Measuring Quantum Discord at the LHC (for top quarks) $\hat{z} = |0\rangle$

Navin McGinnis Based on collaboration w/ Tao Han (Pitt), Matt Low (Pitt), and Shufang Su (AZ) 2412.21158 [hep-ph]

Quantum Observables for Collider Physics 2025 GGI April 10, 2025

 $-\hat{z} =$

Exploring Quantum Mechanics in High Energy Physics @ PITT PACC - March 2024

Entanglement and quantum tomography with top quarks at the LHC

Yoav Afik^{1,}* and Juan Ramón Muñoz de Nova^{2,†}

¹Experimental Physics Department, CERN, 1211 Geneva, Switzerland ²Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain (Dated: September 8, 2021)

Coherence Quantum Discord Entanglement Steerability

Nonlocality

Entanglement and quantum tomography with top quarks at the LHC

Yoav Afik^{1,}* and Juan Ramón Muñoz de Nova^{2,}[†]

¹Experimental Physics Department, CERN, 1211 Geneva, Switzerland ²Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain (Dated: September 8, 2021)

Boundary of quantum Information

Entanglement and quantum tomography with top quarks at the LHC

Yoav Afik^{1,} * and Juan Ramón Muñoz de Nova^{2,} †

¹Experimental Physics Department, CERN, 1211 Geneva, Switzerland ²Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain (Dated: September 8, 2021)

Local quantum uncertainty Boundary of quantum Information

Quantum discord and steering in top quarks at the LHC

Yoav Afik^{1,} * and Juan Ramón Muñoz de Nova^{2,} †

¹Experimental Physics Department, CERN, 1211 Geneva, Switzerland ²Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain (Dated: June 7, 2023)

Quantum Discord

$\rho = |A, B > \langle A, B|$

$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$

 $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ $J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$

Quantum Discord

$\rho = |A, B > \langle A, B|$

$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$

Quantum Discord

$\rho = |A, B > < A, B|$

$\mathcal{D}_A(ho) = I(ho) - J_A(ho)$ Mutual Information Co (all correlations) (o

 $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ $J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$

Conditional information (only classical correlations)

Quantum Discord

$\rho = |A, B > \langle A, B|$

 $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ $J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$

Conditional information (only classical correlations)

Quantum Discord

$\rho = |A, B > \langle A, B|$

 $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ $J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$

Conditional information (only classical correlations)

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$
$$J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$$

 $J_A(\rho_{AB};\hat{n}) = S(\rho_A) - S(\rho_A|\rho_B;\hat{n}).$

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$
$$J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$$

 $J_A(\rho_{AB}; \hat{n}) = S(\rho_A) - S(\rho_A | \rho_B; \hat{n}).$

$$\Pi_{\pm \hat{n}} = \mathbb{I}_2 \otimes |\pm n\rangle \langle \pm n|$$
$$(\vec{\sigma} \cdot \hat{n} |\pm n\rangle = \pm |\pm n\rangle)$$

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$
$$J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$$

 $J_A(\rho_{AB}; \hat{n}) = S(\rho_A) - S(\rho_A | \rho_B; \hat{n}).$

$$\Pi_{\pm \hat{n}} = \mathbb{I}_2 \otimes |\pm n\rangle \langle \pm n|$$
$$(\vec{\sigma} \cdot \hat{n} |\pm n\rangle = \pm |\pm n\rangle)$$

$$S(\rho_A|\rho_B;\hat{n}) = p_{+\hat{n}}S(\rho_{+\hat{n}}) + p_{-\hat{n}}S(\rho_{+\hat{n}})$$

$$\rho_{\pm\hat{n}} = \frac{1}{p_{\pm\hat{n}}}\operatorname{tr}_B(\Pi_{\pm\hat{n}}\rho_{AB}\Pi_{\pm\hat{n}})$$

$$p_{\pm\hat{n}} = \operatorname{tr}(\Pi_{\pm\hat{n}}\rho_{AB}\Pi_{\pm\hat{n}})$$

