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* |dentifying and characterizing quantum resources are among the most
important topics in the quantum era:

Entanglement is the most prominent example.

* Not all guantum resources provide computational advantages over classical
algorithms (Gottesman-Knill theorem):

Need a second layer of Quantumness— the magic (non-stabilizerness)

* Magic is an essential ingredient for universal quantum computation. (Bravyi
and Kitaev: quant-ph/0403025)



What is the Question?

* Basic forces in nature are known to generate quantum resources such
as entanglement easily and abundantly.

 What about computational advantages? How well can fundamental
interactions generate quantum advantages?

* Is the Quantum Advantage built into the fundamental physics in the UV
oris it an emergent phenomenon in the IR?



What is the Question?

» Basic forces in nature are known to generate guantum resources such
as entanglement easily and abundantly.

 What about computational advantages? How well can fundamental
interactions generate quantum advantages?

* Is the Quantum Advantage built into the fundamental physics in the UV
oris it an emergent phenomenon in the IR?

As a starting point, we consider the ability of QED to generate
magic states in 2-to-2 scatterings of electrons and muons, starting
from an initial state with zero magic.



The Stabilizer Formalism:

* The Pauli gropu G, for n-qubit:
G,={oPP®---QP, | P,e{l,X,Y,Z} and ¢ € {*1,+:i} }

I=0" X=0'Y=0%and Z = o*

* A ”Stabilizer” state is an eigenstate of some elements of G, :

gy =1¥),  geGn

Such g’s form an abelian subgroup called the “Stabilizer Group.”

The maximal stabilizer group S of each stabilizer state is unique!



* For n-qubit, the maximal stabilizer group S has 2" elements but only n
generators, whose products generate S.

* A unitary operation U on a stabilizer state is another stabilizer state:

Ul = Ugly) = UgUT Up)

whose stabilizer group is USUT.

* Instead of specify 2" amplitudes of U|¢> , one can simply specify the n
generators of USUT.



* For n-qubit, the maximal stabilizer group S has 2" elements but only n
generators, whose products generate S.

* A unitary operation U on a stabilizer state is another stabilizer state:

Uly) = Ugly) = UgU' Uy)

whose stabilizer group is USUT.

* Instead of specify 2" amplitudes of U|¢> , one can simply specify the n
generators of USUT.

This is the essence of Gottesman-Knill theorem and why the
stabilizer states can be simulated efficiently using classical
algorithms!



* The stabilizer formalism is particularly powerful when applying to the

“Clifford gates,” which consists of the Hadamard gate, the Phase gate
and the Controlled-Not gate:
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These are the generators of the Clifford Group, which is the normalizer
of the Pauli group:

N(G,) = {U | UG, U' = G,}



* The stabilizer formalism is particularly powerful when applying to the

“Clifford gates,” which consists of the Hadamard gate, the Phase gate
and the Controlled-Not gate:

1 00 O
1 1 1 1 0 010 0
H:\/ﬁ[l —1] S‘[o z] CNOT =15 ¢ o 1
0010

These are the generators of the Clifford Group, which is the normalizer
of the Pauli group:

N(G,) = {U | UG,U" = G}

Gottesman-Knill theorem states that quantum circuits
involving Clifford gates and stabilizer states can be
simulated efficiently using classical computers.



 Clifford gates and stabilizer states are heavily utilized in quantum
computing, because they are sufficient for generating highly entangled
states such as the Bell states:

Initial Hadamard CNOT  Output
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 Clifford gates and stabilizer states are heavily utilized in quantum
computing, because they are sufficient for generating highly entangled
states such as the Bell states:

Initial Hadamard CNOT  Output
States Gate Gate State

0) —H 00) + |11
I¢>=| )+ [11)
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 Fundamental interactions are known the generate maximal
entanglement abundantly in 2-to-2 scatterings:
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* However, Clifford gates and stabilizer states are NOT universal — they
are not able to approximate all unitary transformations.

Clifford gate + magic states are universal



* However, Clifford gates and stabilizer states are NOT universal — they
are not able to approximate all unitary transformations.

