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because of the vector-like photon coupling.
The angular distribution of the charged pions produced in the decays ω± → εωϑ

± can be used
to reconstruct the polarizations and spin correlation of the tau pairs. The connection is provided
by the conservation of the angular momentum in the rest frame of the decaying lepton.

For a single ω lepton, the polarization density matrix is given by

ϖ[si] =

(
1

2
+ ↑sz↓ ↑sx + isy↓

↑sx ↔ isy↓
1

2
↔ ↑sz↓

)
, (4.3)

in which ↑si↓ are the polarization projections onto a given basis.
As already discussed, the use of the density matrix does not imply that quantum mechanics

is being used. For example, in optics the same density matrix is often used to describe a beam
of light as

ϖlight =
1

2

(
1 + ϱ3 ϱ1 ↔ i ϱ2

ϱ1 + i ϱ2 1↔ ϱ3

)
, (4.4)

in terms of the Stokes parameters ϱi—each of them characterizing linear and circular polarizations
along given directions.

The expectation values of the polarization components in Eq. (4.3) are reconstructed from
the events that give rise to the di!erential cross section

1

ς

dς

d cos φ±i
=

1

2

(
1 + ↑si↓↼i cos φi

)
, (4.5)

with φi the angles described by the momenta of the charged pions in the decay of the ω lepton.
This reconstruction, in which the decaying particle acts as its own polarimeter, is based on the
independent experimental determination of the polarimetric vector, the coe”cient ↼i in Eq. (4.5),
which turns out to be ↼i = 1 for the single-pion ω decay. This determination is mirrored in low-
energy experiments with photons by the measurement of the properties of the polarimeter used in
the experimental setup. Both experiment types require an external input which however comes
from experiments that are independent of those testing the Bell inequality. Equation (4.5), apart
for the polarimetric vector, is nothing but the result of the conservation of angular momentum
in the decay—no quantum mechanics is required.

For the final state with two ω leptons, the di!erential cross section is given by

1

ς

dς

d cos φ+i d cos φ
→
j

=
1

2

(
1 + ↼iB

+

i cos φ+i + ↼iB
→
i cos φ→i + Cij↼i↼j cos φ

+

i cos φ→j

)
, (4.6)

where the angles φ±i give the spatial orientation of the charged pion momenta in the rest frames
of the progenitor ω leptons with respect to some basis with components i and j. The coe”cients
B

±
i and Cij can be included into the polarization density matrix ϖ[Cij , Bi], as in (3.5). The

logical steps leading to the determination of the average of any system observable O is then as
follows:

〈
↼i↼j cos φi cos φj

〉
↗ Cij , B

±
i ↗ ϖ[Cij , B

±
i ] ↗ ↑O↓ = Tr[ϖO] . (4.7)

The measurement provides the angular distributions of interest, in the first term above, averaged
over the overall distribution of the events. From there, one extracts polarization and correlation
coe”cients, Bi, Cij , that can be organized in the density matrix ϖ, then used to determine aver-
ages of physical quantities. The polarization state of the two ω lepton is completely reconstructed:
this is done through quantum state tomography, by a likelihood fit of the angular distribution of
the decay products. Once the state is given, its properties can be obtained by means of averages
of suitable observables,like the concurrence C[ϖ] for quantifying its entanglement content [41–43],
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The quantum state of a spin-1/2 pair can then be expressed as

𝜔 = 1
4

⌋

12 𝜀 12 +
3
⌈

𝜗=1
𝜛+
𝜗 (𝜚𝜗 𝜀 12) +

3
⌈

𝜗=1
𝜛ω
𝜍 (12 𝜀 𝜚𝜍 ) +

3
⌈

𝜗,𝜍=1
𝜑𝜗𝜍 (𝜚𝜗 𝜀 𝜚𝜍 )

⌉

, (2.39)

where 𝜚𝜗 are the Pauli matrices, 12 is the unit 2 ε 2 matrix; the indices 𝜗, 𝜍, running over 1, 2, 3, represent any three orthogonal
directions in three-dimensional space. The real coefficients

