NLO corrections and Decoherence effects

Rafael Aoude

University of Edinburgh

with Fabio Maltoni, Alan Barr and Leonardo Satrioni

GGI - Florence - 2025

Motivation

We assume that NLO corrections in the ttbar entanglement are small

Knowledge from spin-correlations studies

[Czakon, Mitov, Poncelet '08]

[Eleni's Talk at GGI '23]

If we plan to measure spin entanglement at LHC with more and more precision [Talks by Giovanni and Priyanka]

Revisit this assumption with a more quantum info perspective

NLO corrections

Formally, for ttbar production at NLO (in QCD) we need...

tree virtual v

If the radiation is unresolvable, can we see this as a quantum map?

Decoherence!

Larger Hilbert space.

Some nice decoherence effects

Soft radiation decrease *momentum* entanglement

[Carney, Chaurette, Neuenfeld, Semenoff, '17] [Neuenfeld '18]

In KOKO systems [Berltmann '05]
and B mesons [Talks by Sven Vahsen in Pittsburg
And Hans-Guenther Moser at GGI 23]

[See also poster by Mahood and Stoetzer]

Inflation [Burgess, Colas, Holman, Kaplanek and Rennin '24]

BH horizons decohere superpositions

[Danielson, Satischandran, Wald '23] [Biggs, Maldacena '24]

Let's do an easier example...

Fermion pair from a scalar decay

Let's do an easier example...

Fermion pair from a scalar decay

At tree-level:
$$R_{\mathrm{LO}} = \frac{4N_C y_f^2 m_f^2 \beta^2}{1-\beta^2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rho_{\mathrm{LO}} = \frac{1}{\mathrm{tr}[R_{\mathrm{LO}}]} R_{\mathrm{LO}} = |\Psi^+\rangle \langle \Psi^+|$$

Maximally entangled: controlled place to study entanglement decrease

NLO corrections

General interaction: Scalar, pseudo scalar, vector and axial

$$g_{\Gamma}\Gamma^{\mu} = \{g_S 1, g_P \gamma^5, g_V \gamma^{\mu}, g_A \gamma^{\mu} \gamma^5\}$$

Virtual correction: one-loop

Real emission

NLO corrections

General interaction: Scalar, pseudo scalar, vector and axial

$$g_{\Gamma}\Gamma^{\mu} = \{g_S 1, g_P \gamma^5, g_V \gamma^{\mu}, g_A \gamma^{\mu} \gamma^5\}$$

Virtual correction: one-loop

Real emission

 $f(p_1)$

 $\bar{f}(p_2)$

Trace over the extra d.o.f (environment)

Same Hilbert space

Quantum Map. Open Quantum system

Quantum Maps

The evolution of a system+environment is unitary

$$\rho'(t) = U(t)\rho_{\rm S}(0) \otimes \rho_{E}(0)U^{\dagger}(t)$$

Tracing over the environment subsystem

$$\rho_{\rm S}(t) = \operatorname{tr}_E \left[U(t) \rho_{\rm S}(0) \otimes \rho_E(0) U^{\dagger}(t) \right]$$

Quantum Maps

The evolution of a system+environment is unitary

$$\rho'(t) = U(t)\rho_{\rm S}(0) \otimes \rho_{E}(0)U^{\dagger}(t)$$

Tracing over the environment subsystem

$$\rho_{\rm S}(t) = \operatorname{tr}_E \left[U(t) \rho_{\rm S}(0) \otimes \rho_E(0) U^{\dagger}(t) \right]$$

which we can write as a operator-sum representation (Kraus operators)

$$ho_{\mathrm{S}}(t) = \sum_{j} K_{j} \rho_{\mathrm{S}}(0) K_{j}^{\dagger}$$
 s.t $\sum_{j} K_{j} K_{j}^{\dagger} = 1$

[See also poster by Grzelka and Altomonte]

For bipartite qubits: K_j Tensor product of Pauli

Environment as unresolved radiation

Tree-level
$$\mathcal{A}_{\alpha\beta}(\varphi \to t\bar{t})[\mathcal{A}_{\alpha'\beta'}(\varphi \to t\bar{t})]^{\dagger} \sim \mathcal{O}(y_t^2)$$

One-loop $\mathcal{A}_{\alpha\beta}^{(1)}(\varphi \to t\bar{t})\left[\mathcal{A}_{\alpha'\beta'}^{(0)}(\varphi \to t\bar{t})\right]^{\dagger} + \text{h.c.} \sim \mathcal{O}(y_t^2\,g^2)$