Clifford gate + magic states are universal

» Stabilizer states by definition have zero magic. For 2-q system, there

are 60 stabilizer states:

1Y) = c1[T1) + c2|Td) + esldt) +caldd).

e Among them 24 states are
maximally entangled!

* Entanglement does not imply
computational advantage!
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* There are several quantitative measures of non-stabilizerness — the
magic —and we will adopt the Stabilizer Renyi Entropy (SRE):

Zp(14)) = - (WIPI)°

1
Mo (19)) = 7——1log ) Z3(|¢)) —logd
PePn
1 1
= 1_alogPE§; S ($IPy)™

* For a stabilizer state, SRE vanishes because Zp(|1)) = +1



 We will use the 2" order SRE:

My([)) = —logZ5(19)) ,  Za(w)) =Y <¢IZI¢>

PePn

* For 2-g states, the maximal SRE is

M, < logg ~ (0.827



 We will use the 2" order SRE:

My() = ~logZa(lw)) . E(lu)) = Y LW

PePn

* For 2-g states, the maximal SRE is

M, < log g ~ (0.827

e QOur goal is to start from a stabilizer state and compute the final state
SRE for QED processes:

e/p e/ e/u e/
e/ e/u
M
0! v
e/u e/u

e/u e/u e/u e/
(a) (b) (c)



The Setup:

* SRE involves computing the expectation values of Pauli matrices; they
are not rotationally invariant and require a choice of basis.

* We choose to project the spin along the beam axis in the CM frame for
both initial and final states:

p1+ p2 — k1 + ko
Elxﬁl

zZ = ﬁla :& - - S )
k1 X pi
 We do not use the helicity basis, which projects the spin along the

direction of motion, since we want to compare the magic in initial and
final states.



* We consider the following scattering processes, in both the non-
relativistic and ultra-relativistic limits:

e et — puut
Mogller scattering e" e~ — e e

Bhabha scattering e e™ — e et
e u —e u
ppt —e et

* We include all 60 stabilizer states as the initial states and compute the
final state magic as a function of the scattering angle 6.



Low Energy Limit: e" et — p—pu™
* Near the kinematic threshold /s > 2m,, the amplitude only depends on

A= e : A ~ 0.005 in real world
my,

 We compute the magic as a function of 1 :

Stabilizer States Eo —log /1 =0
_ ) _ o 10-5
1,2,3,4,5,6,9,10, 37, 38,39, 40, 42, 43, 44, 45, 48,49, 50| F; Mo = log G ~ 10 )
—log Gy ~ 10~
7,8,11,12,46,47,59, 60 g1
13,14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
% e Using the real world value, the
29, 30, 31, 32, 33, 34, 35, 36, 51, 52, 53, 54, 55, 56, 57, 58 . : :
magic produced is practically
41 — Zero.
* Among the 60 stabilizer initial
X+ 14N+ X34+ 2801+16 states, only three different

f1:17 gl_ g2_

(A2 +1)* (A% +2)4 magic is produced.



* We can plot the magic production as a function of A:

M3

log(16/7), maximal possible magic for 2q

0.8

EQ (MZ)max )\max
Al — | —
G |log(4/3)|v2 -1
Ga |log(9/5)| 1

 Even if we allow A to vary, the largest magic produced is

significantly less than the maximum value.

* These observations persist in most other channels:




Mgller scattering e e™ — e e”

29, 30, 31, 32, 33, 34, 35, 36, 51, 52, 53, 54, 55, 56, 57, 58

Stabilizer States Eo |(M2)max O max
1,2,5,6,9,10,37,38,39,40,41,42,45, 48,49, 50 Fi 0 Arbitrary
2arctan v/ v2 — 1,
3,4,7,8,11,12, 43, 44, 46, 47, 59, 60 Fo |log(4/3)
7w — 2arctan vV V2 — 1
13,14, 15, 16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
F3 |log(9/5) |arctan 24/2, m — arctan 2v/2

Again only three different magic is produced among the 60
initial states. And we never reach the maximal magic for 2q.

