Quantum tops at lepton colliders Eleni Vryonidou

Quantum Observables in Collider Physics GGI, Florence 9/4/25

Spin density matrix

Eleni Vryonidou

- Quantum tomography is measurement of 15 parameters: 6 polarisations and 9 correlations

Eleni Vryonidou

$$\mathcal{Q}_{ij}^{[i_1 i_2]}(m_{t\bar{t}}, \theta) = \frac{9/\alpha_a \alpha_b \int \cos \theta_{ai} \cos \theta_{bj} |\mathcal{M}_{i_1 i_2 \to t \, \bar{t} \to a \, b \, X}|^2 \, d\pi}{\int |\mathcal{M}_{i_1 \, i_2 \to t \, \bar{t} \to a \, b \, X}|^2 \, d\pi}$$

Spin correlation coefficients are averages of angles

From spin correlations to entanglement

 $D_{\min} \equiv \min\{D^{(1)}, D^{(k)}, D^{(r)}, D^{(n)}\}$

$$\hat{k} = \text{top direction}, \quad \hat{r} = \frac{\hat{p} - \hat{k} \cos \theta}{\sin \theta}, \quad \hat{n} = \frac{\hat{p} \times \hat{k}}{\sin \theta} \qquad D_{\min} < -\frac{1}{3} \qquad \text{for a proof see arXiv:2003.0}$$

$$\begin{split} D^{(1)} &= \frac{1}{3}(+C_{kk} + C_{rr} + C_{nn}), \\ D^{(k)} &= \frac{1}{3}(+C_{kk} - C_{rr} - C_{nn}), \\ D^{(r)} &= \frac{1}{3}(-C_{kk} + C_{rr} - C_{nn}), \\ D^{(n)} &= \frac{1}{3}(-C_{kk} - C_{rr} + C_{nn}). \end{split}$$
 Necessary and sufficient condition f
$$C &= \frac{1}{2} \max\left(0, -1 - 3D_{\min}\right) > 0$$

Eleni Vryonidou

Entanglement markers, from the Peres-Horodecki criterion

for entanglement

When are tops entangled?

Consider top pair production in pp collisions Which spin states can be reached?

Threshold:

- entangled singlet state
- from same helicity gluons

 $C_{\rm kk}$

 $0^{C_{nn}}$

-1

-1

- Boosted:
- entangled triplet state
- for qqbar pairs and opposite helicity gluons

C. Severi, F.Maltoni, S. Tentori, EV: 2404.08049

Entanglement in the SM

Eleni Vryonidou

Concurrence: $C = \frac{1}{2} \max \left(0, -1 - 3D_{\min} \right)$

White regions: no entanglement (C<0)

Maximal entanglement regions

- At threshold: $\beta^2=0, orall heta$
- High-Energy: $\beta^2 \to 1, \cos \theta = 0$

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

Tops in lepton colliders

$$1/3 \operatorname{Tr} [\mathcal{C}] = D^{(1)} = + rac{1}{3},$$

Spin-1 exchange Spin triplet state

Eleni Vryonidou

reachable entangled states

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

GGI, 9/4/25

 $C_{\rm rr}$

 $^{-1}$

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

How about Bell inequalities?

Much harder to see Bell inequalities violation at the LHC

How about Bell inequalities?

Much harder to see Bell inequalities violation at the LHC

Bell inequalities at lepton colliders

 $\langle a b + a b' + a' b - a' b' \rangle \equiv \langle \mathcal{B}(a, a', b, b') \rangle > 2,$ \implies

Bell violation everywhere, but B~2 Better prospects of Bell violation at higher energy lepton colliders (extremely hard at 365 GeV)

Bell violation.

GGI, 9/4/25

Entanglement and parity

- EW interactions do not conserve parity Parity would be conserved for purely axial vector or purely vector $Q_{\rm t}=0$ and $g_{
 m Vt}=0$ $g_{
 m At}=0$
- In the purely vectorial case EW interactions are like QCD

Vaximally-entangled pure triplet case $\mathcal{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \theta = \pi/2, \ \beta \to 1 \end{pmatrix}$ In the purely axial vector case: $\mathcal{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ A mixture spoils purity 0

GGI, 9/4/25

Entanglement and parity

 $\mathcal{L} \supset \, rac{e}{s_{
m W} c_{
m W}} ig(\, Z_{\mu} \, ar{t} \, \gamma^{\mu} (g_{
m Vt} + \gamma^5 g_{
m At}) \, t + \, Z_{\mu} \, ar{\ell} \, \gamma^{\mu} (g_{
m V\ell} + \gamma^5 g_{
m A\ell}) \, \ell \, ig)$

GGI, 9/4/25

Using QI for new physics Can they tell us anything interesting/new? • SMEFT A New Interactions of SM particles

SMEFT in lepton colliders

$$\begin{aligned} \mathcal{O}_{Q\ell}^{(1)} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{Q\ell}^{(3)} &= (\overline{Q}_L \gamma^{\mu} \sigma_I Q_L) (\overline{\ell}_L \gamma_{\mu} \sigma^I \ell_L), \\ \mathcal{O}_{Qe} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_R \gamma_{\mu} \ell_R), \\ \mathcal{O}_{t\ell} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{te} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_R \gamma_{\mu} \ell_R). \end{aligned}$$