Real emission contribution to the R-matrix

$$\mathcal{A}^{h}_{\alpha\beta}(\varphi \to t\bar{t} + k)[\mathcal{A}^{h}_{\alpha'\beta'}(\varphi \to t\bar{t} + k)]^{\dagger} \sim \mathcal{O}(y_t^2 g^2)$$

We trace out the **unresolved** interaction: soft or collinear

$$\operatorname{tr}_{\mathcal{H}_k}[\cdot] = \int d\Phi(k) \sum_{\sigma=+} \langle k, \sigma | \cdot | k, \sigma \rangle$$

If it's resolved: three-body decay [See Morales and Horodecki Talks]

NLO reduced density matrix

$$\begin{split} \rho_{\mathrm{LO+NLO}}^{\mathrm{red}} &= \sum_{j} K_{j} \rho_{\mathrm{LO}} K_{j}^{\dagger} \\ &= \mathsf{p_{LO}} \, \mathbb{1} \rho_{\mathrm{LO}} \mathbb{1} + \bar{\mathcal{E}}_{\mathrm{V}}[\rho_{\mathrm{LO}}] + \bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}] \end{split}$$

LO contribution

"Map" of virtual emission

"Map" of real emission

UV and IR divergent

IR divergent

Virtual radiation map

Scalar current at tree-level $\bar{u}(p_1,h_1)v(p_2,h_2)$

Virtual
$$\bar{u}(p_1, h_1) \mathbb{T}_{\text{virt.}} v(p_2, h_2) = \tilde{T}_{\text{virt.}} \bar{u}(p_1, h_1) v(p_2, h_2)$$

One-loop *
"tensor" integral (w/.gamma's)

Scalar integral (w/o gamma 's)
(Passarino Veltman B's and C's)

Virtual radiation map

Scalar current at tree-level $\bar{u}(p_1,h_1)v(p_2,h_2)$

$$\bar{u}(p_1,h_1)v(p_2,h_2)$$

Virtual
$$\bar{u}(p_1,h_1)\mathbb{T}_{\mathrm{virt.}}v(p_2,h_2)=\tilde{T}_{\mathrm{virt.}}\bar{u}(p_1,h_1)v(p_2,h_2)$$
 One-loop

"tensor" integral (w/.gamma's)

Scalar integral (w/o.gamma 's) (Passarino Veltman B's and C's)

The map is just an identity
$$ar{\mathcal{E}}_{
m V}[
ho_{
m LO}] =
m p_V 1\!\!1
ho_{
m LO} 1\!\!1$$

This is special for scalar decay. It would generalise for a vector current

Real radiation map

Real emissions are different

Let's split into a soft and hard emission (w.r.t. ω_0)

$$\bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}] = \bar{\mathcal{E}}_{\mathrm{R}}^{\mathrm{soft}}[\rho_{\mathrm{LO}}] + \bar{\mathcal{E}}_{\mathrm{R}}^{\mathrm{hard}}[\rho_{\mathrm{LO}}]$$

Unresolved radiation

Real radiation map

Real emissions are different

Let's split into a soft and hard emission (w.r.t. ω_0)

$$\bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}] = \bar{\mathcal{E}}_{\mathrm{R}}^{\mathrm{soft}}[\rho_{\mathrm{LO}}] + \bar{\mathcal{E}}_{\mathrm{R}}^{\mathrm{hard}}[\rho_{\mathrm{LO}}]$$

Unresolved radiation

In principle, both are written as operator-sum representation (Kraus)

$$\bar{\mathcal{E}}_{\mathrm{R}}[\rho_{\mathrm{LO}}] = \sum_{j} K_{j} \rho_{\mathrm{LO}} K_{j}^{\dagger}$$

Built of Pauli matrices

Soft part

We can use the soft theorem

$$\mathcal{M}_{n+1} = \sum_{i=1}^{n} \left[\frac{p_i \cdot \varepsilon_h(k)}{p_i \cdot k} + \cdots \right] \mathcal{M}_n$$

Scalar function

Next-to-leading soft (change structures)

Leading-soft map
$$\bar{\mathcal{E}}_{\mathrm{R}}^{\mathrm{soft}}[\rho_{\mathrm{LO}}] = \underbrace{\mathbf{p}_{\mathrm{R}}^{\mathrm{soft}} \mathbb{1} \rho_{\mathrm{LO}} \mathbb{1}}_{\mathrm{scalar,vector}} + \mathbf{q}_{5}^{\mathrm{soft}} \sum_{j \neq \mathrm{id}} K_{j} \rho_{\mathrm{LO}} K_{j}^{\dagger}$$

p's cancel the IR divergence of virtual: KLN theorem

Hard (collinear) emission part

- Now, this has a non-trivial Kraus operator part

non-zero q = decoherence

Change in spin-structure: dipole-like interaction (IR finite)

Taking the collinear limit for the emission ...