0.8
0.6
0.4

0.2

---------------------------------------------------------

1.0

6/




Mgller scattering e" e~ — e e”

Stabilizer States Eo [ (M2)max Omax

1,2,5.6,9,10,37,38,39,40,41,42,45.48,49.50 | F, | 0 Arbitrary

2 arctan \/5—1,
3,4,7,8,11,12,43,44, 46,47, 59, 60 Fo |log(4/3)

T — 2arctan \/5— 1

13,14, 15, 16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
F3 |log(9/5) |arctan 24/2, m — arctan 2v/2

29, 30, 31, 32, 33, 34, 35, 36, 51, 52, 53, 54, 55, 56, 57, 58

Curiously, the largest magic produced are the same as in ee 2 upu.

My Mo
p.8 [ T o.ai """""""""""""""""""""""""""""""""""
06 e
0.4: . *
)
0.2 .

6/




 The magic produced in the low-energy limit vanishes identically for

Bhabha scattering e et — e e™

e pu- —e u-



 The magic produced in the low-energy limit vanishes identically for
Bhabha scattering e et — e et
e U —e u
 The most interesting channel is ,LFWL —e e’ , which has a much
richer structure and the magic production is governed by 8 different

patterns:
(a) Gs (b) Ga
(d) Go (e) Gr (£) G

Plotted for real world A "

08
06
04
6 08 70 " 02 o

6ir
4 0.6 0.8 1.0

(8) Go h) Gio

0.2 04



 The magic produced in the low-energy limit vanishes identically for

Bhabha scattering e et — e et
e U —e u
 The most interesting channel is ,u_u+ — e~ e’ which has a much

richer structure and the magic production is governed by 8 different
patterns:

M2
ey
06 06 06
04 04 04
02+ 02 /\/\/\/\ 02+
It appears this
. Lo ain d = oln i . ol p p
0.2 04 0.6 0.8 1.0 0.2 04 0.6 08 1.0 0.2 04 0.6 0.8 1.0

may reach the
maximal magic!

(d) Ge (e) G (f) Gs

Plotted for real world A /\/\/\ "

() Go (h) Gio



Let’s take a closer look and plot it as a function of A:

M2

0.80
0.75
0.70

0.65

0.60

1 1 1 1 1 . A
0.2 0.4 0.6 0.8 1.0

FIG. 5: The maximal magic achieved from initial states |¢)s);, ¢ = 13,14, --- , 28, in the low

energy scattering of u~ut — e"et. These maximal values are attained at § = 7/4 or 37 /4.

It reaches log(16/7) for A = 0. The real world value of
0.005 gets us very close to the maximal possible magic.



Let’s take a closer look and plot it as a function of A:

M2
0.80
0.75
0.70

0.65

0.60

1 L 1 L L L " A
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FIG. 5: The maximal magic achieved from initial states |1)s);, i = 13,14, --- ,28, in the low

energy scattering of u~ut — e"et. These maximal values are attained at § = 7/4 or 37 /4.

It reaches log(16/7) for A = 0. The real world value of
0.005 gets us very close to the maximal possible magic.

Among the processes we studied, this is the only
instance where maximal magic is achieved.



High Energy Limit: e et — p—u™

—

* The ultra-relativistic limit is given by 1 = a — 00
(&

Stabilizer States Eo | (M2) max O max

1,2,13,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
Fy |log(9/5)| w/4, 3w /4

29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 51, 52, 53, 54, 55, 56, 57, 58

/8, 31 /8,

3,4,5,6,11,12, 37,42, 43, 44, 46, 47, 49, 50 Fs |log(4/3)
5m /8, Tr/8
7.8,9,10, 38, 45, 48, 59, 60 Fi| 0 | Arbitrary

41 — — —




High Energy Limit: e et — p—u™
* The ultra-relativistic limit is given by 1 = s — 00
(&
Stabilizer States Ed | (M2) max O max

1,2,13,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
F4|log(9/5) || /4, 3m/4
29. 30, 31, 32, 33, 34, 35, 36, 39, 40, 51, 52, 53, 54, 55, 56, 57, 58

/8, 31w /8,
3,4,5,6,11,12,37,42, 43,44, 46, 47, 49, 50 Fo|log(4/3)
/8, T /8
7,8,9,10, 38, 45,48, 59, 60 Fi| 04l Arbitrary
41 —| — —
M3
p.g T
0s! F4 These values appeared

previously!
Do they carry special
meanings?




