.53	0.48
			3	55	0.19	0.49	0.26	100	0.12	0.41	0.16
			4	100	0.0070	0.0214	0.0124	210	0.0036	0.0167	0.0070
G. Riz	ZZO		5	100	0.0047	0.0111	0.0081	210	0.0024	0.0067	0.0050

Some tracks coming backwards, and find and find the SVT-Bak meeting yesterday:

G. Rizzo

SVT Background - Jan 2011

		pairs-	pairs -		Ratio				average							
		strip rate	strip rate		total				ganging (Strip rate						
		Dec	Jan 2011	Total -	strip rate				worst case	KHz						
		2011 B	Cenci B	strip rate	Dec		Ratio rad		ganging N	including	Efficienc	Offline	Online			pairs
		filed +/-	field +/-	Jan 2011	2011/pair	Ratio pairs rate	bhabha /	Ratio	strips/N	ganging z	y (1/1+N)	time	time	offline	online	offline
		20 cm	40 cm	Cenci	s rate	Jan/pairs rate	pairs	tousch /	readout	and x 5	including	window	window	occupa	оссира	occupanc
Layers	lato	MHz/cm2	MHz/cm2	MHz/cm2	May	Мау	Мау	pair May	chans)	safety	ganging	ns	ns	ncy	ncy	У
0	1	32.2	32.4	35.61	1.53	1.39	0.04	0.10	1.00	1.57E+03	0.91	60	300	0.094	0.472	0.086
0	2	40.6	40.8	48.22	1.61	1.36	0.05	0.19	1.00	2.13E+03	0.89	60	300	0.128	0.639	0.108
1	phi	1.7	1.74	2.78	1.85	1.16	0.08	0.61	1.00	7.46E+02	0.85	100	300	0.075	0.224	0.047
1	z	0.85	0.82	1.863	2.66	1.17	0.12	1.37	1.23	4.59E+02	0.90	100	300	0.046	0.138	0.020
2	phi	0.88	0.84	1.606	2.23	1.17	0.12	0.94	1.00	5.22E+02	0.89	100	300	0.052	0.157	0.027
2	z	0.45	0.42	1.234	3.53	1.20	0.18	2.14	1.45	4.30E+02	0.91	100	300	0.043	0.129	0.015
3	phi	0.44	0.26	0.709	3.73	1.37	0.44	1.92	1.00	6.78E+02	0.75	150	300	0.102	0.204	0.037
3	z	0.27	0.14	0.541	5.58	1.44	0.58	3.56	1.35	2.56E+02	0.89	150	300	0.038	0.077	0.010
4	phi	0.05	0.021	0.058	4.83	1.75	1.17	1.92	1.00	8.47E+01	0.91	400	1000	0.034	0.085	0.012
4	z	0.03	0.014	0.038	5.00	1.84	1.05	2.11	2.26	4.47E+01	0.95	400	1000	0.018	0.045	0.007
5	phi	0.019	0.011	0.028	4.67	1.83	1.00	1.83	1.00	5.25E+01	0.89	800	1000	0.042	0.053	0.017
5	Z	0.014	0.0076	0.0202	4.93	1.85	0.98	2.10	2.84	2.98E+01	0.93	800	1000	0.024	0.030	0.009
							-									

- Need to reduce rates to stay in the range 3-5% offline occupancy
 - understand better what is the acceptable occupancy limit between 3-5%
 - LayerO rates estimated in Bruno should be reduced by 30% smaller radius w.r.t actual striplets design)

Next steps:

- 1. Pairs: try to understand from origin points if there are margins of reduction (shields shape?)
- 2. Touschek: M. Boscolo will try to change collimators settings to reduce the Touschek losses.
- 3. Touchek and Rad Bhabha production with extended field (no changes in LO-1-2 expected, could help in L3-4-5)