

Kun Cheng @ GGI 2025/04/08 **Based on work in preparation** with Tao Han, Matthew Low and Arthur Wu

Quantum Tomography in Flavor Oscillations

Quantum correlations in flavor space

- Particles can be entangled in flavor space, as informative as spin
 - E.g., meson pair decayed from $\Upsilon(J^{PC} = 1^{--})$

$$\frac{1}{\sqrt{2}}(\left|B^{0}\bar{B}^{0}\right\rangle - \left|\bar{B}^{0}B^{0}\right\rangle)$$

Vast number of events e.g., $B_s \bar{B}_s$: 7 × 10⁶ at Belle, 8 × 10⁸ at LHCb $K_0 \bar{K}_0$: 8 × 10⁹ at KLOE and KLOE-2, etc

Precise measurement of flavor oscillation and correlation.

- Quantum correlation, Bell inequality, quantum decoherence, etc.
- Reconstruct the complete flavor density matrix?

$$\rho_{_{\!M\!M}} = \frac{\mathbb{1}_4 + R_i^{\mathcal{A}} \sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}} \mathbb{1}_2 \otimes}{4}$$

have been studied in *BB* at Belle, *KK* at KLOE... [Belle, hep-ph/0702267; KLOE, hep-ph/0607027]

 $\sigma_i + C_{ij}\sigma_i \otimes \sigma_j$

Flavor density matrix of MM pair when they are produced, i.e., at t = 0

2

Introduction: Quantum tomography

— from a complementary set of measurements

- One qubit: 3 operators
- Two qubit: 3+3+9 operators

Spin-1/2 particle as qubit:

- $\rightarrow \vec{\sigma}$ is embedded in 3d spatial space.
- Different direction of $\vec{\sigma} \implies$ complementary.
- Collider envoronments: infer $\langle \sigma_i \rangle$ from decay

What about qubit in flavor space?

- An obvious challenge: cannot choose"*direction*" of measurement freely?
- e.g. flavor tagging, only σ_z : $\sigma_z |B^0\rangle = |E|$

$$\rho = \frac{\mathbb{1}_2 + R_i \sigma_i}{2}, \quad R_i = \langle \sigma_i \rangle$$

$$\rho = \frac{\mathbb{1}_4 + R_i^{\mathcal{A}} \sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}} \mathbb{1}_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j}{4}$$

$$R_i^{\mathcal{A}} = \langle \sigma_i \otimes \mathbb{1}_2 \rangle$$
$$R_i^{\mathcal{B}} = \langle \mathbb{1}_2 \otimes \sigma_i \rangle$$
$$C_{ij} = \langle \sigma_i \otimes \sigma_j \rangle$$

$$|B^0\rangle, \ \sigma_z |\bar{B}^0\rangle = -|\bar{B}^0\rangle$$

Introduction: Flavor/Mass eigenstate

- Hamitonian in flavor eigenstate: $|M\rangle$, $|\overline{M}\rangle$
- Mass eigenstate is $|M_1\rangle = p|M\rangle + q|$

$$|M_2\rangle = p |M\rangle - q |\bar{M}\rangle, \qquad (m_2, \Gamma_2)$$

• CP conserving case: $|M_{1/2}\rangle \propto |M\rangle \pm |M\rangle$

• $\rho_{M} = \frac{\mathbb{1}_{2} + R_{i}\sigma_{i}}{2}$, R_{i} still have physical meaning; conversions are:

 \succ *z*-direction \Longrightarrow flavor eigenstate, (oscillates with y)

x-direction \implies mass eigenstates (and CP eigenstates)

$$\rangle: \qquad H = \mathbf{M} - i\mathbf{\Gamma}/2 = \begin{pmatrix} m - i\frac{\Gamma}{2} & P^2 \\ Q^2 & m - i\frac{\Gamma}{2} \end{pmatrix},$$

$$\bar{M}
angle, \qquad (m_1,\Gamma_1)$$

difference between flavor and mass eigenstate leads to flavor oscillation

$$\begin{split} |M\rangle, R_z &= 1 \\ |\bar{M}\rangle, R_z &= -1 \end{split}$$

$$\begin{split} |M_1\rangle, R_x &= 1\\ |M_2\rangle, R_x &= -1 \end{split}$$

State evolution in Bloch-vector space

$$\rho(t) \propto U(t)\rho U(t)^{\dagger} \qquad U = \begin{pmatrix} \frac{1}{2}(e^{-\Gamma_{1}t/2 - im_{1}t} + e^{-\Gamma_{2}t/2 - im_{2}t}) & \frac{q}{2p}(e^{-\Gamma_{1}t/2 - im_{1}t} - e^{-\Gamma_{2}t/2 - im_{2}t}) \\ \frac{p}{2q}(e^{-\Gamma_{1}t/2 - im_{1}t} - e^{-\Gamma_{2}t/2 - im_{2}t}) & \frac{1}{2}(e^{-\Gamma_{1}t/2 - im_{1}t} + e^{-\Gamma_{2}t/2 - im_{2}t}) \end{pmatrix}$$