𝜛+
𝜗 = Tr[𝜔 (𝜚𝜗 𝜀 1)] and 𝜛ω

𝜍 = Tr[𝜔 (1𝜀 𝜚𝜍 )] , (2.40)

represent the polarization of the two particles, while the real matrix

𝜑𝜗𝜍 = Tr[𝜔 (𝜚𝜗 𝜀 𝜚𝜍 )] (2.41)

gives their spin correlations. The labels ‘+ ’ and ‘ω’ on the 𝜛 coefficients simply serve to indicate which particle they refer to; in
what follows they are often distinguished by their respective electric charges. In the case of a collider setting, 𝜛+

𝜗 , 𝜛
ω
𝜗 and 𝜑𝜗𝜍 will

be functions of the parameters describing the kinematics of the pair of spin-1/2 production, the total energy
{

𝛻 in the center of
mass reference frame and the corresponding scattering angle 𝜕. Note that while the density matrix in (2.39) is normalized, Tr[𝜔] = 1,
extra constraints on 𝜛+

𝜗 , 𝜛
ω
𝜗 and 𝜑𝜗𝜍 need to be enforced to guarantee its positivity; these extra conditions are in general non-trivial,

as they originate from requiring all principal minors of 𝜔 to be non-negative.
The density matrix in Eq. (2.39) can be used to re-write the upper bound on the concurrence in Eq. (2.26) as

}

⋛[𝜔]
⦃2 ∱ min ⌋1 ω⌈

𝜗
(𝜛+

𝜗 )
2, 1 ω

⌈

𝜍
(𝜛ω

𝜍 )
2
⌉

. (2.42)

Eq. (2.42) makes clear that the larger the polarization of each individual particle (as found in the size of the coefficients 𝜛±
𝜗 ),

the smaller the largest possible value of the polarization entanglement between them, as described by ⋛[𝜔]. More precisely, the
entanglement in the final state spin correlations is maximal for vanishing polarizations, progressively diminishes as the polarizations
increase and vanishes for fully polarized final state particles.

Let us now express the combination of expectation values appearing in (2.37) in the language of spin, and choose as observables
ℵℶ1 and ℵℶ2, for the first spin-1/2 particle, and ℵ𝜛1, ℵ𝜛2 for the second one, spin projections along four different unit vectors, say ℷℸ1,
ℷℸ3 for Alice, and ℷℸ2, ℷℸ4 for Bob, so that ℵℶ1 = ℷℸ1 ⋜ ℷ𝜚 and similarly for the remaining three observables. Only the correlation matrix 𝜑
is involved in the combinations in (2.37), that can be conveniently expressed as I2 = Tr[𝜔⋝] where the quantum Bell operator is
given by

⋝ = ℷℸ1 ⋜ ℷ𝜚 𝜀 (ℷℸ2 ω ℷℸ4) ⋜ ℷ𝜚 + ℷℸ3 ⋜ ℷ𝜚 𝜀 (ℷℸ2 + ℷℸ4) ⋜ ℷ𝜚 . (2.43)

The Bell inequality (2.38) then becomes

ℷℸ1 ⋜ 𝜑 ⋜
}

ℷℸ2 ω ℷℸ4
⦃

+ ℷℸ3 ⋜ 𝜑 ⋜
}

ℷℸ2 + ℷℸ4
⦃ ∱ 2 . (2.44)

Combining this condition with the analogous one obtained by reversing the direction of ℷℸ1 and ℷℸ3 one finally gets the following
constraint:

⦄

⦄

⦄

ℷℸ1 ⋜ 𝜑 ⋜
}

ℷℸ2 ω ℷℸ4
⦃

+ ℷℸ3 ⋜ 𝜑 ⋜
}

ℷℸ2 + ℷℸ4
⦃

⦄

⦄

⦄

∱ 2 . (2.45)

When the spins of the two particle are perfectly anticorrelated, as it happens for a pure singlet state,