Full NLO map

$$\mathcal{E}_{\mathrm{full}}[
ho_{\mathrm{LO}}] = \mathsf{p}_{\mathrm{id}} \, \mathbb{1}
ho_{\mathrm{LO}} \mathbb{1} + \mathsf{q} \sum_{j
eq \mathrm{id}} K_j
ho_{\mathrm{LO}} K_j^\dagger$$

$$p_{\rm id} = \left(p_{\rm LO} + p_{\rm V} + p_{\rm R}^{\rm soft} + p_{\rm R}^{\rm hard}\right) \quad \begin{array}{l} \text{Identity part:} \\ \text{does not change entanglement} \end{array}$$

$$q = q^{hard} + q_5^{soft}$$
 Non-trivial Kraus part: Decoherence!

Decoherence

Entanglement is lost mainly due to collinear emission —— Small effects ~ 1%

Collinear again...

In the collinear limit, when a n-parton system undergoes a splitting $\tilde{\imath} \to ik$

The amplitude factorize

$$\mathcal{M}_{n+1}^{\lambda_i \lambda_k}(\cdots, p_i, p_k, \cdots) = \mathcal{S}_{\tilde{\imath} \to ik}^{\lambda_{\tilde{\imath}} \lambda_i \lambda_k} \ \mathcal{M}_n^{\lambda_{\tilde{\imath}}}(\cdots, p_{\tilde{\imath}}, \cdots)$$

Helicity dependent AP splitting function

Splitting functions as Kraus operators

Density matrix before the splitting $\rho^{\lambda_{\tilde{\imath}}\lambda_{\tilde{\imath}}'} = \frac{1}{\mathcal{N}_i} \mathcal{M}^{\lambda_{\tilde{\imath}}}(\cdots, p_{\tilde{\imath}}, \cdots) \overline{\mathcal{M}}^{\lambda_{\tilde{\imath}}'}(\cdots, p_{\tilde{\imath}}, \cdots)$.

After the splitting in the col. limit $\rho^{(\lambda_i \lambda_k)(\lambda_i' \lambda_k')} = \left[\mathcal{S}_{\tilde{\imath} \to ik}^{\lambda_{\tilde{\imath}} \lambda_i \lambda_k} \right] \rho^{\lambda_{\tilde{\imath}} \lambda_i'} \left[\mathcal{S}_{\tilde{\imath} \to ik}^{\lambda_i' \lambda_i' \lambda_k'} \right]^{\mathsf{T}} \left(\frac{\mathcal{N}_i}{\mathcal{N}_{\tilde{\imath}k}} \right)^{\mathsf{T}}$

Tracing over the unresolved d.o.f

$$\bar{\mathcal{E}}_{\mathrm{col}}[\rho] = \rho_{\mathrm{red}}^{\lambda_i \lambda_i'} = \sum_{\sigma = \pm} \int_{p_k} \mathcal{S}_{\tilde{\imath} \to ik}^{\lambda_{\tilde{\imath}} \lambda_i \sigma} \cdot \rho^{\lambda_{\tilde{\imath}} \lambda_i'} \cdot \mathcal{S}_{\tilde{\imath} \to ik}^{\lambda_i' \lambda_i' \sigma} = \mathbf{q}^{\mathrm{hard}} \sum_{j \neq \mathrm{id}} K_j \rho_{\mathrm{LO}} K_j^{\dagger}$$

Splitting functions as Kraus (here: one emission)

Conclusions

- NLO corrections are still expected to be small
- Full pheno study required to know the exact impact
- Three main effects drive the smallness of decoherence in ttbar

NLO: lpha is small

Leading soft radiation is a scalar function

Collinear emission: $1/m_t$

- Many new directions
 - Next-to-leading soft/collinear
 - Resummation
 - Gravity?

- Pheno study
- Qutrits

- ..

Thank you!

IR Safe?

- IR cancellations are in the "identity part" of the map

Cancel as in the cross-section/decay: KLN theorem

- By power counting, one can see that the identity part contains integrals of

$$\int d\Phi(k) \frac{1}{(p_i \cdot k)(p_j \cdot k)} \qquad i, j = 1, 2 \longrightarrow \text{IR divergent}$$

- While the non-trivial Kraus has $\int d\Phi(k) \frac{k^{\mu_1}\cdots k^{\mu_n}}{(p_i\cdot k)(p_j\cdot k)}$ IR finite for n > 0 (rank-n tensor integral)