SHOE management

Yunsheng Dong
FOOT analysis/software meeting

03/12/2024

SHOE branches at present

SHOE branches

-> origin/master

Some drawbacks:

newgeom_v1.0

“git log” or similar

2

e newgeom_v1.0: used as “development” branch where all the FOOT developers
(~almost all the foot people) can push and update everything in the code

 Master: updated with newgeom_v1.0 after few months. Here only few people can
push (protected branch were only 4-5 people can push)

 Other branches for dedicated studies
(e.g.: GlobalGF_dev for global tracking development)

 Difficulty to do long term analysis (e.g.: cross sections) staying updated with

 (Change of methods in some newgeom_v1.0 classes can have an impact on all the
personal analysis macros etc., but the tracking of the changes is not easy only with

 Master branch not used at all (at least for foot people, maybe some student used
the master branch for a bachelor thesis)

« The FOOT.geo files can be a mess if whoever can modify them, we need to find a
way to protect (and check) this kind of files

Proposal of versioning

Useful links

All releases

About

Releases

LATEST STABLE

Version 6
Release 6.34.00 - 29 Nov 2024
Release 6.34.00-rc1 - 14 Nov 2024

Release 6.32.06 - 22 Sep 2024
Release 6.32.04 - 14 Aug 2024

Learn

Install

Delete the master branch and use only the
newgeom_v1.0, (or delete newgeom_v1.0 and use the
master branch with the permission to push to all the
foot developers)

Use a release version of shoe.

Maybe every ~6 months, with a release number based
on the date, the development branch is copied and
pushed as a separated branch of shoe

Analysis people can refer to a specific version of the
code

If needed, they can pull only specific files for their
analysis work.

Add in the wiki a release wiki page in which all the main
improvements/developments are listed

Git hook

Git does not provide a built-in mechanism to set
different push permissions for specific files

Define protected file patterns

PROTECTED_FILES="Reconstruction/geomaps (e-g.: the fOOt-geo fiIeS)

Define the list of allowed usernames
ALLOWED USERS=("maintainer

Read coming commits . . -
e U e Different alternatives:

Get the list of changed files - =
CHA\IGED_IFILES (] d]iff—tree no-commit-id name-only -r $newrev) Use Of glt hOOk pre-recelve:

Get the conmmitter's username
COMMITTER_USERNANE=5 (show -s —-format="%an' $newrev)

o Tile n SCMNGEDFILES; 00 « Set a pre-receive hook on baltig

then
Protected file '$file' was modified.

Check 1f the conmitter is in the allowed lis

. ir lowed list
: {ALLOWED_USERS [2]} {COMMITTER_USERNAME) ; then o T b 't 't d
Error: User '$COMMITTER_USERNAME' is not authorized to modiyfy ' O e eS e

Contact a maintainer for authorization
eyi1t 1

User 'S$COMMITTER_USERNAME' is authorized to modify 'S$file’.

* Prevent the push of given files from non authorised
people

* Need to ask to info baltig service if they can allow us to
add this hook

 We need to teach people what to do if they committed
a change to a protected file and cannot push

4

Git pipeline

What is a CICD pipeline?

, tefcre_script:

hWelesk --hotasys A pipeline is the lead component of continuous integration, delivery, and deployment. It drives

apt-get opdata

T PR SIASIES TY R R software development through building, testing and deploying code in stages. Pipelines are
comprised of jobs, which define what will be done, such as compiling or testing code, as well as

) staces.
check_*iles

deploy stages that spell out when to run the jobs. An example would be running tests after stages that

) ¢heck prctected files: .
stace: check_files Complle the COde.

script:
- echo "Chacking if grotected files are nodified. . ."

L be the List of “iies chened in the corrent comie A CI/CD pipeline automates steps in the SDLC such as builds, tests, and deployments. When a
FIAEED- TR T mnane oy U LT BETORE SR BEL O S team takes advantage of automated pipelines, they simplify the handoff process and decrease
| the chance of human error, creating faster iterations and better quality code. Everyone can see

where code is in the process and identify problems long before they make it to production.

PRUIEUTEY FILES-"Reconstruction/geamaps).=/FUU ,*geo”

for File in SCHANGED_FTLES; do
if [[$file -~ SFROTECTED_FILES].; thzn

T e e ' * Possibility to add a pipeline to check each push and
e send a pipeline failled message when a non authorised
e e o et s oo L iy 1 person changed specific files

 The push is done, but we are aware of the push

* We can add and modify pipelines directly on gitlab,
already tested

#7232!74 ¥ hooktest <= 1cic?7a8

Pipeline

Git submodules

 Possibility to store all the geo files in a submodule,
which is a different git repository added in shoe

7.11 Git Tools - Submodules » The new repository can be set as protected and only
selected people can push there

It often happens that while working on one project, you need to use another project from within it. Perhaps

it's a library that a third party developed or that you're developing separately and using in multiple parent o The SuU med U|e fOlder can be added SOmeWhere |nS|de
projects. A common issue arises in these scenarios: you want to be able to treat the two projects as

separate yet still be able to use one from within the other. ShOe, bUt a” the SmeOdUIe flle ShOUId be |n the Same

Here’s an example. Suppose you're developing a website and creating Atom feeds. Instead of writing your fOId er/Su beIder
own Atom-generating code, you decide to use a library. You're likely to have to either include this code

from a shared library like a CPAN install or Ruby gem, or copy the source code into your own project tree.