⟨⊳⟩ = 1
{

2

⟪

⟨ℷℸ⟩𝜀 ⟨ℷℸ⟩ ω ⟨ℷℸ⟩𝜀 ⟨ℷℸ⟩
⟫

, (2.46)

with ⟨ℷℸ⟩ representing the spin of a particle in the state ℷℸ, that is with the projection of the spin along the axis determined by the
unit vector ℷℸ pointing in the up direction, one finds

𝜑𝜗𝜍 = ω⊲𝜗𝜍 , (2.47)

and one can easily violate the inequality (2.38) by a suitable choice of the four unit vectors ℷℸ1, ℷℸ3, ℷℸ2, ℷℸ4. In other terms, the
nonlocality of quantum mechanics violates the Bell locality test (2.38).

In order to actually put under experimental test the Bell inequality (2.45), one in principle needs to extract from the collected data
the matrix 𝜑 and then choose suitable four independent spatial directions ℷℸ1, ℷℸ2, ℷℸ3 and ℷℸ4 that maximize I2 in (2.37). Fortunately,
this maximization process can be performed in full generality for a generic spin correlation matrix [108]. Indeed, consider the matrix
𝜑 and its transpose 𝜑0 and form the symmetric, positive, 3 ε 3 matrix 1 = 𝜑𝜑0 ; its three eigenvalues 21, 22, 23 can be ordered
in increasing order: 21 ∲ 22 ∲ 23. Then, the following result holds:

The two-spin state 𝜔 in (2.39) violates the inequality (2.45), or equivalently (2.38), if and only if the sum of the two greatest
eigenvalues of 1 is strictly larger than 1, that is (Horodecki condition)

m12 ∳ 21 + 22 > 1 . (2.48)

In other terms, given a spin correlation matrix 𝜑 of the state 𝜔 that satisfies (2.48), then there are choices of the four independent
vectors ℷℸ1, ℷℸ2, ℷℸ3, ℷℸ4 for which the left-hand side of (2.45) is larger than 2. In the case of the singlet state (2.46) the sum of the
square of two of its eigenvalue is 2, the condition (2.48) is verified and thus the Bell inequality (2.38) violated, actually at the
maximal level [106].
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conditions of the Bell setup, while the single-shot nature
of the spin readout closes the detection loophole.

Before running the Bell test we first characterize the
setup and the preparation of the spin-spin entangled
state. Figure 3a displays correlation measurements on
the entangled spin-photon states to be used for the en-
tanglement swapping. For both location A and B we
observe near-unity correlations between spin state and
photon time bin when spin readout errors are accounted
for. We then estimate the degree of indistinguishability
of the single photons emitted at locations A and B in a
two-photon interference29 experiment at location C, i.e.

FIG. 3. Characterization of the setup and the en-

tangled state. (a) Spin-photon correlation measurements.
Probability to read out the spin state |"i at location A (left
panel) or B (right panel) when a single photon is detected in
the early or late time bin at location C. In the left (right)
panel, only emission from A (B) was recorded. Dotted bars
show the correlations corrected for finite spin readout fidelity.
This yields remaining errors of 1.4± 0.2 % (1.6± 0.2 %) and
0.8 ± 0.4 % (0.7 ± 0.4 %) when early and late photons are
detected at setup A (B). These errors include imperfect re-
jection of the excitation laser pulses, detector dark counts,
microwave pulse errors and o↵-resonant excitation of the NV.
(b) Time-resolved two-photon quantum interference signal.
When the NV centres at A and B emit indistinguishable pho-
tons (orange), the probability of a coincident detection of two
photons, one in each output arm of the beam-splitter at C is
expected to vanish. The observed contrast between the case
of indistinguishable versus the case of distinguishable photons
of 3 versus 28 events in the central peak yields a visibility of
(90±6)% (Supplementary Information). (c) Characterization
of the Bell setup during full operation using (anti-)parallel
readout angles. The spins at A (left arrow symbol on the x
axis) and B (right arrow symbol) are read out along the ±Z-
axis (left panels), or along the ±X-axis (right panels). Strong
correlations (anti-correlations) are observed for the case where
the readout axes are anti-parallel, lower panel (parallel, up-
per panel), as expected for the