- State evolution (Operator evolution)
 - Neglect CPV and decay ($\Gamma \ll \Delta m$):

Schrödinger density matrix $\rho = \frac{I_2 + \vec{R} \cdot \vec{R}}{2}$ picture $\frac{d\rho(t)}{dt} = -i[H,\rho(t)] = \left(\vec{X}\times\vec{R}(t)\right)\cdot\vec{\sigma},$ $\frac{d\vec{R}(t)}{\vec{R}(t)} = \vec{X} \times \vec{R}(t).$

• Precession around $\vec{X} = (\Delta m, 0, 0)$

- Example operator $\sigma_z |M\rangle = + |M\rangle$, $\sigma_z |\bar{M}\rangle$
 - Flavor tagging at different times \implies both σ_z and σ_v

$$\begin{array}{l} \underline{\cdot}\vec{\sigma} \\ \underline{\cdot}\vec{\sigma} \\ \text{picture} \end{array} \text{ operator } A = \vec{a} \cdot \vec{\sigma} \\ \\ \frac{dA(t)}{dt} = i[H, A(t)] = -\left(\vec{X} \times \vec{a}(t)\right) \cdot \vec{\sigma}, \\ \\ \frac{d\vec{a}(t)}{dt} = -\vec{X} \times \vec{a}(t). \end{array}$$

$$\bar{M} = - \left| \bar{M} \right\rangle$$

Collapse the superposition

Two kinds of decay final states, CP eigenstate or not

$$M \to f$$
 with $CP | f \rangle = | \bar{f} \rangle \neq | f \rangle$:

$$M \to f_{\eta} \text{ with } CP |f_{\eta}\rangle = \eta |f_{\eta}\rangle, \ \eta = \pm 1:$$

project to $|M\rangle$, $|\bar{M}\rangle$ with $P_{M/\bar{M}} = \frac{1 \pm R_z}{2}$ project to $|M_1\rangle$, $|M_2\rangle$ with $P_{M_1/M_2} = \frac{1 \pm R_x}{2}$

	$\operatorname{Br}(M \to f)$			
10^{-4}	$B^0_d o \ell^+ \nu_\ell X^-$	$(20.66 \pm 0.56)\%$		
$)^{-4}$	$B^0_s \to \ell^+ \nu_\ell X^-$	$(19.2 \pm 1.6)\%$		

$$ho_{_M}=rac{\mathbb{1}_2+R_i\sigma_i}{2}$$

Collapse the superposition

• Two kinds of decay final states, CP eigenstate or not

$$M \to f$$
 with $CP | f \rangle = | \bar{f} \rangle \neq | f \rangle$:

• Decay rate asymmetry to f, \overline{f} :

$$\Gamma_{M(t)\to f/\bar{f}} = \frac{1 \pm R_z(t)}{2} \Gamma_{M\to f} \qquad (N_f - N_{\bar{f}}) \sim \langle \sigma_z \rangle = R_z$$
servable:
$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$
Meson flavor state when it is produced, $t = 0$

$$n R_y \text{ and } R_z \text{ are obtained as they oscillated into each other.}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t}$$

• O

$$\Gamma_{M(t)\to f/\bar{f}} = \frac{1 \pm R_z(t)}{2} \Gamma_{M\to f} \qquad (N_f - N_{\bar{f}}) \sim \langle \sigma_z \rangle = R_z$$

bservable:
$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} (R_z \cos(\Delta m t) - R_y \sin(\Delta m t)) \Gamma_{M\to f}$$

Meson flavor state when it is produced, $t = 0$
oth R_y and R_z are obtained as they oscillated into each other.
$$\Delta m \approx 27 \Gamma, t^{(\Gamma^{-1}]}$$

Bo

project to $|M\rangle$, $|\bar{M}\rangle$ with $P_{M/\bar{M}} = \frac{1 \pm R_z}{2}$

Collapse the superposition

— x direction in the Bloch vector space

• Conside a meson that only decay to flavor eigenstate $|f\rangle$ (such as semileptonic) or CP-even eigenstate $|f_+\rangle$

$$\begin{split} \Gamma_{M(t) \to f_{+}} &= \frac{1 + R_{x}(t)}{2} \Gamma_{M_{1} \to f_{+}} = (1 + R_{x}(t)) \Gamma_{M \to f_{+}} \\ &\underbrace{M(t) \to f/\bar{f}}_{2} \text{ depend on } R_{x} \\ &\text{affected by branching fraction} \\ &\text{ecay to } f_{+} \\ &\text{n't decay to } f_{+}, \text{ more } f \\ &\Gamma^{t}(\cosh(\Delta\Gamma t/2) - R_{x} \sinh(\Delta\Gamma t/2)) \Gamma_{M \to f} \\ &\text{el is enough. e.g. } B_{s} \to \ell^{+} \nu_{\ell} X + h \cdot c . \end{split}$$