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$
$$J_A(\rho_{AB}) = \max_{\hat{n}} J_A(\rho_{AB}; \hat{n})$$

 $J_A(\rho_{AB}; \hat{n}) = S(\rho_A) - S(\rho_A | \rho_B; \hat{n}).$

$$\Pi_{\pm \hat{n}} = \mathbb{I}_2 \otimes |\pm n\rangle \langle \pm n|$$
$$(\vec{\sigma} \cdot \hat{n} |\pm n\rangle = \pm |\pm n\rangle)$$

 $J_A(\rho_{AB}) = S(\rho_A) - \min_{\hat{n}} \left(p_{+\hat{n}} S(\rho_{+\hat{n}}) + p_{-\hat{n}} S(\rho_{-\hat{n}}) \right)$

$$S(\rho_A|\rho_B;\hat{n}) = p_{+\hat{n}}S(\rho_{+\hat{n}}) + p_{-\hat{n}}S(\rho_{+\hat{n}})$$

$$\rho_{\pm\hat{n}} = \frac{1}{p_{\pm\hat{n}}}\mathrm{tr}_B(\Pi_{\pm\hat{n}}\rho_{AB}\Pi_{\pm\hat{n}})$$

$$p_{\pm\hat{n}} = \mathrm{tr}(\Pi_{\pm\hat{n}}\rho_{AB}\Pi_{\pm\hat{n}})$$

 $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB}).$

17

 $J_A(\rho_{AB}) = S(\rho_A) - \min_{\hat{n}} \left(p_{+\hat{n}} S(\rho_{+\hat{n}}) + p_{-\hat{n}} S(\rho_{-\hat{n}}) \right)$

 $J_A(\rho_{AB}) = S(\rho_A) - \min_{\hat{n}} \left(p_{+\hat{n}} S(\rho_{+\hat{n}}) + p_{-\hat{n}} S(\rho_{-\hat{n}}) \right)$

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$= S(\rho_B) - S(\rho_{AB}) + \min_{\hat{n}} \left(p_+ \frac{1}{\hat{n}} \right)$$

$$\rho = \frac{1}{4} \Big[\mathbf{1}_2 \otimes \mathbf{1}_2 + \sum_{i=1}^3 B_i^+(\sigma_i \otimes \mathbf{1}_2) + \sum_{i=1}^3 B_j^-(\mathbf{1}_2 \otimes \sigma_j) + \sum_{i,j=1}^3 C_{ij}(\sigma_i \otimes \sigma_j) \Big]$$

$$p_{\pm \hat{n}} = \frac{1 \pm \hat{\mathbf{n}} \cdot \mathbf{B}^-}{2}, \qquad \qquad \rho_{\pm \hat{n}} = \frac{\mathbb{I}_2 + \mathbb{I}_2}{2}$$

 $_{+\hat{n}}S(\rho_{+\hat{n}}) + p_{-\hat{n}}S(\rho_{-\hat{n}}))$

 $\frac{\mathbf{B}_{\pm \hat{\mathbf{n}}}^{+} \cdot \boldsymbol{\sigma}}{2}, \qquad \mathbf{B}_{\pm \hat{\mathbf{n}}}^{+} = \frac{\mathbf{B}^{+} \pm \mathbf{C} \cdot \hat{\mathbf{n}}}{1 \pm \hat{\mathbf{n}} \cdot \mathbf{B}^{-}}.$

20

$$\mathcal{D}_A(\rho) = I(\rho) - J_A(\rho)$$
$$= S(\rho_B) - S(\rho_{AB}) + \min_{\hat{n}} \left(p_+ \frac{1}{\hat{n}} \right)$$

