DualReadout Calorimeter Simulation Summary

D. Boccanfuso, F. Cirotto, A. D'Avanzo, C. Di Fraia 04/12/2024

Saved the time of arrival of photons on SiPMs.

- Added rotation of SiPMs.
- Small test of optical filter.

BGO scintillation components: fast 50 ns 32% of the yield, slow 321 ns 68% of the yield.

scint timing event 0

Cerenkov photons seem to reach CH2 slightly faster compared to channel 1. t=0 when primary is fired.

e+ 10GeV, filter off, sum of 100 events, BGO

e+ 10GeV, filter off, sum of 100 events, BGO

~0,4 ns difference is consistent with the time of flight of the primary through the crystal

Mu+ 120GeV, filter off, sum of 100 events, BGO

Mu+ 120GeV, filter off, sum of 100 events, BGO

FilterON

Photons in CH2 without filter: scintillation=789673, cerenkov=2210 Photons in CH2 with filter, scintillation =3479, cerenkov= 217

scintillation
$$\frac{3479}{789673} = 0,004$$

Cerenkov $\frac{217}{2210} = 0,09$

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 0 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events $> 0 \deg$

tot phot scint SiPM CH2 {tot phot scint SiPM CH2 < 200000} htemp htemp 998 Entries 997 Entries 3.083e+04 Mean 33.18 Mean 140 160 Std Dev 1.567e+04 Std Dev 47.28 140 120 120 100 100 80 80 60 60 40 40 scintillation cerenkov 20 20 lm $\times 10^{3}$ _ | 🛛 ı 0₀ 20 40 80 100 120 180 100 200 300 500 60 140 160 400 tot_phot_cer_SiPM_CH2 tot_phot_scint_SiPM_CH2

tot_phot_cer_SiPM_CH2 {tot_phot_cer_SiPM_CH2 < 500}

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 45 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 45 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 90 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 90 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 120 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 120 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 135 deg

> mu+ at 120 GeV, $\sigma_{\text{beam}} = 0.25$ cm, 1k events > 135 deg

> mu+ at 120 GeV, $\sigma_{beam} = 0.25$ cm, 1k events > 180 deg

> mu+ at 120 GeV, σ_{beam} = 0.25 cm, 1k events > 180 deg

To do

Check for cerenkov photons with negative pz.

Check correlation between cerenkov timing and position from which they originate.

Check number of riflessions.

Timing for every angle.

Check on scintillation components.