$$\Gamma_{M(t) \to f_{+}} = \frac{1 + R_{x}(t)}{2} \Gamma_{M_{1} \to f_{+}} = (1 + R_{x}(t)) \Gamma_{M \to f_{+}}$$
Both $M(t) \to f_{+}$ and $\underline{M(t) \to f/\bar{f}}$ depend on R_{x}
affected by branching fraction

$$R_{x} = 1, M_{1} \text{ can decay to } f_{+}$$

$$R_{x} = -1, M_{2} \text{ can't decay to } f_{+}, \text{ more } f$$

$$\frac{1}{N_{0}} \frac{d(N_{f} + N_{\bar{f}})}{dt} = e^{-\Gamma t} (\cosh(\Delta\Gamma t/2) - R_{x} \sinh(\Delta\Gamma t/2)) \Gamma_{M \to f}$$
Semi-leptonic channel is enough. e.g. $B_{s} \to \ell^{+} \nu_{\ell} X + h \cdot c$.

Observables in semileptonic decay channel

- Reconstruct ρ_{MM} at t = 0. $\rho_{MM} = \frac{\mathbb{1}_4 + \mathbb{1}_4}{\mathbb{1}_4}$
- One meson:
 - $> N_f N_{\bar{f}} \Longrightarrow R_v, R_z$
 - $N_f + N_{\bar{f}} \Longrightarrow R_x$

$$\frac{1}{N_0} \frac{d(N_f - N_{\bar{f}})}{dt} = e^{-\Gamma t} \left(R_z \cos(\Delta m t) - R_y \sin(\Delta m t) \right) \Gamma_{M \to f}$$
$$\frac{1}{N_0} \frac{d(N_f + N_{\bar{f}})}{dt} = e^{-\Gamma t} \left(\cosh(\Delta \Gamma t/2) - R_x \sinh(\Delta \Gamma t/2) \right) \Gamma_{M \to f}$$

- Meson pair:
 - Four observables from the correlation between the above two

$$\frac{-R_i^{\mathcal{A}}\sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}}\mathbb{1}_2 \otimes \sigma_i + C_{ij}\sigma_i \otimes \sigma_j}{4}$$

 $\mathscr{H}_A \otimes \mathscr{H}_B = N_{f\bar{f}}$: meson A decay to f and meson B decay to \bar{f} $\sigma_z \otimes \sigma_z \longrightarrow A_{ff} = N_{ff} - N_{\bar{f}f} - N_{f\bar{f}} + N_{\bar{f}\bar{f}} = N_{\text{like}} - N_{\text{unlike}}$

Observables in semileptonic decay channel

- $ho_{_{\!M\!M}}=rac{\mathbbm{1}_4+}{-}$ • Reconstruct ρ_{MM} at t = 0.
- One meson:
 - $\frac{1}{N_0} \frac{d(N_f N_f)}{dt}$ $N_f - N_{\bar{f}} \Longrightarrow R_v, R_z$ $rac{1}{N_0}rac{d(N_f+N_j)}{dt}$ $N_f + N_{\bar{f}} \Longrightarrow R_x$
- Meson pair:
 - Four observables from the correlation

 $\frac{\mathrm{d}N_{\text{tot}}}{\mathrm{d}t_1\mathrm{d}t_2} = N_0\Gamma_{B_0\to f}^2 e^{-\Gamma(t_1+t_2)} \big(\mathrm{ch}_{t_1}\mathrm{ch}_{t_2} - \mathrm{ch}_{t_1}\mathrm{sh}_{t_2}\big)$ $\frac{\mathrm{d}A_{ff}}{\mathrm{d}t_1\mathrm{d}t_2} = N_0\Gamma_{B_0\to f}^2 e^{-\Gamma(t_1+t_2)} (\mathbf{s}_{t_1}\mathbf{s}_{t_2}C_{yy} - \mathbf{c}_{t_1}\mathbf{s}_{t_2}C_{yy} - \mathbf{c}_{t_2}\mathbf{s}_{t_2}C_{yy} - \mathbf{c}_{t_1}\mathbf{s}_{t_2}C_{yy} - \mathbf{c}_{t_2}\mathbf{s}_{t_2}C_{yy} - \mathbf{c}_{t$ $\frac{\mathrm{d}A_f^{\mathcal{A}}}{\mathrm{d}t_1\mathrm{d}t_2} = N_0\Gamma_{B_0\to f}^2 e^{-\Gamma(t_1+t_2)} \big(\mathrm{ch}_{t_2}(\mathrm{c}_{t_1}R_z^{\mathcal{A}} - \mathrm{s}_{t_1})\big)$

