

### Flavour patterns from Entanglement Minimization?

## Sokratis Trifinopoulos

Quantum Observables for Collider Physics GGI, 8 April 2025



### The flavor sector of the Standard Model



- The SM (+ GR) are arguably our most celebrated intellectual achievements in fundamental science.
  - It is a gauge theory with 19 (+7 for the vSM) input parameters leads to thousands of accurate predictions!
  - > I3(+7) of these parameters concern the *flavor* sector:
    - $\circ$  9(+3) fermion masses
    - 4(+4) mixing parameters
  - The mixing parameters are organized in the Cabibbo–Kobayashi– Maskawa (**CKM**) and Pontecorvo–Maki–Nakagawa–Sakata (**PMNS**) matrices, each parametrized by three angles  $\theta_{12}$ ,  $\theta_{13}$ ,  $\theta_{23}$ and a CP-violating phase  $\delta$ .



### But flavor seems ad-hoc!



The mixing angles for quark flavors are hierarchical, i.e. the CKM is almost diagonal:

 $45^{\circ} \gg \theta_{\mathrm{CKM},12} > \theta_{\mathrm{CKM},13} \approx \theta_{\mathrm{CKM},23} \approx 0$ 

The parameters of the neutrino mixing appear to be of comparable size and no new relation is known among them, i.e. the PMNS appears to be anarchic:

 $45^{\circ} > \theta_{\mathrm{PMNS},12} \sim \theta_{\mathrm{PMNS},23} > \theta_{\mathrm{PMNS},13} \gg 0$ 



### **Traditional approach: Flavor symmetries**

> Assume that there is an exact symmetry in the UV, which appears broken in the IR.

 $\succ$  Archetypical example: Froggatt-Nielsen U(1)



> The mechanism yields a mass term:  $O(1)\varepsilon^{Q_i+Q_j}f_{i,L}f_{j,R}H$  with  $\varepsilon = \frac{\langle S \rangle}{M_F}$  (spurion).

\*Advantage: working within an established paradigm, *i.e.* QFTs with broken symmetries.

Drawbacks: i) new UV degrees of freedom (often) lie beyond experimental reach
 ii) conservation of free parameters iii) spurion analysis of CKM is incompatible with PMNS.



### What if there is another way?

...to reduce the SM input parameters without new symmetries in the UV or/and new heavy particles?



[Thaler, **Trifinopoulos**] 2410.23343

What we have (so far): Numerical observations (from various fronts) that may hint towards a new principle:

The quantum entanglement generated in  $2 \rightarrow 2$  elastic fermion scattering induced by electroweak interactions is minimized when the flavor parameters assume (roughly) their vSM values.

What we don't have (yet):

i) Any *fundamental* justification for this principle,ii) a unique choice of entanglement measure.







#### I. Entanglement & Emergent Symmetries



II. Entanglement and Symmetry-breaking patterns



III. Future outlook



### **Quantum Entanglement**

Another fundamental physical resource is: entanglement. Similarly to energy, it is a tangible measurable quantity that can be <u>transferred</u>, <u>stored</u>, and <u>consumed</u>.

#### > What **is** entanglement?



- a property of (at least) two particles: the quantum state of each particle cannot be described independently of the state of the others no matter the distance between them.
  - □ If two particles A and B get entangled, then:  $|\psi_{AB}\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$  (non-seperable)
- 2. inherently quantum & non-local: there is no classical equivalence as proven by **Bell's theorems**; the correlations exist even when the measurements are space-like separated!

3. a carrier of information: central to QIS tasks like quantum teleportation & cryptography.