The issue with including the library is that it's difficult to customize the library in any way and often more) The usual Com mands aS g I't (:I()nelJ g I't pu ” need to be
difficult to deploy it, because you need to make sure every client has that library available. The issue with

copying the code into your own project is that any custom changes you make are difficult to merge when Changed

upsiream changes become available.

Git addresses this issue using submodules. Submaodules allow you to keep a Git repository as a

subdirectory of another Git repository. This lets you clone another repository into your praject and keep ¢ |t,S mOre SU Itable fOr SOmeth I ng Ilke genflt, Or Sl I ppery

your commits separate.

TAGcluster:GetPosition and GetPositionG

TVector3& GetPositiond) turn fPositionl;

TVector3& GetPosError() turn TPosErrorl;

TVector3& GetPositionGl) { return fPosition2;

TVector3& GetPosErrorG()

{ return fPosError2;

 The definition of fposition1 and fposition2 is not very
clear and not unigque

* |f global tracking is not activated, fposition1 should be
the position of the hit on the plane, fposition2 should
be the position of the hit in the detector frame

 |f global tracking is activated, the variables are
overwritten

e Not sure if the convention If maintained for all the
detectors

Proposal: Add one/two more variables for the global
tracking fitted position and change the variable names

 We should change all the analysis/macros accordingly

 Probably the back compatibility is lost
(but hey we have versioning!)

1d TAVTactBaseNtuTrack::FillBmHistogramm(TVector3 bmTrackPos)

bmTrackPos = fpFootGeo->FromBMLocalToGlobal(bmTrackPos);
fpHisBmBeamProf->Fill(bmTrackPos.X(), bmTrackPos.Y());

Float_t posZtg = fpFootGeo->FromTGLocalToGlobal(TVector3(0,0,0)).Z();
posZtg = fpFootGeo->FromGlobalToVTLocal(TVector3(@, @, posZtg)).Z();

for (Int_ t i = 0; 1 < GetTracksN(); ++i) {
TAGbaseTrack* track = GetTrack(1i);

TVector3 origin = track->Intersection(posZtg);

origin = fpFootGeo->FromVTLocalToGlobal(origin);

TVector3 res = origin - bmTrackPos;
fpHisVtxResX->Fill(origin.X(), bmTrackPos.X());
fpHisVtxResY->Fill(origin.Y(), bmTrackPos.Y());

] TAVTactBaseNtuTrack::FillBmHistogramm{TVector3 omTrackPos)

bmirackPas = TpraotGec->FromBMIocalliahlobal (bmirackPos);
fpHisBmBeanmProf-~~ill(kmTrackPos.X(), bmTrackPos.Y(! ;

for (Int t 1 =0; 1 < GetTracksN(); ++il |
TAGbaseTrackx Lrack = GelTrack(i);

TVector3 origin = fpFootGeo—>Intersection! fpFootGeo—>YecFromVTLocalTaGlobal
(track=>GelSlopeZ| |), fpFootGeo=>FromVTLocalToGlobal(track=>GetQOrigin{],
TpFontheo->GeriGienter().7() ;

TVector3 res — origin - bnTrackPos;

fpHisVtxResX—>Fill origin.X(), bnTrackPos.X());

TpHiSVEXResY=->F1ill/origin.Y(), bnTrackPos.Y());

TAGgeoTrafo:Intersection

Residual vertexing - BM in X

1200
1000
€00}
600}
400}

eC0—

" viBmMatchX
Cntries 8341
Mean ~0.07597

|StdDev 0.04441

Residual verlexing - BM in X

€00 —

400

200+—

o
=T
[_

- vtBmMatchX
Entries 8345

Mean 0.004G90
| StdDsv C.02946

With the alignment procedure the detector sys of ref
can be tilted!

TAGgeoTrafo:Intersection should be used carefully:
If the detector is rotated, the finalZ is not simply the
detector center Z position, we need to use
intersection changing the track slope, origin and the
finalZ parameters in the final position sys of ref.

Shoe is full of TAGgeoTrafo::Intersection calls.

All the intersection calls has been checked and
corrected in cnao24datataking few days ago, but
maybe something is missed (variables filled with
intersection haven’t been checked everywhere)

Developers are invited to check the Intersection
calls in their analysis/detector codes

Be aware of detector rotations when you need to
extrapolate with Intersection

New method with Intersection(slope, origin,
startingsysofref, finalz, finalsysofref) can added to
easy the use of this method

Other

 Add the commit stash (and shoe branch/version) into runinfo
 Merge cnao24datataking into newgeom: if no objections, it will be done at the end of this meeting

* |f we decide to change TAGcluster::fposition1/2 etc., the back compatibility of the code is probably
compromised and we need to revise different part of SHOE, so this is a good occasion to introduce all the
“*heavy” changes
eg.:

-Should we change TABMtrack::GetSlope into GetSlopeZ?
-Should we change TAMCntuRegion::fCharge from double to int?
-In order to retrieve the particle block data from the crossings or TAMChit one need to add a -

(e.g.: mcNtuPart->GetTrack(cross->GetTrackldx()-1)),
this is not valid if one need to retrieve the particle block data from reconstructed quantities

(e.g.: TAMCpart* mcpart=mcNtuPart->GetTrack(vtcluster->GetMcTrackldx(k)))
Should we change this?

e Other proposal/wishes?

