Entanglement and Bell Nonlocality in T⁺T⁻ at the LHC using Machine Learning for Neutrino Reconstruction

Matthew Low (University of Pittsburgh) with Yulei Zhang, Bai-Hong Zhou, Qi-Bin Liu, Shu Li, Shih-Chieh Hsu, Tao Han, Arthur Wu

2504.01496

Apr 7, 2025 Quantum Observables for Collider Physics

• What **qubit** measurements can we **currently** make at the LHC?

 $pp \to t\bar{t}$

Afik, de Nova Aguilar-Saavedra Fabbrichesi, Floreanini, Panizzo Han, ML, Wu Cheng, Han, ML Severi, Boschi, Maltoni, Sioli Aoude, Madge, Maltoni, Mantani Maltoni, Severi, Tentori, Vryonidou Afik, de Nova Aguilar-Saavedra Aguilar-Saavedra, Casas Barr, Fabbrichesi, Floreanini, Gabrielli, Marzola Fabbrichesi, Floreanini, Gabrielli Aguilar-Saavedra Afik, de Nova White, White Ashby-Pickering, Barr, Wierzchucka Cheng, Han, ML Severi, Vryonidou Demina, Landi Mantani Han, ML, McGinnis, Su Dong, Gonçalves, Kong, Navarro

Entanglement, Quantum Discord, Magic, ...

Barr, Fabbrichesi, Floreanini, Gabrielli, Marzola Lo Chiatto

Fabbrichesi, Floreanini, Gabrielli

 $pp \to \tau^+ \tau^-$

Entanglement, Bell Nonlocality, ...

Fabbrichesi, Floreanini, Gabrielli 2208.11723

• Electroweak production in the **s-channel**

• When the **photon** dominates

$$\rho_{\tau\bar{\tau}} = \lambda \rho^{(+)} + (1-\lambda)\rho_{\text{mix}}^{(1)} \qquad \lambda = \frac{\beta_{\tau}^2}{2-\beta_{\tau}^2} \in [0,1]$$
pure, entangled mixed, separable

• When the **Z** dominates

$$\begin{split} \rho_{\tau\bar{\tau}} &= \lambda \tilde{\rho}^{(+)} + (1-\lambda) \tilde{\rho}_{\text{mix}}^{(2)} \\ \text{pure, entangled} \quad \text{mixed, separable} \quad \lambda = \frac{(g_A^{\tau})^2 - (g_V^{\tau})^2}{(g_A^{\tau})^2 + (g_V^{\tau})^2} \end{split}$$

• When the **photon** dominates

$$\rho_{\tau\bar{\tau}} = \lambda \rho^{(+)} + (1-\lambda)\rho_{\text{mix}}^{(1)} \qquad \lambda = \frac{\beta_{\tau}^2}{2-\beta_{\tau}^2} \in [0, 1]$$
pure, entangled mixed, separable

- Side remark: in $e^+ e^- \rightarrow T^+ T^-$
 - Challenging, but **doable** near threshold

Signal already sizable at CM of 10.6 GeV
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

• Brief **comparison** between these final states

 $pp \rightarrow t\bar{t}$ $\sigma_{\text{tot}} = 834 \text{ pb}$ BR(leptonic) = 5% $\kappa_{\ell} = 1.0$ $\sigma_{\text{boosted}} = 20 \text{ fb}$

$$pp \to Z \to \tau^+ \tau^-$$

$$\sigma_{\text{tot}} = 1848 \text{ pb}$$

$$_{\text{BR}(\pi \text{ or } \rho) = 13\%}$$

$$\kappa_{\pi} = 1.0$$

$$C_{ij} = \begin{pmatrix} 0.5 & 0.1 & 0 \\ 0.1 & 0.6 & 0 \\ 0 & 0 & -0.5 \end{pmatrix}$$
$$\vec{B}^+ = \vec{B}^- = (0, 0, 0)$$

$$C_{ij} = \begin{pmatrix} 1.0 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & -0.8 \end{pmatrix}$$
$$\vec{B^+} = \vec{B^-} = (-0.2, 0, 0)$$

- Both final states achieve nearly **maximal** entanglement and Bell nonlocality
- Non-zero polarization has implications for quantum discord

$$\rho = \frac{1}{4} \left(\mathbb{I}_4 + \sum_i B_i^+ \sigma_i \otimes \mathbb{I}_2 + \sum_j B_j^- \mathbb{I}_2 \otimes \sigma_j + \sum_{ij} C_{ij} \sigma_i \otimes \sigma_j \right)$$