### **Measures of entanglement (states)**

> Quantum information (or better lack thereof) is quantified by the

**von Neuman entropy**:  $S[\rho] = -\text{Tr}(\rho \log \rho)$ ,  $(S[\rho] = 0$  for pure states)

> Entanglement is quantified by the information contained in the subsystems via the

**Entanglement entropy**:  $S_E[\rho] = -\text{Tr} (\rho_R \log \rho_R)$ ,  $(\rho_R = \text{Tr}_A \rho \text{ or } \text{Tr}_B \rho$ , for bipartite systems)

>  $S_E[\rho]$  is a formal measure of entanglement. For pure states it is the unique measure (every other is monotonically related to it). [Plenio, Virmani] quant-ph/0504163

> A more convenient quantity to characterize entanglement of pure states (entanglement witness) is the

**Linear entropy**: 
$$E[\rho] = \frac{d}{d-1} |1 - \operatorname{Tr} \rho_R^2|$$
,  $(0 \le E[\rho] \le 1)$   
separable separable (Bell states)



### **Measures of entanglement (operators)**

How is entanglement generated at the fundamental level? scattering & decay processes!

- > Scattering is described by means of the unitary S operator that connects the Fock spaces  $\mathcal{F}$  of the incoming and outgoing asymptotic states:  $|out\rangle = S |in\rangle$ . [Balasubramanian et al] [108.3568 [Peschanski, Seki] [602.00720]
- ➤ We can ask how much entanglement is generated by S. The answer depends on the initial states, e.g. CNOT  $|00\rangle = |00\rangle$ , CNOT  $|10\rangle = |10\rangle$ , but  $CNOT\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes |0\rangle\right) = \frac{|00\rangle+|11\rangle}{\sqrt{2}}$ .

 $\succ$  We define the **entangling power**:  $\mathcal{E}(\mathcal{S}) \equiv \overline{E(\mathcal{S}|i\rangle \otimes |j\rangle)}$  [Zanardi, Zalka, Faoro] quant-ph/0005031

...and find its extrema with respect to the input parameters of the theory!

#### Nature already chooses to extremize a functional...





Sokratis Trifinopoulos

## **Allii**

### **Emergent Symmetries from MinEnt**



- I. The Seattle group [Beane, Kaplan, Klco, Savage] 1812.03138 studied spin-1/2 octet baryon
  - $2 \rightarrow 2$  scattering in low-energy QCD and found:

spin-flavor symmetries  $\Leftrightarrow$  MinEnt

✤ Later, [Low, Mehen] 2104.10835 showed that the S operator produces no entanglement,

when:  $\mathcal{S} \sim [\mathbf{1}] \iff SU(4) \& SU(16)$ ) or  $\mathcal{S} \sim [SWAP] \iff Shrödinger)_{\sigma^+}$ 



and found:

see Guglielmo's

talk for MaxEnt

SO(8) symmetry  $\Leftrightarrow$  MinEnt

 $\checkmark$  natural alignment limit with a SM-like Higgs

But this result depends on the choice of channel.

choose the channel that produces the minimum entanglement

# **AIIII**

 $\Phi^0_d$ 

n(ddu)

 $\Sigma^{-}(dds)$ 

 $\Phi_b^0$ 

 $\Phi_a^+$ 

 $\Phi_{h}^{0}$ 

[Chang, Jacobo] 2409.13030,

[Kowalska, Sessolo] 2404.13743

 $\Lambda^0(uds)$ 

 $\Xi$  (ssd)

 $\Phi_c^+$ 

 $\Phi^0_d$ 

 $\Phi_c^+$ 

p(uud)

 $\Xi^{0}(ssu)$ 

 $\Sigma^+(uus)$ 

 $\Phi_c^+$ 

 $\Phi^0_d$ 

 $\Phi_c^+$ 

 $\Phi^0_d$ 

 $\Sigma^{0}(uds)$ 

 $\Phi_a^+$ 

 $\Phi_{h}^{0}$ 

 $\Phi_a^+$ 

 $\Phi_{h}^{0}$ 

 $P_{u,i}$ 

 $P_{s,i}$ 





I. Entanglement & Emergent Symmetries



#### II. Entanglement & Symmetry-breaking patterns



III. Future outlook



#### **Flavor lives in discrete Hilbert spaces**

> Let us consider the G-dimensional quark Hilbert spaces  $H_u$  and  $H_d$ . For G = 3, the quark states are qutrits with the following basis elements (corresponding to the 6 quark flavors):

$$\begin{array}{lll} H_u: & |1\rangle_u , & |2\rangle_u , & |3\rangle_u , \\ H_d: & |1\rangle_d , & |2\rangle_d , & |3\rangle_d . \end{array}$$

> Similarly, for leptons and neutrinos we define  $H_{\ell}$  and  $H_{\nu}$  (we really mean mass eigenstates).