 $_{+\hat{n}}S(\rho_{+\hat{n}}) + p_{-\hat{n}}S(\rho_{-\hat{n}}))$

$$\mathcal{D}_{A}(\rho) = I(\rho) - J_{A}(\rho)$$

$$= S(\rho_{B}) - S(\rho_{AB}) + \min_{\hat{n}} \left(p_{+}\right)$$

$$\rho = \frac{1}{4} \Big[\mathbf{1}_{2} \otimes \mathbf{1}_{2} + \sum_{i=1}^{3} B_{i}^{+}(\sigma_{i} \otimes \mathbf{1}_{2}) + \sum_{i=1}^{3} B_{i}^{-}(\mathbf{1}_{2} \otimes \sigma_{j}) + \sum_{i,j}^{3} D_{A} \otimes V_{B} \longrightarrow U_{A}^{\dagger} \otimes V_{B}^{\dagger}$$

$$\rho_{AB}' = \frac{1}{4} \left(\mathbb{I}_{4} + \sum_{i} \Lambda_{i} \sigma_{i} \otimes \sigma_{i} \right)$$

 $_{+\hat{n}}S(\rho_{+\hat{n}}) + p_{-\hat{n}}S(\rho_{-\hat{n}}))$

 $\sum_{i,j=1}^{3} C_{ij}(\sigma_i \otimes \sigma_j) \Big]$

Λ_i = Singular values of C_{ij} in any basis of choice

$$\mathcal{D}_{A}(\rho) = I(\rho) - J_{A}(\rho)$$

= $S(\rho_{B}) - S(\rho_{AB}) + \min_{\hat{n}} \left(p_{+\hat{n}} S(\rho_{+\hat{n}}) + p_{-\hat{n}} S(\rho_{-\hat{n}}) \right)$

$$\begin{aligned} D_A(\rho'_{AB}) &= 1 + \sum_i e_i \log_2(e_i) - \frac{1}{2}(1+\lambda) \log_2\left(\frac{1+\lambda}{2}\right) - \frac{1}{2}(1-\lambda) \log_2\left(\frac{1-\lambda}{2}\right) \\ e_i &= \text{Eigenvalues of } \rho_{AB} \\ \lambda &= \text{Largest singular value of } C_{ij} \end{aligned}$$

$$\mathcal{D}_{A}(\rho) = I(\rho) - J_{A}(\rho)$$

= $S(\rho_{B}) - S(\rho_{AB}) + \min_{\hat{n}} \left(p_{+\hat{n}} S(\rho_{+\hat{n}}) + p_{-\hat{n}} S(\rho_{-\hat{n}}) \right)$

$$\begin{split} D_A(\rho'_{AB}) &= 1 + \sum_i e_i \log_2(e_i) - \frac{1}{2}(1+\lambda) \log_2\left(\frac{1+\lambda}{2}\right) - \frac{1}{2}(1-\lambda) \log_2\left(\frac{1-\lambda}{2}\right) \\ e_i &= \text{Eigenvalues of } \rho_{AB} \\ \lambda &= \text{Largest singular value of } C_{ij} \end{split}$$

Calculation appeared before:

S. Luo, Quantum discord for two-qubit systems, Phys. Rev. A 77 (2008) 042303.

$$\begin{split} D_A(\rho'_{AB}) &= 1 + \sum_i e_i \log_2 (e_i) - \frac{1}{2} (1+\lambda) \log_2 \left(\frac{1+\lambda}{2}\right) - \frac{1}{2} (1-\lambda) \log_2 \left(\frac{1-\lambda}{2}\right) \\ e_i &= \text{Eigenvalues of } \rho_{AB} \\ \lambda &= \text{Largest singular value of } C_{ij} \\ D_A(\rho_{AB}) &= 1 + \frac{1}{4} (1-C_k - C_n - C_r) \log_2 \left(\frac{(1-C_k - C_n - C_r)}{4}\right) \\ &+ \frac{1}{4} (1+C_k - C_n + C_r) \log_2 \left(\frac{(1+C_k - C_n - C_r)}{4}\right) \\ &+ \frac{1}{4} (1+C_n - \Delta) \log_2 \left(\frac{(1+C_n - \Delta)}{4}\right) + \frac{1}{4} (1+C_n + \Delta) \log_2 \left(\frac{(1+C_n + \Delta)}{4}\right) \\ &- \frac{1}{2} (1+\lambda) \log_2 \left(\frac{1+\lambda}{2}\right) - \frac{1}{2} (1-\lambda) \log_2 \left(\frac{1-\lambda}{2}\right) \end{split}$$