4-fermion operators

$$\mathcal{O}_{\phi Q}^{(1)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}Q_{L}),$$

$$\mathcal{O}_{\phi Q}^{(3)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}\sigma^{I}Q_{L}),$$

$$\mathcal{O}_{\phi t} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{t}_{R}\gamma^{\mu}t_{R}),$$

$$\ell^{-}$$

$$\mathcal{O}_{tW} = (\overline{Q}_{L}\gamma^{\mu\nu}\sigma_{I}t_{R}) \stackrel{\leftrightarrow}{\phi} W_{\mu\nu}^{I},$$

$$\mathcal{O}_{tB} = (\overline{Q}_{L}\gamma^{\mu\nu}t_{R}) \stackrel{\leftrightarrow}{\phi} B_{\mu\nu}.$$

$$Current operations of the term of the term of the term of term of$$

Degrees of freedom

$$\begin{split} c_{Q\ell}^{(3)} + c_{Q\ell}^{(1)}, \\ c_{VV} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} + c_{Qe} \big), \\ c_{AV} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} - c_{Qe} \big), \\ c_{VA} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} + c_{Qe} \big), \\ c_{AA} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} - c_{Qe} \big). \end{split}$$

$$\begin{aligned} c_{\phi Q}^{(3)} + c_{\phi Q}^{(1)}, \\ c_{\phi V} &= \frac{1}{2} \left(c_{\phi t} + c_{\phi Q}^{(1)} - c_{\phi Q}^{(3)} \right), \\ c_{\phi A} &= \frac{1}{2} \left(c_{\phi t} - c_{\phi Q}^{(1)} + c_{\phi Q}^{(3)} \right). \end{aligned}$$

$$c_{\mathrm{t}Z} = c_{\mathrm{W}} c_{tW} - s_{\mathrm{W}} c_{tB},$$

 $c_{\mathrm{t}\gamma} = s_{\mathrm{W}} c_{tW} + c_{\mathrm{W}} c_{tB},$

GGI, 9/4/25

Structure of spin correlations within SMEFT Degeneracy between possible structures arising from SM and EFT

$$A^{[0]} = F^{[0]} \left(\beta^2 c_{\theta}^2 - \beta^2 + 2\right)$$

$$A^{[1]} = 2 F^{[1]} c_{\theta}$$

$$A^{[2]} = F^{[2]} \left(1 + c_{\theta}^2\right)$$

$$A^{[6,0,D]} = F^{[6,0,D]}$$

$$A^{[6,1,D]} = F^{[6,1,D]} c_{\theta}$$

$$A^{[8,DD]} = F^{[8,DD]} \left(-\beta^2 c_{\theta}^2 - \beta^2 + 2\right)$$

$$BSM$$

New structures related to dipole operators, the rest gives linear combinations of pre-existing structures

 \mathcal{M}_1 $Q_{\mathrm{t}}, g_{\mathrm{Vt}},$ $g_{\mathrm{At}},$ $c_{\mathrm{AV}},\,c_{\mathrm{AA}},\,c_{\phi\mathrm{A}}$ $c_{\rm VV}, c_{\rm VA}, c_{\phi \rm V}$ $Q_{
m t},\,g_{
m Vt}$ $A^{[0]}$ $A^{[1]}$ $c_{\rm VV}, c_{\rm VA}, c_{\phi \rm V}$ \mathcal{M}_2 $g_{
m At}$ $A^{[1]}$ $A^{[2]}$ $c_{\mathrm{AV}}, \, c_{\mathrm{AA}}, \, c_{\phi \mathrm{A}}$ $A^{[6,0,D]}$ $A^{[6,1,D]}$ $c_{\mathrm{t}Z}, c_{\mathrm{t}\gamma}$

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

Breaking degeneracies with Quantum Obs

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049[hep-ph]

Spin correlation observables probe different linear combinations of Wilson coefficients

Breaking degeneracies

Old New Physics: Threshold effects

- Quasi-Bound State of top and antitop
- Energy states obtained by solving Schrödinger equation with QCD potential
- Described by NRQCD
- Ground state n=1 S-wave
- Spin-singlet vs spin-triplet depending on production mode
 - spin singlet for pp and spin triplet for e^+e^-
- See morning talks

What do we know about toponium?

Fully differential NLO+LL, Coulomb Resummation

Any computation needs matching between below threshold, toponium region, continuum

Eleni Vryonidou

LHC results

Coulomb Resummation

18

Toponium in e^+e^-

Bound state effects have an impact on the lineshape (increase of cross-section) No impact on entanglement markers (unlike the LHC) Vector resonance leads to the same spin correlations as the EW Standard Model

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

GGI, 9/4/25

Conclusions

- Top pairs an ideal testing ground, different degrees of correlations can be observed
- Different patterns for lepton and hadron colliders
- SMEFT introduces new structures, thus probing new linear combinations between coefficients
- QI observables can break degeneracies between operators when combined with standard observables

Thank you for your attention

Eleni Vryonidou

GGI, 9/4/25