 $\succ$  We build the product Hilbert space:  $H_f = H_u \otimes H_d$ . A generic state can be written as:



### Isolating $H_f$ in elastic scattering

 $\succ$  We want to characterize the flavor entanglement generated by  $2 \rightarrow 2$  elastic, fermion scattering. flavor indices  $u_{Li}(p_1)d_{Lj}(p_2) \rightarrow u_{Lk}(p_3)d_{L\ell}(p_4)$  negative helicity ( $\approx$ left-handed chirality)  $\begin{array}{cccc} \mathcal{F} & \stackrel{\mathcal{S}}{\longrightarrow} & \mathcal{F} \\ \left| \Pi_{\mathrm{in}} & & \left| \Pi_{\mathrm{out}} \right| \\ H_{f} & \stackrel{\mathcal{S}_{f}}{\longrightarrow} & H_{f} \end{array} \right| \succ \mathrm{To} \mathrm{map} \mathrm{from} \mathrm{the} \mathrm{Fock} \mathrm{space} \mathcal{F} \mathrm{to} \mathrm{the} \mathrm{flavor} \mathrm{Hilbert} \mathrm{space} H_{f} \mathrm{via} \\ \mathrm{preparation} \mathrm{of} \mathrm{the} \mathrm{initial} \mathrm{state} \mathrm{and} \mathrm{projective} \mathrm{measurements} \mathrm{of} \mathrm{the} \\ \mathrm{kinematics} \mathrm{of} \mathrm{the} \mathrm{final} \mathrm{state} \mathrm{state} \mathrm{space} \mathrm{H}_{f} \mathrm{space} \mathrm{H}_{f}$  $|\operatorname{out}\rangle_{ij} = \frac{\prod_{\operatorname{out}} \mathcal{S} |\operatorname{in}\rangle_{ij}}{\left|\prod_{\operatorname{out}} \mathcal{S} |\operatorname{in}\rangle_{ij}\right|} = \frac{1}{\mathcal{N}_{ij}} \sum_{k,\ell=1}^{G} \underbrace{\mathcal{M}_{k\ell ij}(s,\Theta) |p_3,k;p_4,\ell\rangle}_{\text{perturbative amplitude}} \text{ scattering angle}$ 

> The operator  $S_f(G^2 \times G^2 \text{ matrix})$  is non-unitary, but still preserves normalization:  $\operatorname{diag}(S_f S_f^{\dagger}) = \mathbb{I}$ .

### Allii

#### **Perpendicular entangling power**

> Averaging over the product states of definite fermion generation, the entangling power reads:

$$\mathcal{E}(\mathcal{S}_{f}) \equiv \overline{E(\mathcal{S}_{f} | i \rangle_{u} \otimes | j \rangle_{d})} = \frac{1}{G^{2}} \sum_{i,j=1}^{G} E(\mathcal{S}_{f} | i j \rangle_{ud})$$
$$E(\rho) \equiv \frac{G}{G-1} \left| 1 - \operatorname{tr} \rho_{R}^{2} \right|, \quad \langle k |_{u} \rho_{R,ij} | k' \rangle_{u} = \frac{1}{|\mathcal{N}_{ij}|^{2}} \sum_{\ell=1}^{G} \mathcal{M}_{k\ell i j}(s, \Theta) \mathcal{M}_{k' \ell i j}^{*}(s, \Theta).$$

Alice and Bob initiate their beams at  $A_i$  and  $B_i$  and place their detectors at  $A_f$  and  $B_f$ , respectively.