C_{ij} spin correlations B⁺_i qubit 1 polarization B⁻_i qubit 2 polarization

т Leptons

Concurrence (C>0)

Bell Nonlocality (B>0)

т Leptons

• Decays of single T

	Decay	Spin Analyzing Power	Branching Ratio		
	$\pi \nu_{\tau}$	1.00	10.8%		
	$\rho(\pi\pi^0)\nu_{\pi}$	0.41	25.5%		
	$\frac{P}{e}V_{e}V_{\pi}$	-0.33	17.8%		
	$\underline{\nabla} \nu e^{\nu \eta}$	-0.34	17.4%		
2	<u><u> </u></u>	5.61			

• Decays of **T⁺T**⁻

ππ	1%
πρ	6%
ρρ	7%
еπ	4%
eρ	9%
μπ	4%
μρ	9%

• Overall results benefits from **all channels**

• Can we **reconstruct** both T⁺ and T⁻

8 unknowns, 6 constraints (π, Hadron Collider) $p_{\nu_1}^2 = 0$ $p_{\nu_2}^2 = 0$ $(p_{\pi_1} + p_{\nu_1})^2 = m_{\tau}^2$ $(p_{\pi_2} + p_{\nu_2})^2 = m_{\tau}^2$ $E_y^{\text{miss}} = p_{y,\nu_1} + p_{y,\nu_2}$ $E_x^{\text{miss}} = p_{x,\nu_1} + p_{x,\nu_2}$ 8 unknowns, 8 constraints (π, Lepton Collider) 8 unknowns, 4 constraints (e, Hadron Collider)

- System is **underconstrained**, need estimation technique
- Missing Mass Calculator
 Elagin, Murat, Pranko, Safonov <u>1012.4686</u>
 - Originally developed by the CDF collaboration at Tevatron \rightarrow adopted by the ATLAS experiment.
 - Accounts for the kinematic constraints while considering the variation of energy and position of the particles in the decay cascades over the allowed phase space.
 - The solution with the highest likelihood and largest weight is set as a final estimator of m_H .

 $H \rightarrow T^+ T^- Petukhova$

- We train a **generative network** to infer **neutrino momenta** directly from event-level observables
 - **Diffusion** models learn the underlying probability distribution
 - We use the **Point-Edge Transformer** (PET) architecture

- We train a **generative network** to infer **neutrino momenta** directly from event-level observables
 - Train each **decay channel** separately
 - Generate 10 million for each channel (80% training, 20% validation)

Category	Variables	Description		
E_T^{miss}	$(p_T^{ m miss},\phi^{ m miss})$	Missing transverse momentum vec- tor		
au Visible Components	(p_T, η, ϕ, E) Charge PID	Four-momentum Electric charge of τ -visible parts Electron, muon, or pion identifica- tion		
Small-R Jets	(p_T, η, ϕ, E) Charge PID	Four-momentum Electric charge of the jet Particle identification		

Input Features

• Network performance for **neutrino kinematics**

	$\pi\pi$ (%)		
	ML	MMC	
$\Delta p_{ au^+}^x$	18.97	25.99	
$\Delta p_{ au^+}^y$	19.01	26.02	
$\Delta p^z_{ au^+}$	19.47	25.48	
$\Delta p_{ au^-}^x$	18.77	25.78	
$\Delta p_{ au^-}^y$	18.71	25.96	
$\Delta p_{ au^-}^z$	19.69	25.43	
$\Delta m_{ au au}$	7.94	23.27	

Half-width at half-maximum of **resolution**

• Signal region around the Z

80 GeV < $m_{\tau\tau}$ < 100 GeV 0.6 $(\pi/2) < \theta_{\tau} < \pi/2$

• Triggers

- Di-Tau (ππ, πρ, ρρ)
 - \circ Leading $p_T(T) > 35 \text{ GeV}$
 - Sub-leading $p_{T}(T) > 25 \text{ GeV}$
- Tau + Muon (μπ, μρ)
 - p_T(т) > 25 GeV
 - \circ p_T(μ) > 14 GeV
- Tau + Electron (eπ, eρ)
 - \circ p_T(T) > 25 GeV
 - p_T(e) > 17 GeV