�� �↵ state. The numbers in
brackets are the raw number of events. The dotted lines repre-
sent the expected correlation based on the measured readout
fidelity and the characterisation measurements presented in
panels a and b (Supplementary Information).

after the photons have travelled through a combined total
of 1.7 km of single-mode optical fiber. Using the observed
two-photon interference contrast of 0.90 ± 0.06 and the
spin-photon correlation data we estimate that the fidelity
to the ideal state | �i of the spin-spin entangled states
generated in our setup is 0.92 ± 0.03 (Supplementary
Information). Combined with measured readout fideli-
ties the generated entangled state is thus expected to
violate the CHSH-Bell inequality with S = 2.30± 0.07.

As a final characterization we run the full Bell sequence
including random number generation and fast readout,
but with co-linear measurement bases (ZZ and XX) such
that spin-spin correlations can be observed with optimal
contrast. To test the fast basis selection and rotation the
Z (X) basis measurements are randomly performed along
the +Z (+X) and �Z (�X) axis. The observed correla-
tions, shown in Fig. 3c (orange bars), are consistent with
the estimated quantum state and the independently mea-
sured readout fidelities (dotted bars), confirming that the
setup is performing as desired.

We find a success probability per entanglement gener-
ation attempt of about 6.4⇥ 10�9, yielding a few event-
ready signals per hour. Compared to our previous her-
alded entanglement experiments over 3 meter27 this prob-
ability is reduced mainly due to additional photon loss
(8 dB/km) in the 1.7 km optical fibre. We note that
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because of the vector-like photon coupling.
The angular distribution of the charged pions produced in the decays ω± → εωϑ

± can be used
to reconstruct the polarizations and spin correlation of the tau pairs. The connection is provided
by the conservation of the angular momentum in the rest frame of the decaying lepton.

For a single ω lepton, the polarization density matrix is given by

ϖ[si] =

(
1

2
+ ↑sz↓ ↑sx + isy↓

↑sx ↔ isy↓
1

2
↔ ↑sz↓

)
, (4.3)

in which ↑si↓ are the polarization projections onto a given basis.
As already discussed, the use of the density matrix does not imply that quantum mechanics

is being used. For example, in optics the same density matrix is often used to describe a beam
of light as

ϖlight =
1

2

(
1 + ϱ3 ϱ1 ↔ i ϱ2

ϱ1 + i ϱ2 1↔ ϱ3

)
, (4.4)

in terms of the Stokes parameters ϱi—each of them characterizing linear and circular polarizations
along given directions.

The expectation values of the polarization components in Eq. (4.3) are reconstructed from
the events that give rise to the di!erential cross section

1

ς

dς

d cos φ±i
=

1

2

(
1 + ↑si↓↼i cos φi

)
, (4.5)

with φi the angles described by the momenta of the charged pions in the decay of the ω lepton.
This reconstruction, in which the decaying particle acts as its own polarimeter, is based on the
independent experimental determination of the polarimetric vector, the coe”cient ↼i in Eq. (4.5),
which turns out to be ↼i = 1 for the single-pion ω decay. This determination is mirrored in low-
energy experiments with photons by the measurement of the properties of the polarimeter used in
the experimental setup. Both experiment types require an external input which however comes
from experiments that are independent of those testing the Bell inequality. Equation (4.5), apart
for the polarimetric vector, is nothing but the result of the conservation of angular momentum
in the decay—no quantum mechanics is required.

For the final state with two ω leptons, the di!erential cross section is given by

1

ς

dς

d cos φ+i d cos φ
→
j

=
1

2

(
1 + ↼iB

+

i cos φ+i + ↼iB
→
i cos φ→i + Cij↼i↼j cos φ

+

i cos φ→j

)
, (4.6)

where the angles φ±i give the spatial orientation of the charged pion momenta in the rest frames
of the progenitor ω leptons with respect to some basis with components i and j. The coe”cients
B

±
i and Cij can be included into the polarization density matrix ϖ[Cij , Bi], as in (3.5). The

logical steps leading to the determination of the average of any system observable O is then as
follows:

〈
↼i↼j cos φi cos φj

〉
↗ Cij , B

±
i ↗ ϖ[Cij , B

±
i ] ↗ ↑O↓ = Tr[ϖO] . (4.7)

The measurement provides the angular distributions of interest, in the first term above, averaged
over the overall distribution of the events. From there, one extracts polarization and correlation
coe”cients, Bi, Cij , that can be organized in the density matrix ϖ, then used to determine aver-
ages of physical quantities. The polarization state of the two ω lepton is completely reconstructed:
this is done through quantum state tomography, by a likelihood fit of the angular distribution of
the decay products. Once the state is given, its properties can be obtained by means of averages
of suitable observables,like the concurrence C[ϖ] for quantifying its entanglement content [41–43],
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reminiscent to that of Eq. (2.1), is found instead for ! = ω/2.
The amount of entanglement admitted by the state can be quantified, for instance, by the

concurrence C[ε]. For the ϑ -lepton bipartite system this is given by

C[ε] =
sin2 !

1 + cos2 !
, (4.11)

and, as expected, equals 1—its maximal value—for ! = ω/2.
In the massless limit we consider, the chirality states coincide with the helicity ones, hence

the Bell state in Eq. (4.10) is completely analogous to that formed by two photons emitted by
an atom in a state of zero total angular momentum. The two photons are in the entangled state
in Eq. (4.10), involving now the two helicity states, L and R, of the photons (1) and (2):

|”→ =
1
↑
2

(
|ϖ

(1)

R →|ϖ
(2)

L →+ |ϖ
(1)

L →|ϖ
(2)

R →

)
. (4.12)

Notice that the polarizations of both the massless leptons and the photons are described by the
Wigner little group ISO(2), which reduces to the Abelian U(1) after imposing the restriction on
finite representations. The non-commuting nature of the polarization observables shows up—for
the photons as well as for the ϑ leptons—in the four-dimensional space of their eigenstates. In
this space the state ” can be written as a four-vector

” =
1
↑
2





0
1
1
0



 (4.13)

in the case of Eq. (4.10) and

” =





0
0
1
0



 or ” =





0
1
0
0



 (4.14)

in the case of Eq. (4.9). Once the state is known, tests of Bell locality or any other property are
just a matter of taking expectation values of the appropriated operators. Here we mimic those
leading to the traditional setting of a Bell test, by studying the inequality (3.4).

We can explicitly test that a separable state, such as the first of those in Eq. (4.9), gives in
the just specified basis, for i, j = 1, 2, 3,

P(↓ωni ; ↓ωnj ) =
1

4
(1↔ n

z
i + n

z
j ↔ n

z
i n

z
j ) , (4.15)

with

P(↓ωni ;↔) =
1↔ n

z
i

2
and P(↔; ↓ωnj ) =

1 + n
z
j

2
. (4.16)

The non-separable state in Eq. (4.10) gives

P(↓ωni ; ↓ωnj ) =
1

4
(1 + n

x
i n

x
j + n

y
i n

y
j ↔ n

z
in

z
j ) , (4.17)

and 1 for the sum of the single spin probabilities.
The choice

ϱn1 = ϱz , ϱn2 =
↔1
↑
2
(ϱz + ϱx) , ϱn3 = ↔ϱx ϱn4 =

1
↑
2
(ϱz ↔ ϱx) (4.18)

gives
1

2
↗ 1↔

1

2
↑
2
, (4.19)

(
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or testing the Bell inequality (3.9) through the criterion (3.10).3 The use of the density matrix in
estimating correlations is not proper to quantum mechanics. It is commonly used in statistical
physics where it gives the distribution probability in phase space.

Does this reconstruction provide a non-trivial measurement of the polarizations? It does.
The events could give rise to a separable state instead of an entangled one. This is the case if
the distribution of probability in cos ωi cos ωj factorizes in the product of the cosines. Do the
found values test quantum mechanics? Yes, the events are measured independently of quantum
mechanics and could give rise to a state more entangled than allowed by quantummechanics. This
is the case, for example, if some interaction (a reborn Maxwell’s demon) introduces a modified
event distribution such that the correlations come to exceed the Tsirelson’s bound [34] predicted
by quantum mechanics. A more explicit example is provided by supersymmetric entangled
qubits [47]. Only the correlations Cij enter in the violation of the bound and no property of the
density matrix is necessarily implied.

