Quantum uncertainties with top quarks

GGI Quantum Observables for Collider Physics workshop, 09/04/2025

Baptiste Ravina (CERN)

Foreword (Gemini's hallucination)

Can you generate a picture of an ATLAS physicist being sad they can't work on their pet project as much as they'd like, because they have to work full-time to replicate a result from the CMS collaboration that discovered a new resonance?

Quantumness of correlations

Classical correlations arise from common causes, shared history, or direct interactions: fully captured by probability distributions and mutual information + systems maintain individual, well-defined properties

Quantum mechanics presents phenomena that have no classical analog (e.g. entanglement) \rightarrow subsystems can no longer be described independently

$$ho = \sum_n p_n
ho_n^a \otimes
ho_n^b, \ \sum_n p_n = 1, \ p_n \ge 0$$
 [separability]

How do we **quantify the quantumness of correlations**, i.e. the transition between purely classical and maximally entangled states?

[entangled = non-separable BUT separable != classical]

Will focus on bipartite qubit systems:

$$\rho = \frac{\mathbb{1} + \sum_{i} \left(B_{i}^{+} \sigma^{i} \otimes \mathbb{1} + B_{i}^{-} \mathbb{1} \otimes \sigma^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \otimes \sigma^{j}}{4}$$

Quantum Discord

Captures the *non-classicality of correlations* by measuring differences in the **total mutual information** [Shannon entropy $H \rightarrow von$ Neumann entropy S]

Discord
$$\rightarrow \mathcal{D}_A = S(\rho_B) - S(\rho) + \min_{\hat{\mathbf{n}}} p_{\hat{\mathbf{n}}} S(\rho_{\hat{\mathbf{n}}}) + p_{-\hat{\mathbf{n}}} S(\rho_{-\hat{\mathbf{n}}})$$

- In general: $0 \le D_A \le 1$ and $D_A != D_B$
- Experimentally very challenging! Requires a *minimisation* over projective measurements.
- Analytical results exist for special classes of states (e.g. Bell-diagonal states, T states)

$$S(\rho) = -\mathrm{Tr}\rho \log_2 \rho \qquad \rho_{\hat{\mathbf{n}}} = \frac{1 + \mathbf{B}_{\hat{\mathbf{n}}}^+ \cdot \sigma}{2}, \ \mathbf{B}_{\hat{\mathbf{n}}}^+ = \frac{\mathbf{B}^+ + \mathbf{C} \cdot \hat{\mathbf{n}}}{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^-}, \ p_{\hat{\mathbf{n}}} = \frac{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^-}{2}$$

Local Quantum Uncertainty

Alternative [with clearer interpretability?] based on **quantum uncertainty under local measurements:** even when a system is *not entangled*, a local measurement on one part can disturb the global state *if there are* quantum correlations.

Wigner-Yanase skew information: $\mathcal{I}(
ho,K_A\otimes\mathbb{I}_B)=-rac{1}{2}\mathrm{Tr}([\sqrt{
ho},K_A\otimes\mathbb{I}_B]^2)$

quantifies the non-commutativity between state ρ and observable K \rightarrow the part that is not just "classical ignorance" [=quantum-certain] ^a

Therefore if the **minimal value of I** achievable on a single local measurement is **non-zero**, we are dealing with

a discordant state

$$\mathcal{U}(
ho)\equiv\min_{K_A}\mathcal{I}(
ho,K_A\otimes\mathbb{I}_B)$$

the Local Quantum Uncertainty (LQU)

Closed-form formulae when A is a qubit

$$\mathcal{D}_A = S(\rho_B) - S(\rho) + \min_{\hat{\mathbf{n}}} p_{\hat{\mathbf{n}}} S(\rho_{\hat{\mathbf{n}}}) + p_{-\hat{\mathbf{n}}} S(\rho_{-\hat{\mathbf{n}}}) \qquad \qquad \mathcal{U}(\rho) \equiv \min_{K_A} \mathcal{I}(\rho, K_A \otimes \mathbb{I}_B)$$

Our **alternative measure of discord** suffers from the **same issue**: we need to perform a **minimisation** over possible measurements...

- Discord: get around this only for X-states [this is the case for tt at LO in QCD]
- LQU: closed-form formula valid for generic 2 x d systems! [qubit-qudit]

Pick non-degenerate observables K_A on the qubit A such that $K_A = \vec{n} \cdot \vec{\sigma}, |\vec{n}| = 1$

Then compute the eigenvalues (w_1, w_2, w_3) of the matrix

$$\left(\mathcal{W}
ight)_{ij}\equiv\mathrm{Tr}\left\{\sqrt{
ho}\left(\sigma_{Ai}\otimes\mathbb{I}_{2}
ight)\sqrt{
ho}\left(\sigma_{Aj}\otimes\mathbb{I}_{2}
ight)
ight\}$$

The LQU simplifies to

$$^{ ext{to}} \,\,\, \mathcal{U}\left(
ho
ight) = 1 - \max\left(\omega_{1}, \omega_{2}, \omega_{3}
ight)$$

[we only need the SDM!]