- We **reconstruct** the density matrix both ways
- Decay Approach

$$C_{ij} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$$

- Measure **angles** in T⁺ and T⁻ rest frames
- Use **template fit** to extract C_{ii} components

- Kinematic Approach Cheng, Han, ML 2410.08303
 - **Parametrize** spin correlation matrix by θ and β
 - θ = scattering angle, β = speed of T
 - Example: at the Z-pole

$$C_{ij} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sin^2 \theta}{1 + \cos^2 \theta} & 0 \\ 0 & 0 & -\frac{\sin^2 \theta}{1 + \cos^2 \theta} \end{pmatrix}$$

- Measure of **0** to get C_{ii}
- Corrections (due to smearing) not needed
- Full formula used for results

• **Background** events per 1 fb⁻¹

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Subchannel	$W \to \ell \nu$	$W \to \tau \nu$	$Z \to \ell \ell$	$tar{t}$	QCD	Total
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		${\rm SR} \ \& \ {\rm di}\text{-}\tau \ {\rm Trigger} \ (p_T^{\tau_1} > 35 \ {\rm GeV} \ \& \ p_T^{\tau_2} > 25 \ {\rm GeV} \)$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\pi\pi$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	πho	< 0.01	< 0.01	< 0.01	0.05 ± 0.05	< 0.01	0.05 ± 0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ρρ	< 0.01	< 0.01	< 0.01	0.10 ± 0.07	< 0.01	0.10 ± 0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR & e -	SR & $e+\tau$ Trigger ($p_T^e>14~{\rm GeV}$ & $p_T^\tau>25~{\rm GeV}$) or single- e Trigger ($p_T^e>14$					
$e\rho \qquad \qquad 1.93\pm 0.86 \qquad 0.62\pm 0.36 \qquad < 0.01 \qquad 11.19\pm 0.75 \qquad < 0.01 \qquad 13.74\pm 1.20$	$e\pi$	< 0.01	< 0.01	< 0.01	2.87 ± 0.38	< 0.01	2.87 ± 0.38
	e ho	1.93 ± 0.86	0.62 ± 0.36	< 0.01	11.19 ± 0.75	< 0.01	13.74 ± 1.20
SR & $\mu + \tau$ Trigger ($p_T^{\mu} > 17$ GeV & $p_T^{\tau} > 25$ GeV) or single- μ Trigger ($p_T^{\mu} > 26$ GeV)	SR & μ -	> 26 GeV)					
$\mu\pi$ < 0.01 0.41 ± 0.29 < 0.01 4.13 ± 0.46 < 0.01 4.55 ± 0.54	$\mu\pi$	< 0.01	0.41 ± 0.29	< 0.01	4.13 ± 0.46	< 0.01	4.55 ± 0.54
$\mu \rho \qquad \qquad 1.16 \pm 0.67 0.62 \pm 0.36 < 0.01 < 0.01 < 0.01 1.78 \pm 0.76$	μho	1.16 ± 0.67	0.62 ± 0.36	< 0.01	< 0.01	< 0.01	1.78 ± 0.76

Reconstructed channels

• **Signal** events per 1 fb⁻¹ by channel

	(d)							
	Subchannel	Prongness	$ \kappa_A imes \kappa_B $	$\tau\tau\to\ell\pi$	$\tau\tau\to\ell\rho$	$ au au o \pi\pi$	$\tau\tau\to\pi\rho$	$\tau\tau\to\rho\rho$
SR & di- $ au$ Trigger ($p_T^{ au_1} > 35~{ m GeV}$ & $p_T^{ au_2} > 25~{ m GeV}$)								
	$\pi\pi$			3.92 ± 0.18	0.09 ± 0.04	89.43 ± 0.48	2.90 ± 0.13	0.14 ± 0.04
	πho			0.12 ± 0.03	22.71 ± 0.65	1.61 ± 0.06	206.39 ± 1.09	6.29 ± 0.28
	ρρ			< 0.01	0.56 ± 0.10	0.06 ± 0.01	4.51 ± 0.16	629.99 ± 2.83
	SR & $e + \tau$ Trigger ($p_T^e > 14$ GeV & $p_T^\tau > 25$ GeV) or single- e Trigger ($p_T^e > 26$ GeV)							
	$e\pi$			378.90 ± 1.79	17.52 ± 0.57	< 0.01	0.01 ± 0.01	< 0.01
	e ho			8.33 ± 0.27	1233.90 ± 4.82	< 0.01	0.03 ± 0.01	0.15 ± 0.04
	SR & $\mu + \tau$ Trigger ($p_T^{\mu} > 17~{\rm GeV}$ & $p_T^{\tau} > 25~{\rm GeV}$) or single- μ Trigger ($p_T^{\mu} > 26~{\rm GeV}$)							
	$\mu\pi$			565.94 ± 2.19	25.21 ± 0.69	< 0.01	< 0.01	< 0.01
	μho			12.63 ± 0.33	1862.06 ± 5.92	< 0.01	< 0.01	0.04 ± 0.02