If you feel uneasy about using commuting variables, like momenta, to reconstruct a non-
commuting variable like the spin, just think that indeed most, if not all, of the non-commuting
variables are reconstructed by means of commuting variables. Consider, as an example, the
Stern-Gerlach experiment: the spin of a neutron is measured by its position (or momentum) on
a screen. The commuting variable is simply used to give the spin: up or down. It is only by
repeating the experiment using di!erent directions and comparing the results obtained for the
spin of the neutron that its non-commutative nature is revealed.

Similarly, at colliders, specific momentum angular distributions are used as distribution of
probabilities to estimate correlations, thereby bringing us from the cross section to the density
matrix. It is in the Hilbert space on which this matrix acts that entanglement and Bell inequality
violation must be studied—not in the cross section.

From Eq. (4.2) we can see by inspection that, as we vary the scattering angle, we can obtain
the separable states

|ε
→
R →|ε

+

L → or |ε
→
L →|ε

+

R → , (4.9)

respectively for ” = 0 and ” = ϑ, enforced by the conservation of angular momentum. The
maximally entangled state

|#→ =
1
↑
2

(
|ε

→
R →|ε

+

L →+ |ε
→
L →|ε

+

R →

)
, (4.10)

3The density matrix reconstructed by the experiments is a convex combination of the density matrices proper
of the involved states, each characterized by a di!erent kinematic configuration. As a specific example, consider
again an ensemble of ω lepton pairs produced in repeated e+ e→ collisions, each event being characterized by a
di!erent value of the scattering angle. Without imposing any kinematic cut, an experiment would then reconstruct
the matrix

ε =

∫
! d” dω

d!ε(”)
∫
! d” dω

d!

=
1

ϑ

∫

!
d”

dϑ

d”
ε(”) (4.8)

where ” is the solid angle defined by the direction of one of the leptons in the center of mass reference frame.
Does the above density matrix describe a valid quantum state? The answer is: it depends [44–46]. To understand
why, notice that the quantum tomography procedure relies on a triad of orthonormal vectors, explicitly used in
the summation appearing in Eq. (3.5), to define the orientation in space of the spin vectors of interest. If the same
triad is used for all the events, for instance the three directions x̂, ŷ, ẑ in the center of mass frame, then the matrix
in Eq. (4.8) describes a genuine quantum state. On the contrary, when the triad is picked event by event, as with

the n̂, r̂, k̂ tern related to helicity frames, the matrix ε is an average referred as fictitious states. We remark

that the Fano coe#cients B
±
i and Cij obtained from ε, for instance, through the decomposition in Eq. (3.5) are

still informative: they correspond to the ensemble averages of the corresponding quantities for the chosen basis.
Furthermore, because separability and Bell-locality are maintained in convex combinations, the density matrix in
Eq. (4.8) can always be used to highlight the presence of entanglement or Bell inequality violation in some of the
states involved in the experimentally-reconstructed average.
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Quantum tomography provides us with the state of the bipartite system under exam, a system
that we could then subject to a Bell test to assert the potential inequality violation. However, if
the state is given with su!cient precision, there is no way to bypass the mathematics that con-
nects operators, states, and expectation values. The presence of entanglement and the potential
violation of Bell inequalities can then be straightforwardly established through the mentioned
observables, within the uncertainties proper of the tomographic measurements. There is no
room for loopholes to act: loopholes do not a”ect states, quantum tomography nor quantum
mechanics, they exploit the fact that only partial information is made available in a concrete
Bell test.

In the following we briefly review the di”erent loopholes a”ecting Bell tests one at a time,
showing how the tomographic procedure made available by collider experiments allows to disre-
gard them.