➤ They can each decide to send either up or down quarks, but they can't measure final state flavor. Consequently, there is one unambiguous position for  $A_f$  and  $B_f$ , which is at  $\Theta = 90^\circ$  (invariance under  $A_f \leftrightarrow B_f$ ).

 $\succ$  We define the **perpendicular entangling power** as:  $\mathcal{E}_{\min}^{\perp}(\mathcal{S}_{f}^{\perp}) \equiv \mathcal{E}_{\min}(\mathcal{S}_{f})\Big|_{\Theta=\frac{\pi}{2}}$ 

**Allii** 

 $A_{1}$ 

Вi

 $B_{f}$ 

#### **SM** flavor-entangling interactions

► Let us start with the two quark generations to gain intuition. In this case there is one flavor parameter, the **Cabibbo** angle  $\theta_{\text{CKM},12} = \theta_C \in [0, \pi/4]$ . We want to examine:

$$\theta_C^{\min} = \operatorname*{arg\,min}_{\mathrm{ch},\theta_{\mathrm{C}}} \mathcal{E}_{\mathrm{ch}}^{\perp}[\theta_C]$$

> At LO the minimal elastic entangling channel in the SM happens to be  $ud \rightarrow ud$  induced by <u>electroweak interactions</u>. In the high-energy limit we have:



### Entangling power of EW interactions (G = 2)



**Allii** 

### **Towards the Full CKM** $(ud \rightarrow ud)$



Allii

17

### Towards the Full PMNS $(\nu \ell \rightarrow \nu \ell)$



>  $\delta_{PMNS}$  is the only flavor parameter which is not yet experimentally determined. In our framework, the preferred value (at LO) is close to  $\pi$ !

## **Alli**





I. Entanglement & Emergent Symmetries



II. Entanglement & Symmetry-breaking patterns



III. Future outlook



### What is next?

> A 10% increase in the charged-current contribution leads to  $\theta_c \approx 13^{\circ}!$ Historically, the **one-loop** level has been highly illuminating!





~ IR finite cross-sections (Bloch–Nordsieck theorem)

but Π<sub>2</sub>restricts to 2-particle final state?

We need to develop an <u>IRC safe entanglement measure</u> for bypartiite systems.
• other QIS concepts might prove to be useful!

- > Revisit the nucleon-nucleon scattering results in the presence of  $\theta_{QCD}$ . Are the CP-violating terms producing entanglement in spin-flavor space? Spoiler: yes!
- ► Intriguing fact: EntMax in helicity space wrt the gauge couplings in tree-level EW scattering yields  $\theta_W = \frac{\pi}{6}$ . [Cervera-Lierta et al] 1703.02989



### Conclusions

- > To our knowledge, this is the first time the differing CKM and PMNS structures have arisen from a common mechanism (without new symmetries).
- > Even though one can argue that the experimentally known parameters are postdictions, we (may) have a prediction for the  $\delta_{PMNS} \approx \pi$ .
- Further explorations are required to ultimately answer the question: Is this all just a numerical coincidence, or could minimization of quantum entanglement really be a fundamental principle of nature?
- > Injecting QIS concepts into HEP is speculative but very exciting!



All things physical are information-theoretic in origin and this is a *participatory universe*.

[J.A.Wheeler] "Information, Physics, Quantum: The Search for Links" in Complexity, Entropy and the Physics of Information (1990)



### Thank you!







Sokratis Trifinopoulos

### Flavor from a Minimization (Energy) Principle

There is already an attempt in the literature of invoking a Minimization principle for explaining the flavor structures.
[Alonso, Gavela, Isidori, Maniani] 1306.5927



- Group theoretical methods are employed to identify the natural extrema of a generic potential V invariant under the SM flavor symmetry (in the massless limit).
- The extrema correspond to specific maximal subgroups and thus to symmetry-breaking patterns that generate the texture of the resulting Yukawa matrices (at O(1) accuracy).

Discrete flavor symmetries, e.g. A<sub>4</sub> provide better numerical postdictions. However, the required symmetry breaking has different sources between quarks and leptons and the vacuum alignment is problematic. [He, Keum, Volkas] hep-ph/0601001