$$\frac{-R_i^{\mathcal{A}}\sigma_i \otimes \mathbb{1}_2 + R_i^{\mathcal{B}}\mathbb{1}_2 \otimes \sigma_i + C_{ij}\sigma_i \otimes \sigma_j}{4}$$

$$\frac{V_{\bar{f}}}{T_{\bar{f}}} = e^{-\Gamma t} \left(R_z \cos(\Delta m t) - R_y \sin(\Delta m t) \right) \Gamma_{M \to f}$$

$$\frac{V_{\bar{f}}}{T_{\bar{f}}} = e^{-\Gamma t} \left(\cosh(\Delta \Gamma t/2) - R_x \sinh(\Delta \Gamma t/2) \right) \Gamma_{M \to f}$$

between the above two

$$sh_{t_2}R_x^{\mathcal{A}} - sh_{t_1}ch_{t_2}R_x^{\mathcal{B}} + C_{xx}sh_{t_1}sh_{t_2} + \mathcal{O}(\epsilon)$$

$$s_{t_2}C_{zy} - s_{t_1}c_{t_2}C_{yz} + c_{t_1}c_{t_2}C_{zz} + \mathcal{O}(\epsilon)$$

$$s_1R_y^{\mathcal{A}} - sh_{t_2}(c_{t_1}C_{zx} - s_{t_1}C_{yx}) + \mathcal{O}(\epsilon)$$

$$\epsilon \sim 10^{-3} - 10^{-5}$$

$${}_2R_y^{\mathcal{B}} - sh_{t_1}(c_{t_2}C_{xz} - s_{t_2}C_{xy}) + \mathcal{O}(\epsilon)$$

2024/04/08 @ GGI

Sensitivity estimation

- We consider a C-odd flavor state $(|M\bar{M}\rangle)$
 - Analogy to spin singlet $R_i = 0$, $C_{ii} =$
- B_{s} pair: x-direction is hard to measure, y and z are the same
- K_0 pair: y-direction slightly worse than z

$$- \left| ar{M} \right\rangle) / \sqrt{2}$$
 $- \delta_{ij}$

	$B_s^0 \bar{B}_s^0$ fitted	$K^0 \overline{K}^0$ fitte
$R_x^\mathcal{A}$	-0.01 ± 0.06	-0.002 ± 0.00
$R_x^{\mathcal{B}}$	-0.01 ± 0.06	-0.003 ± 0.00
$R_y^\mathcal{A}$	0.000 ± 0.003	0.005 ± 0.00
$R_z^{\mathcal{A}}$	0.000 ± 0.003	0.003 ± 0.00
$R_y^{\mathcal{B}}$	0.000 ± 0.003	0.005 ± 0.00
$R_z^{\mathcal{B}}$	0.001 ± 0.003	0.002 ± 0.00
C_{xx}	-1.2 ± 1.0	-1.005 ± 0.01
C_{yx}	0.00 ± 0.06	0.005 ± 0.00
C_{zx}	0.00 ± 0.05	0.006 ± 0.00
C_{xy}	0.00 ± 0.05	0.006 ± 0.00
C_{xz}	0.00 ± 0.05	0.004 ± 0.00
C_{yy}	-1.001 ± 0.004	-1.003 ± 0.00
C_{yz}	0.001 ± 0.003	0.000 ± 0.00
C_{zy}	0.000 ± 0.003	0.000 ± 0.00
C_{zz}	-1.000 ± 0.003	-1.001 ± 0.00
Concurrence	1.1 ± 0.5	1.005 ± 0.00
		1

Tab. Statistical uncertainty with 10⁶ events

- $B_s B_s$: 10⁵ ~ 10⁶ at LHCb (HL-LHC)
- *KK*: 8×10^9 at KLOE and KLOE-2, a fraction of 10^{-5} decay to lepton in the first period we consider.

Conclusion

- The complete flavor density matrix of meson pair can be reconstructed!
 - We can ask about concurrence, Bell, discord and magic, etc.
 - Larger $\Delta m/\Gamma$, better sensitivity on y, z components.
 - Larger $\Delta\Gamma/\Gamma$, better sensitivity on x components

CP violation, more information, more precision, combine different channel, etc.

	B_s^0	B^0_d	D^0	K^0
$\Delta m/{ m ps}^{-1}$	17.76	0.506	9.2×10^{-3}	5.29 imes 10
Γ/ps^{-1}	0.662	0.658	2.44	5.59×10
$\Delta \Gamma / \mathrm{ps}^{-1}$	0.082	2.6×10^{-3}	0.030	0.0111

[LHCb plots]

LHCb focuses on one meson, but a large fraction of $b\bar{b}$ are both in detectable region

- not very clear about the flavor state, so interesting to measure