5.1. Space-time locality.

This loophole exploits the space-time arrangement of the events involved in a Bell
test. Communication pertaining to the direction settings used in the polarization
measurements performed on the two subsystems is possible in a local manner if
these settings are fixed before the source emits the entangled particles, or if
one setting and measurement is performed in the past cone of the second one.
In both cases, the Bell inequality is violated because of the local exchange of
information [17].

Local hidden variables theories can bypass the non-separability by using interactions to trans-
mit information, provided the measurements are taken at time-like intervals and the hidden
variables carry information about the direction setting of one of the two photon measurements.
In the traditional Bell test setting, this loophole has been closed by first arranging the polar-
ization measurement to be space-like separated and by letting the polarization directions be
determined by a quantum random number generator [25–27].

At collider experiments, the condition of space-like separation between the polarization mea-
surements requires, at first blush, particles with the same lifetime and mass. Yet this restriction
is actually not necessary because the time-like separation between production and measurement
points is only an issue for experiments with the traditional settings. At colliders, in fact, no
specific setting is decided beforehand as the whole density matrix is fully reconstructed. The
directions involved in a Bell test are decided only afterwards, when the reconstructed state is
pulled through the machinery of quantum mechanics to compute the required correlation values.
There is no way for the state at the production point, nor for the two subsystem composing the
final state, to know this choice in advance. For this reason, even for two decays taking place one
inside the future cone of the other—as in the case of two particles with very di”erent masses and
decay lengths—the loophole cannot be invoked.

5.2. Detection.

It is possible that the correlations, as detected in the experiment, are only due to
the particular subset of recorded events: although these events show a violation
of a Bell inequality, if all events were detected the Bell inequality would actually
be respected. If some events are not recorded, extra correlations could be hiding
there [26]. In [48] it was shown that the e!ciency for the detection of the photons
should be at least 83%.

The loophole has been closed in low-energy tests in [28,49,50]. This and the locality loopholes
have been closed simultaneously in [29, 30,51,52].
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This loophole is partially closed in collider experiments by the very high e!ciency rate for
the detection of most charged particles as performed by modern detectors (see, for example,
[53]). Additionally, for less e!cient channels, the loophole is addressed by the requirement of
fair sampling. Fair sampling is necessary in high-energy physics also in ordinary cross section
measurements—otherwise you might think that, for instance, supersymmetry is hiding in the
many events that have not been detected. Be that as it may, a close look at the conditions under
which the loophole might work shows that also this loophole is closed by the collider settings.
The missing events, on which the loophole is based, are not generic but those corresponding
to measurement directions that can actually modify the Bell inequality. Again, since no such
directions are chosen when performing the tomographic reconstruction of the quantum state, the
loophole cannot even be formulated. A low e!ciency detection at colliders will only result in a
lower significance of the Bell test performed under these conditions.

5.3. Freedom of choice.

In this loophole, an extension of the locality one, the hidden-variable distribution
ω depends on the directions used in the Bell test for the polarization measure-
ments. When calculating

P(→n̂i ; →n̂j ) =

∫
dε pω(→n̂i ; →n̂j )ω(ε| →n̂i ; →n̂j ) , (5.1)

one should take into account possible correlations between the hidden variables
and the detector settings [54], which would modify the above relation thereby
allowing a hidden variable theory to pass the Bell test. This loopohole essentially
proposes a limited form of a super-deterministic model in which, however, only
a tiny amount of information needs to be exchanged [55].

This loophole cannot be closed by scientific methods in the traditional setup. In low-energy
tests it has been made more and more unlikely by making the choice of detector settings be
determined by a large ensemble of pseudo-random events (canvassed from a large sampling of
human choices) [56] or events that are in the very (cosmological) far past [57].

At collider experiments, no detector settings are chosen. There is therefore no information
that the hidden variables can carry to alter the reconstruction of the state which proceeds always
in the same manner. Likewise, the loophole cannot alter the subsequent probing of correlations
in the Bell test, which is solely regulated by quantum mechanics.