Reconstructed channels

Systematic uncertainties

Concurrence Impact

ρρ πρ 14.8% 13.7% ππ 11.3% 5.1% 9.4% 9.4% 14.5% 31.2% μρ

SR Only SR & Trigger Combined Combined $\mu\rho$ $\mu\rho$ $\rho\rho$ $\rho\rho$ **All Systematics** 29.81%29.76% 31.29% 31.00% 29.82%31.35% MC Statistics 29.31%29.56%30.05%28.93%29.55%28.66%0.12%0.08%0.90%7.73%0.74%6.10%Luminosity 1.06%**Background Cross-Section** 3.39%0.07%2.01%1.51%0.05%2.41%Signal Cross-Section 0.23%0.23%1.71%3.12%0.52%Tau Energy Scale 1.47%2.50%2.12%1.20%0.89%1.47%Jet Enery Scale 1.67%1.50%4.49%2.41%1.72%8.05%Soft MET (p_x, p_y) 3.66%1.90%6.57%6.68%3.42%7.11% 0.02%0.02%0.03%0.03%0.07% ν Sampling 0.06%

Pie charts show each channel weighted by **inverse variance**

Systematics we consider are listed below

Bell Impact

The T^+T^- Final State

• **Results**: >50 for **Bell nonlocality**

 $\mathcal{B} = max(|C_{ii} \pm C_{jj}| - \sqrt{2})$

• **Results**: >50 for **Bell nonlocality**

 $B = max(|C_{ii} \pm C_{jj}| - \sqrt{2}) \text{ (Bell states have B = 0.586)}$

The T^+T^- Final State

• **Results:** >50 for **concurrence**

 $\mathcal{B} = max(|C_{ii} \pm C_{jj}| - \sqrt{2})$

• **Results**: >50 **concurrence** (with the **kinematic approach**)

 $\mathcal{B} = max(|C_{ii} \pm C_{jj}| - \sqrt{2})$

• **Results**: >50 for **Bell nonlocality** (with the **kinematic approach**)

 $\mathcal{B} = max(|C_{ii} \pm C_{jj}| - \sqrt{2})$

Conclusions

- T+T- an **excellent** channel
 - More events than tt (strong kinematic cuts not needed)
 - Neutrino reconstruction solved by Point-Edge Transformer
 - $>5\sigma$ for entanglement and Bell nonlocality with current data
- Can **other** quantum correlations be measured?

Bell Variable

• We use the atypical normalization of the CHSH inequality

$$\mathcal{B}(\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2) = \frac{1}{\sqrt{2}} |\langle \vec{a}_1 \cdot \vec{\sigma} \otimes \vec{b}_1 \cdot \vec{\sigma} \rangle - \langle \vec{a}_1 \cdot \vec{\sigma} \otimes \vec{b}_2 \cdot \vec{\sigma} \rangle + \langle \vec{a}_2 \cdot \vec{\sigma} \otimes \vec{b}_1 \cdot \vec{\sigma} \rangle + \langle \vec{a}_2 \cdot \vec{\sigma} \otimes \vec{b}_2 \cdot \vec{\sigma} \rangle |-\sqrt{2}.$$

• We use the approximate maximization

$$\mathcal{B} = \max_{ij} |C_{ii} \pm C_{jj}| - \sqrt{2}.$$

• This corresponds to the regions

 $\begin{cases} -\sqrt{2} \le \mathcal{B} \le 0 & \text{Bell local,} \\ 0 < \mathcal{B} \le 2 - \sqrt{2} & \text{Bell nonlocal,} \end{cases}$