where
$$\Delta = \sqrt{C_k^2 + 4C_{kr}^2 + C_r^2 - 2C_kC_r}$$
, and λ

Experiments

 $\Delta = \max\{|C_n|, \frac{1}{2}|C_k + C_r - \Delta|, \frac{1}{2}|C_k + C_r + \Delta|\}.$

 $C[\bar{\rho}] \neq 0 \implies C[\rho] \neq 0$

K. Cheng, T. Han, M. Low: Phys.Rev.D 109 (2024)

 $C[\bar{\rho}] \neq 0 \implies C[\rho] \neq 0$

K. Cheng, T. Han, M. Low: Phys.Rev.D 109 (2024)

For discord, it can be disastrous:

 $C[\bar{\rho}] \neq 0 \implies C[\rho] \neq 0$

K. Cheng, T. Han, M. Low: Phys.Rev.D 109 (2024)

For discord, it can be disastrous:

 Set of zero-discord states not convex: mixtures of zero-discord states can lead to a fictitious states with $D_A[\bar{\rho}] \neq 0..$

$$\bar{\rho} = \lambda \rho_0 + (1 - \lambda) \rho'_0$$

Discord at colliders

Quantum Discord and the Geometry of Bell-Diagonal States

Matthias D. Lang^{*} and Carlton M. Caves Center for Quantum Information and Control, University of New Mexico, MSC07-4220, Albuquerque, New Mexico 87131-0001, USA (Dated: July 25, 2018)

Discord at colliders

Quantum Discord and the Geometry of Bell-Diagonal States

Matthias D. Lang^{*} and Carlton M. Caves Center for Quantum Information and Control, University of New Mexico, MSC07-4220, Albuquerque, New Mexico 87131-0001, USA (Dated: July 25, 2018)

Discord at colliders

Quantum Discord and the Geometry of Bell-Diagonal States

Matthias D. Lang^{*} and Carlton M. Caves

Center for Quantum Information and Control, University of New Mexico, MSC07-4220, Albuquerque, New Mexico 87131-0001, USA (Dated: July 25, 2018)

big a deal: $C[\bar{\rho}] \neq 0 \implies C[\rho] \neq 0$

K. Cheng, T. Han, M. Low: Phys.Rev.D 109 (2024)

For discord, it can be disastrous:

 Set of zero-discord states not convex: mixtures of zero-discord states can lead to a fictitious states with $D_A[\bar{\rho}] \neq 0..$

$$\bar{\rho} = \lambda \rho_0 + (1 - \lambda) \rho'_0$$

big a deal: $C[\bar{\rho}] \neq 0 \implies C[\rho] \neq 0$

K. Cheng, T. Han, M. Low: Phys.Rev.D 109 (2024)

For discord, it can be disastrous:

 Set of zero-discord states not convex: mixtures of zero-discord states can lead to a fictitious states with $D_A[\bar{\rho}] \neq 0$..

Two solutions:

- Measure discord in regions of phase space which give an entangled fictitious state
- Restrict phase space to regions where all sub-states have $D_A[\rho] \neq 0$

Three signal regions:

- Threshold
- Separable
- Boosted

Three signal regions:

- Threshold
- Separable
- Boosted

Contours of concurrence

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not\!\!\!E_T.$

• Decay method

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not\!\!\!E_T.$

• Decay method

	Threshold Region		Separable Region		Boosted Region	
	$\langle \epsilon_{rec} \rangle$	$D_A(ho_{tar t})$	$\langle \epsilon_{rec} \rangle$	$D_A(ho_{tar t})$	$\langle \epsilon_{rec} \rangle$	$D_A(ho_{tar t})$
Parton		0.200 ± 0.003		0.255 ± 0.008		0.197 ± 0.003
Reconstructed	0.10	0.23 ± 0.04	0.28	0.18 ± 0.05	0.08	0.20 ± 0.05