5.4. Free will.

There exists a stronger form of the previous loophole that consists in supposing
that the hidden variable distribution contains the outcome of the experiment
about to be performed. For particle accelerators, this would mean that the
hidden variables regulate the angular distribution of the momenta involved in
the tomographic procedure. The same variables must also include information
about the detector4 because the contextuality requirement [58].

This loophole cannot be closed. It is however made rather unpalatable by the contextuality
requirement. It is an instance of the more generic loophole based on the existence of a full-blown
super-deterministic model in which all outcomes of all experiments are predetermined. This
leaves us with the choice between living with a nonlocal theory, such as quantum mechanics, or
with the absence of free will, at least, in physics research. For the purposes of the present work,
we will not entertain the latter option.

4For instance, about the direction of the magnetic field used in the identification of charged particles.
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that the hidden variable distribution contains the outcome of the experiment
about to be performed. For particle accelerators, this would mean that the
hidden variables regulate the angular distribution of the momenta involved in
the tomographic procedure. The same variables must also include information
about the detector4 because the contextuality requirement [58].

This loophole cannot be closed. It is however made rather unpalatable by the contextuality
requirement. It is an instance of the more generic loophole based on the existence of a full-blown
super-deterministic model in which all outcomes of all experiments are predetermined. This
leaves us with the choice between living with a nonlocal theory, such as quantum mechanics, or
with the absence of free will, at least, in physics research. For the purposes of the present work,
we will not entertain the latter option.

4For instance, about the direction of the magnetic field used in the identification of charged particles.
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5.5. Memory.

If the measurements are repeatedly made, a local hidden variable theory could
exploit the memory of past measurement settings and outcomes to increase the
correlations and yield a violation of the Bell inequality in the upcoming tests [59].

The loophole was identified in [59] where it was also shown how the loophole is less and less
e!ective as the number of measurements grows.

At collider experiments, the measurements are intrinsically random because the events origi-
nate from particles decaying at di!erent times and positions in the beam-pipe or the detector.
Moreover, the memory that is passed on is about the directions of the measurements and, again,
these are not set by the tomographic procedure. Finally, the number of events collected at
colliders is large enough for the loophole to be closed.

5.6. Coincidence.

In many experiments, especially those based on photon polarizations, pairs of
events in the two sides of the experiment are only identified as belonging to a
single pair after the experiment is performed, by judging whether or not their
detection times are close enough one to another. This generates a new possibility
for a local hidden variables theory to fake quantum correlations: altering the
detection time of each of the two particles according to some relationship between
hidden variables carried by the particles and the detector settings encountered
at the measurement station [60].

The loophole was identified and closed at low-energy in the same work [60].
Coincidence is well verified in collider experiments by the kinematic reconstruction performed

event by event. Moreover, the amount of misidentifications is routinely included in the uncer-
tainty of the measurements.

6. If they exist, hidden variables are new physics

As we contemplate the future of quantum tomography at colliders, two unexpected things can
happen. If the experimental data yield a density matrix that exceeds the Tsirelson’s bound [34],
this result will imply that nonlocality is stronger than what is predicted by quantum mechanics.
All the tests at collider have so far confirmed quantum mechanics. It could also happen that the
state being reconstructed is not an acceptable state in the Hilbert space of quantum mechanics.
This is because the experimental values of some cross section could, for instance, imply a violation
of unitarity. In this case, the problem will be addressed by looking for new physics, rather than
as a signal of the failure of quantum mechanics.

Coming to hidden variables, these have been originally postulated to exist for theories like
atomic physics that were not fundamental. Particle physics, however, describes the most fun-
damental level of Nature. Though one cannot exclude that some clever hidden variable model
could reproduce the states identified by the tomographic procedure, whatever this model may
be, it is bound to be contextual and nonlocal—barring the super-deterministic choice. If we set
out to construct such a model5, we will have to face the problem of doing so at the microscopic
level and therefore by means of new particles. The hidden variables must manifest themselves as
these new particles or interactions with special properties and, so-far, elusive interactions. From
the point of view of particle physics, the search for hidden-variable models is simply the search
for physics beyond the Standard Model.

5An example of which is Bohm’s model [61].
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