Closed-form formulae beyond qubit-qudits

For the qudit-qudit case $d_1 \times d_2$, things are a little bit more complicated...

The generators of SU(d) are

$$\lambda_{j} = \begin{cases} \sqrt{\frac{2}{j(j+1)}} \left(\sum_{k=1}^{j} |k\rangle \langle k| - j|j+1\rangle \langle j+1| \right), j = 1, ..., d-1 \\ |k\rangle \langle m| + |m\rangle \langle k| (1 \le k < m \le d), j = d, ..., \frac{d(d+1)}{2} - 1 \\ i(|k\rangle \langle m| - |m\rangle \langle k|) (1 \le k < m \le d), j = \frac{d(d+1)}{2}, ..., d^{2} - 1 \end{cases}$$
satisfying

$$\lambda_{i}\lambda_{j} = i \sum_{k} f_{ijk}\lambda_{k} + \sum_{k} g_{ijk}\lambda_{k} + \frac{2}{d}\delta_{ij}\mathbb{I}_{d} \qquad f_{ijk} = \frac{1}{4i} \operatorname{Tr}([\lambda_{i}, \lambda_{j}]\lambda_{k}), g_{ijk} = \frac{1}{4} \operatorname{Tr}(\{\lambda_{i}, \lambda_{j}\}\lambda_{k})$$

and we instead end up looking at the matrix

$$\mathcal{W}_{ij} = \operatorname{Tr}\{\sqrt{\rho}(\lambda_i \otimes \mathbb{I}_{d_2})\sqrt{\rho}(\lambda_j \otimes \mathbb{I}_{d_2})\} - G_{ij}L$$

 $G_{ij} = (g_{ij1}, \cdots, g_{ijk}, \cdots, g_{ijd_1^2 - 1}),$ $L = (\operatorname{Tr}(\rho\lambda_1 \otimes \mathbb{I}_{d_2}), \cdots, \operatorname{Tr}(\rho\lambda_k \otimes \mathbb{I}_{d_2}), \cdots, \operatorname{Tr}(\rho\lambda_{d_1^2 - 1} \otimes \mathbb{I}_{d_2}))^T$

- For $d_1=2$ we have $G_{ii}=0$ and we recover the result on the previous slide
- For $d_1 > 2$ we have a closed-form lower bound when L=0 \Leftrightarrow Tr[$\rho\lambda_i \otimes 1_n$] = 0
- Unfortunately for H→ZZ we are not in this configuration as soon as the Z's are not at rest -

A. Sen et al. (2015)

A note on the validity of the closed-form formulae

A. Sen et al.

The derivation **assumes** we can **pick non-degenerate observables K**_A.

Maybe there are better ways of checking that, but one possibility is:

- apply the formula, compute W, and decompose it as $\mathcal{W} = UDU^{-1}$
- get the row of U⁻¹ that corresponds to the maximum eigenvalue of W
- substitute that row into $K_A = \vec{n} \cdot \vec{\sigma}$ and check it is not degenerate

 \rightarrow Seems to work fine for qubit-qubit systems 👍

Predictions for SM tt at LO QCD R. Aoude & E. Madge & F. Maltoni & L. Mantani (2022)

$$\rho = \frac{\mathbb{1} + \sum_{i} \left(B_{i}^{+} \sigma^{i} \otimes \mathbb{1} + B_{i}^{-} \mathbb{1} \otimes \sigma^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \otimes \sigma^{j}}{4}$$

 \Rightarrow **Bipartite qubit system** described in terms of the top and anti-top quark spin polarisations B_i and spin correlations C_{ii}

In a given basis, Fano coefficients computed in terms of the top velocity (β) and scattering angle (cos Θ).

At LO: $B_i=0$ and C_{ii} ~diagonal \rightarrow tt in an X-state \rightarrow many things simplify!

The CMS lepton+jets measurement

CMS-TOP-23-007 Talk by Otto Hindrichs vesterday

10

LQU per channel: SM tt at LO QCD, in the helicity basis

Note that the color map is in log scale!

⇒ we're looking at a
 small effect, localised
 near maximally
 entangled regions

As expected, we have **0**<**U**≤**1**, with near saturation at threshold in the gg-channel

LQU vs Discord: SM tt at LO QCD, in the beam basis

Y. Afik &

JRMdN

Beyond SM tt at LO QCD

"Higher-order SM effects only have a small impact on the spin coefficients", **but...**

- 1) these might be exacerbated by looking at specific regions of phase-space
- 2) **QI observables** may also accidentally enhance them
- 3) Monte Carlo simulations only include/approximate some of them

Can further consider 2 extensions of the SM to guide the BSM phenomenology:

- **pseudo-scalar** $A \rightarrow t\bar{t}$ near threshold ~ *toponium*
- dimension-6 SMEFT

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n=1}^{\infty} \frac{1}{\Lambda^n} \sum_i c_i^{(n)} \mathcal{O}_i^{(n)} \quad \mathcal{O}_{tG} = g_s \left(\bar{Q} \sigma^{\mu\nu} T^A t \right) \tilde{\phi} \, G^A_{\mu\nu} + \text{h.c.}$$

Talk by Benjamin Fuks this morning

LQU per channel: SM + EFT tt in the helicity basis

Note that the color map is in log scale!