Uncertainties: statistical $\mathscr{L} = 139 \text{ fb}^{-1} + \text{syst.}$ (detector efficiencies + unfolding)

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not\!\!\!E_T.$

• Kinematic method

K. Cheng, T> Han, M. Low <u>2410.08303</u> [hep-ph]

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not\!\!\!E_T.$

• Kinematic method

$$C_{ij}^{\text{helicity}} = \begin{pmatrix} C_k(\theta, M_{t\bar{t}}) & C_{kr}(\theta, M_{t\bar{t}}) & 0\\ C_{kr}(\theta, M_{t\bar{t}}) & C_r(\theta, M_{t\bar{t}}) & 0\\ 0 & 0 & C_n(\theta, M_{t\bar{t}}) \end{pmatrix},$$

K. Cheng, T> Han, M. Low <u>2410.08303</u> [hep-ph]

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not\!\!\!E_T.$

Kinematic method

 $C_{ij}^{\text{helicity}} = \begin{pmatrix} C_k(\theta, M_{t\bar{t}}) & C_{kr}(\theta, M_{t\bar{t}}) & 0\\ C_{kr}(\theta, M_{t\bar{t}}) & C_r(\theta, M_{t\bar{t}}) & 0\\ 0 & 0 & C_n(\theta, M_{t\bar{t}}) \end{pmatrix}$

Subtlety: $\mathcal{O}(C_{ij})$ for non-linear observables, e.g. Discord, VN entropy, etc. (for Bell can do $\mathscr{B}(\theta, M_{t\bar{t}})$)

 $pp \to t\bar{t} \to \ell^{\pm}\ell^{\mp} + \text{jets} + \not{E}_T.$

Kinematic method

		Threshold Region		Separable Region		Boosted Region	
		$\langle \epsilon_{rec} \rangle$	$D_A(ho_{t\bar{t}}) imes 10^3$	$\langle \epsilon_{rec} \rangle$	$D_A(ho_{t\bar{t}}) imes 10^3$	$\langle \epsilon_{rec} \rangle$	$D_A(\rho_{t\bar{t}}) \times 10^3$
Р	arton		173.42 ± 0.07		249.72 ± 0.24		200.81 ± 0.08
R	Reconstructed	0.10	147.10 ± 0.24	0.28	232.54 ± 0.47	0.08	188.49 ± 0.25

Subtlety: $\mathcal{O}(\overline{C}_{ij})$ for non-linear observables, e.g. Discord, VN entropy, etc. (for Bell can do $\overline{\mathscr{B}}(\theta, M_{t\bar{t}})$)

Kinematic method

Subtlety: $\mathcal{O}(C_{ij})$ for Discord, VN entrop,

Metric	Measured				
D=Tr[C]/3	-0.221 ± 0.010				
Magic	0.238 ± 0.014				
Discord	0.073 ± 0.010				
LQU	0.051 ± 0.007				

(Using full spin-density matrix)

Obtained from the **inclusive** $(100k \text{ toys}) \rightarrow \text{clear observa}$ But how do w avnarimantal

From yesterday's talk:

Est. precision w/ <u>actual</u> data: ~14%

Summary

- Discord is a clear next step in the exploration of QI at colliders
 - Computable analytically for $t\bar{t}$ (at LO) in terms of "collider friendly" observables
 - Can be framed in robust way in terms of existing analysis strategies
- Important subtleties uncovered (convexity, linearity) which must be considered for other observables
- Future directions:
 - Higher order effects
 - CP-odd corrections (EW, NP)

(dilepton, lepton + jets, etc.), clear advantages for kinematic method