Mgller scattering e e~ — e~ e~ has arich structure in the high energy:

Stabilizer States Eo | (M2)max O max
1,2,39,40 Fe | 0576 - (1/2) £0.783 - --
3,4, 43,44 Fr |log(16/9) /4, 37 /4
5, 6,49, 50 Fs | log(9/5) |7 /4, 3m/4, (m/2) £ arccoty/2
7,8,59,60 Fo|0.586- - (1/2) £0.781 - - -
9,10 Fio]0.268 - -- (1/2) £0.186 - - -
11,12, 46,47 F | log(4/3) 2arctan v/V2 —1,
7 — 2arctan /2 — 1
13,14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28| F11 | 0.458 - - - (1/2) £ 0.444 - -
29,31, 34, 36, 55, 56, 57, 58 F12/0.539 - - 0.649 - - -
30, 32, 33, 35, 51,52, 53, 54 Fi12]0.539 - - m—0.649 - -
37,42 Fi 0 Arbitrary
38,41 Fs | log(4/3) /8, 3w /8, b /8, Tm/8
i | log@/3) 0.440---,1.49- -
2.16---,2.78- -

- m—0440---, m—149---,
48 .7:13 10g(4/3)

m™—216---, m—2.78---

Curiously, Bhabha scattering e e™ — e~et in the high energy limit
involves the same 13 functions!



Mgller scattering e e~ — e~ e~ has arich structure in the high energy:

M, M.
QB QBT
0.6 0.6
04 0.4
) ) /\/\AA
. — Bl -1 — i
0.2 0.4 0.6 0.8 1.0 02 04 0.6 0.8 1.0

(8) Fi2 (h) Fi3



e U e u

Stabilizer States Eo | (M2)max O max
1,2,3, 4, 39,40, 43, 44 Fr |10g(16/9) /4, 37 /4
5.6,49, 50 F14| 0.580- - 0.790- - -
7.8,59, 60 Fis/0.580- - - 0.789. - -
9,10 F16[0.405 - - - 1.95---
11,12,46,47 Fi7| log(4/3) 2 arctan 21/4
13,14,15,16,17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | F15| 0.628 - - - 2.31---
29,31, 34, 36, 55, 56, 57, 58 F19[0.569 - - - 0.710- - -
30,32, 33, 35, 51,52, 53, 54 F20[0.550 - - 0.849- - -
37,42 Fi1 0 Arbitrary
38,41 Fs | log(4/3) /8, 3m/8,
5m /8, Tm/8
45 For| log(4/3) [0.414---,1.45---,2.70- -
i P log(ayay 373 103, L2

217+, 2.78 - -




06+
0.4}

0.2}

0.2 0.4 06 0.8 1.0

(8) F20

(h) F21

O/

06
0.4~

0.2

- 6/r
0.2 0.4 0.6 0.8 1.0

0.6/

0.4+

6/r
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Conclusions

* Entanglement and Magic are two intersecting layers of "Quantumness.”
Magic is necessary ingredient for universal qguantum computation.

* We study the production of magic in 2-to-2 scatterings as a probe of the
inherent computational power of Quantum Electrodynamics.

* Although capable of producing maximally entangled states abundantly, QED
doesn’t seem to generate maximal magic easily. The only instance is the
low-energy limit of u” u* > e-e*, in the limit m,/m, - 0.

* Magic production of all 60 stabilizer states is governed only be a few
patterns. Why??

 QED doesn’t seem to be too magical. What interactions can give rise to
maximal quantum advantage computationally?