Here consider a **large** BSM effect [ctG=1 TeV⁻²] for visualisation purposes.

Picture changes quite a lot for the qq-channel, *to be checked...*

Comparison of different quantum correlation metrics

Looking at the CMS lepton+jets measurement

Metric	LO QCD	NLO Powheg +Pythia8		
D=Tr[C]/3	-0.257	-0.222		
Magic	0.293	0.232		
Discord	0.103	0.072		
LQU	0.073	0.051		

Obtained from the **inclusive measurement by CMS**, using the **full SDM** and its **covariance** (100k toys)

Metric	LO QCD	NLO Powheg +Pythia8	NLO Powheg +Herwig7	NLO MG5_aMC +Pythia8	NNLO MiNNLOps +Pythia8
D=Tr[C]/3	-0.257	-0.222	-0.209	-0.227	-0.225
Magic	0.293	0.232	0.214	0.235	0.236
Discord	0.103	0.072	0.065	0.073	0.075
LQU	0.073	0.051	0.045	0.051	0.053

Obtained from the **inclusive measurement by CMS**, using the **full SDM** and its **covariance** (100k toys)

See the <u>talk by Ethan Simpson this morning</u> for the differences in parton shower

Metric	Measured	LO QCD	NLO Powheg +Pythia8	NLO Powheg +Herwig7	NLO MG5_aMC +Pythia8	NNLO MiNNLOps +Pythia8
D=Tr[C]/3	-0.221 ± 0.010	-0.257	-0.222	-0.209	-0.227	-0.225
Magic		0.293	0.232	0.214	0.235	0.236
Discord		0.103	0.072	0.065	0.073	0.075
LQU		0.073	0.051	0.045	0.051	0.053

Obtained from the **inclusive measurement by CMS**, using the **full SDM** and its **covariance** (100k toys)

Metric	Measured	LO QCD	NLO Powheg +Pythia8	NLO Powheg +Herwig7	NLO MG5_aMC +Pythia8	NNLO MiNNLOps +Pythia8
D=Tr[C]/3	-0.221 ± 0.010	-0.257	-0.222	-0.209	-0.227	-0.225
Magic	0.238 ± 0.014	0.293	0.232	0.214	0.235	0.236
Discord		0.103	0.072	0.065	0.073	0.075
LQU		0.073	0.051	0.045	0.051	0.053

Obtained from the **inclusive measurement by CMS**, using the **full SDM** and its **covariance** (100k toys) \rightarrow **clear observation of Magic** [beyond 5 σ]

See the <u>talk by Otto Hindrichs yesterday</u> for the full differential results!

Metric	Measured	LO QCD	NLO Powheg +Pythia8	NLO Powheg +Herwig7	NLO MG5_aMC +Pythia8	NNLO MiNNLOps +Pythia8
D=Tr[C]/3	-0.221 ± 0.010	-0.257	-0.222	-0.209	-0.227	-0.225
Magic	0.238 ± 0.014	0.293	0.232	0.214	0.235	0.236
Discord	0.073 ± 0.010	0.103	0.072	0.065	0.073	0.075
LQU	0.051 ± 0.007	0.073	0.051	0.045	0.051	0.053

Obtained from the **inclusive measurement by CMS**, using the **full SDM** and its **covariance** (100k toys) \rightarrow **clear observation of Magic & Discord & LQU** [beyond 5 σ]

But how do we interpret those given the mixed states, angular averaging and experimental bin averaging?.. [need to look differentially at entangled regions]

Next steps...

- Check the relevance of theory uncertainties [scales & PDF]
- Check the behaviour of **further EFT operators** and **pseudo-scalar states**
- Exploit the full potential of the CMS results → differential in M(tt) and cos⊖
- This would then allow one to check the **Quantum Fisher Information** of the system
 - get the "score" of the tt SDM with respect to SMEFT operators in the vicinity of the SM
 - Cramér-Rao bound: QFI determines the absolute best sensitivity one could hope to extract from such a measurement
 - can we **optimise the phase-space cuts** in this way?
 - how does it **compare to e.g. trace distance** / fidelity? [QFI ~ Bures]
- Explore the possibility of defining a lower bound for discord in $H{\rightarrow}VV^*$

LQU gives an exactly computable lower bound on Discord for tt at the LHC Observation of LQU > 0 from the recent CMS measurement <u>CMS-TOP-23-007</u>

Preprint to appear on arXiv hopefully soon... [or viXra? 00]